चुंबकीय धारक

From Vigyanwiki

चुंबकीय बेयरिंग या धारक ऐसा मशीनी उपकरण है जिसका उपयोग चुंबकीय उत्तोलन के लिए अनिवार्य हैI चुंबकीय बेयरिंग बिना किसी भौतिक साधन के गतिमान हिस्सों को सहारा देने में अहम भूमिका निभाते हैंI वे बहुत कम घर्षण और बिना किसी यांत्रिक घर्षण के रोटरडायनामिक्स को उत्तोलित करने और सापेक्ष गति को अनुमति देने में सक्षम हैं। चुंबकीय बेयरिंग उच्चतम गति का समर्थन करते हैंI

निष्क्रिय चुंबकीय बेयरिंग में स्थाई रूप से चुंबकीय शक्ति का प्रयोग होता हैI इसके लिए किसी आगत शक्ति की आवश्यकता नहीं होती है लेकिन इर्नशॉ के प्रमेय द्वारा वर्णित सीमाओं के कारण इन्हें चित्रित करना कठिन हैI प्रति चुंबकत्व सामग्री का उपयोग करने वाली तकनीकें अपेक्षाकृत अविकसित हैं और दृढ़ता से भौतिक विशेषताओं पर निर्भर करती हैं। परिणामस्वरुप अधिकांश चुंबकीय धारक विद्युत् चुंबकीय शक्ति के कारण सक्रिय होते हैं एवं इनके वजन को स्थिर रखने के लिए निरंतर विद्युत् से संबंधित इनपुट और सक्रिय नियंत्रण प्रणाली की आवश्यकता होती है। एक संयुक्त डिजाइन में स्थायी चुम्बकों का उपयोग प्रायः स्थिर भार को ले जाने के लिए किया जाता हैI सक्रिय चुंबकीय असर का उपयोग तब किया जाता है जब उत्तोलित वस्तु अपनी इष्टतम स्थिति से विचलित हो जाती है। बिजली या नियंत्रण प्रणाली की विफलता के मामले में चुंबकीय बीयरिंगों को आमतौर पर बैक-अप असर की आवश्यकता होती है।

विद्युत उत्पादन पेट्रोलियम शोधन, मशीन उपकरण संचालन और प्राकृतिक गैस हैंडलिंग जैसे कई औद्योगिक अनुप्रयोगों में चुंबकीय बेयरिंग का उपयोग किया जाता है। उनका उपयोग अपकेंद्रित्र में भी किया जाता हैI[1] यूरेनियम संवर्धन और टर्बोमोलेक्युलर पंप बेयरिंग संदूषण का स्रोत हैं।

डिजाइन

एकल अक्ष के लिए मूल संचालन

घूर्णन विद्युत कंडक्टर में आवर्त धाराओं को शामिल करने के आधार पर सक्रिय चुंबकीय प्रणाली विद्युत चुम्बकीय के सिद्धांत पर कार्य करता हैI जब विद्युत प्रवाहकीय सामग्री चुंबकीय क्षेत्र में गतिशील होती है तो उस सामग्री में विद्युत् ऊर्जा उत्पन्न होगी जो चुंबकीय क्षेत्र में परिवर्तन करती है जिसे लेंज़ के नियम के रूप में जाना जाता है। इसमें इस प्रकार की विद्युत् शक्ति उत्पन्न होती है जिसके परिणामस्वरूप चुंबकीय क्षेत्र उत्पन्न होता है जो चुंबक के विपरीत उन्मुख होता है। यह विद्युत चालन सामग्री चुंबकीय दर्पण के रूप में कार्य करती है।

मशीनरी में विद्युत् चुंबकीय शक्ति स्थापित होती हैI इसमें प्रवर्धक का सेट होता है जो विद्युत चुम्बकों को बिजली की आपूर्ति करता हैI नियंत्रक संबंधित इलेक्ट्रॉनिक्स के साथ सेंसर होता है ताकि गैप के भीतर रोटर की स्थिति को नियंत्रित करने के लिए आवश्यक फीडबैक प्रदान किया जा सकेl पावर एम्पलीफायर एक रोटर के विपरीत पक्षों पर विद्युत चुम्बकों के दो युग्मों के बराबर आपूर्ति करता है।

गैप सेंसर आमतौर पर प्रकृति में आगमनात्मक होते हैं और डिफरेंशियल मोड के अंतर्गत आते हैं। आधुनिक वाणिज्यिक अनुप्रयोग में शक्ति प्रवर्धक ठोस अवस्था उपकरण हैं जो पल्स चौड़ाई उतार - चढ़ाव कॉन्फ़िगरेशन में काम करते हैं। नियंत्रक एक माइक्रोप्रोसेसर या डिजिटल सिग्नल प्रोसेसर होता है।

चुंबकीय बेयरिंग आमतौर पर दो प्रकार की होती हैं। चुम्बक अस्थिर स्थैतिक बल उत्पन्न करते हैं जो बढ़ती दूरी के साथ घटता है और घटती दूरी पर बढ़ता है। इससे असंतुलन स्थित होता हैI दूसरे क्योंकि चुम्बकत्व ऐसा बल है जो अवमंदन प्रदान करता हैI यदि कोई चालन बल मौजूद है तो दोलन को नुकसान पंहुचा सकता है I

इतिहास

नीचे दी गई तालिका सक्रिय चुंबकीय बेयरिंग के लिए कई प्रारंभिक पेटेंट सूचीबद्ध है।

Early U.S. patents in active magnetic bearings
Inventor(s) Year Patent number Title
बीम्स, होम्स 1941 2,256,937 घूर्णन योग्य निकायों का निलंबन
बीम्स 1954 2,691,306 चुंबकीय रूप से समर्थित घूर्णन निकाय
गिल्बर्ट 1955 2,946,930 चुंबकीय निलंबन
बीम्स 1962 3,041,482 स्वतंत्र रूप से निलंबित पिंडों को घुमाने के लिए उपकरण
बीम्स 1965 3,196,694 चुंबकीय निलंबन प्रणाली
वूल्फ 1967 3,316,032 पॉली-फेज मैग्नेटिक सस्पेंशन ट्रांसफार्मर
बोडेन अल 1968 DE1750602 मैग्नेटिस लेगेरुंग (जर्मन पेटेंट)
लीमन 1971 3,565,495 चुंबकीय निलंबन उपकरण
हबरमैन 1973 3,731,984 उच्च गति पर घूमने के लिए अनुकूलित ऊर्ध्वाधर शाफ्ट का समर्थन करने के लिए चुंबकीय असर ब्लॉक डिवाइस
हबरमैन , जोली 1974 3,787,100 चुंबकीय बियरिंग्स द्वारा समर्थित घूर्णन सदस्यों सहित उपकरण
हबरमैन, ब्रुनेट 1977 4,012,083 चुंबकीय बियरिंग्स
हबरमैन , ब्रुनेट , 1978 4,114,960 चुंबकीय बियरिंग्स के लिए रेडियल विस्थापन डिटेक्टर डिवाइस
क्रूट , एस्टेले 1990 1,988,024,350 चुंबकीय बियरिंग्स में और सुधार
मिक्स, क्रॉफोर्ड  आर 1992 5,111,102 असर संरचना
क्रूट , एस्टेले 1994 1,991,075,982 गैर रेखीय चुंबकीय असर

वर्जीनिया विश्वविद्यालय से जेसी बीम्स ने द्वितीय विश्व युद्ध के दौरान कुछ प्रारंभिक सक्रिय चुंबकीय प्रकरण दर्शाये गएI [2][3] मैनहट्टन परियोजना के लिए आवश्यक तत्वों के समस्थानिकों के संवर्धन के उद्देश्य से किए गए पेटेंट से संबंधित हैं। हालांकि 1987 में हबरमैन और स्विट्ज़र ने अपने कार्यप्रणाली के दौरान प्रमाणित किया कि चुंबकीय बेयरिंग इस समय तक बहुत अधिक चलन में नहीं थे I [4] एस्टेले क्रोट ने सक्रिय चुंबकीय प्रौद्योगिकी में और सुधार किया[5] लेकिन इन डिजाइनों को महंगी लागत के उत्पादन के कारण निर्मित नहीं किया गया था जिसमें लेजर मार्गदर्शन प्रणाली का उपयोग किया गया था। एस्टेले क्रोट का शोध तीन ऑस्ट्रेलियाई पेटेंट [2] का विषय था और इसे नाची फुजिकोशी, निप्पॉन सेइको केके और हिताची द्वारा वित्त पोषित किया गया था और उनकी गणना का उपयोग किया गया था। अन्य प्रौद्योगिकियों में दुर्लभ-पृथ्वी चुंबक का उपयोग करते थे लेकिन सक्रिय चुंबकीय बेयरिंग केवल प्रोटोटाइप चरण तक ही विकसित किए गए थे। क्रोट का[6] डिज़ाइन में एक उन्नत कम्प्यूटरीकृत नियंत्रण प्रणाली भी शामिल थी जबकि अंतिम डिज़ाइन गैर-रैखिक चुंबकीय प्रभाव था।

कसरदा[7] के अनुसार सक्रिय चुंबकीय बीयरिंगों का पहला व्यावसायिक अनुप्रयोग टर्बोमशीनरी था। अल्बर्टा, कनाडा में सक्रिय चुंबकीय क्रिया ने नोवा गैस ट्रांसमिशन लिमिटेड "एनजीटीएल" गैस पाइपलाइन के लिए कंप्रेशर्स पर तेल जलाशयों को निष्काषित करने की अनुमति दी। इन चुंबकीय असर प्रतिष्ठानों की सफलता ने एनजीटीएल को अमेरिकी कंपनी चुंबकीय बियरिंग्स इंक द्वारा आपूर्ति की गई एनालॉग नियंत्रण प्रणालियों के प्रतिस्थापन के रूप में डिजिटल चुंबकीय असर नियंत्रण प्रणाली के अनुसंधान और विकास का नेतृत्व किया। 1992 में "एनजीटीएल" के चुंबकीय अनुसंधान समूह ने कंपनी का गठन किया। रिवॉल्व टेक्नोलॉजीज इंक कंपनी को बाद में स्वीडन के एसकेएफ ने खरीदा था। फ्रांसीसी कंपनी S2M की स्थापना 1976 में हुई थी जो सक्रिय चुंबकीय बेयरिंग का व्यावसायिक रूप से विपणन करने वाली पहली कंपनी थी।

1996 में प्रारम्भ होने वाले दशक के दौरान डच तेल और गैस कंपनी ने बीस गैस कंप्रेशर्स स्थापित किए, जिनमें से प्रत्येक 23-मेगावाट चर-गति-ड्राइव इलेक्ट्रिक मोटर द्वारा संचालित था। प्रत्येक इकाई मोटर और कंप्रेसर दोनों पर सक्रिय चुंबकीय बीयरिंगों से पूरी तरह सुसज्जित थी। इस बड़े गैस क्षेत्र से शेष गैस निकालने और क्षेत्र की क्षमता बढ़ाने के लिए इन कंप्रेशर्स का उपयोग ग्रोनिंगन गैस क्षेत्र में किया जाता है। मोटर-कंप्रेसर डिजाइन सीमेंस द्वारा किया गया था और सक्रिय चुंबकीय बीयरिंग वौकेशा बियरिंग्स कॉर्पोरेशन द्वारा वितरित किए गए थे। मूल रूप से इन बीयरिंगों को ग्लेशियर द्वारा डिजाइन किया गया था इस कंपनी को बाद में फेडरल मोगुल द्वारा ले लिया गया था और अब वौकेशा बियरिंग्स का हिस्सा है। चालक और कंप्रेसर दोनों में सक्रिय चुंबकीय बीयरिंगों को लागू करने,गियर और बॉल बेयरिंग का उपयोग करने वाले के परिणामस्वरूप अपेक्षाकृत सरल प्रणाली होती है जिसमें बहुत व्यापक ऑपरेटिंग रेंज और उच्च क्षमता होती है ।

इलेक्ट्रोमोटिव स्थिरीकरण के साथ गैर-संपर्क स्थायी चुंबक बीयरिंग को 1955 में आर. जी. गिल्बर्ट द्वारा पेटेंट के लिए लागू किया गया था I [8] 1968 में के. बोडेन, डी. शेफ़र के आविष्कार  

कई व्यावहारिक अनुप्रयोगों के लिए तकनीकी आधार प्रदान करते हैं जिनमें से कुछ 1980 के बाद लाइसेंस के तहत औद्योगिक श्रृंखला उत्पादन के चरण तक पहुंच गए हैं।[9][10] मीक्स[11] स्थायी चुंबक पूर्वाग्रह क्षेत्र प्रदान करते हैं और सक्रिय नियंत्रण से संबंधित स्थिरता और गतिशील नियंत्रण के लिए उपयोग किए जाते हैं। स्थायी चुम्बकों का उपयोग करने वाले ये डिज़ाइन विशुद्ध रूप से विद्युत चुम्बकीय बेयरिंग की तुलना में छोटे और हल्के वजन के होते हैं। इलेक्ट्रॉनिक नियंत्रण प्रणाली भी छोटी है और कम विद्युत शक्ति की आवश्यकता होती है क्योंकि पूर्वाग्रह क्षेत्र स्थायी चुंबक द्वारा प्रदान किया जाता है।

जैसे-जैसे आवश्यक घटकों का विकास हुआ इस क्षेत्र में वैज्ञानिक रुचि भी बढ़ी 1988 में ज्यूरिख में आयोजित चुंबकीय बियरिंग्स पर पहले अंतर्राष्ट्रीय संगोष्ठी में प्रो. श्वित्जर द्वारा इंटरनेशनल सोसाइटी ऑफ मैग्नेटिक बियरिंग्स की स्थापना के साथ शिखर पर पहुंच गया। अलाइरे,वर्जीनिया विश्वविद्यालय और प्रो.ओकाडा से संगोष्ठी एक द्विवार्षिक सम्मेलन श्रृंखला में चुंबकीय असर प्रौद्योगिकी पर स्थायी पोर्टल Bearings.orgविकसित किया गयाI जहां उपलब्ध सभी संगोष्ठियों में वैज्ञानिक योगदान उपलब्ध कराए जाते हैं। यह वेब पोर्टल अंतरराष्ट्रीय अनुसंधान और औद्योगिक समुदाय द्वारा समर्थित है।

अनुप्रयोग

चुंबकीय असर के फायदों में बहुत कम और पूर्वानुमेय घर्षण, और स्नेहन के बिना और निर्वात में चलने की क्षमता शामिल है। कम्प्रेसर, टर्बाइन, पंप, मोटर और जनरेटर जैसी औद्योगिक मशीनों में चुंबकीय बीयरिंग का तेजी से उपयोग किया जाता है।

घरेलू बिजली की खपत को मापने के लिए विद्युत उपयोगिताओं द्वारा वाट-घंटे मीटर में आमतौर पर चुंबकीय बीयरिंग का उपयोग किया जाता है। उनका उपयोग ऊर्जा भंडारण या परिवहन अनुप्रयोगों में और वैक्यूम आदि में भी किया जाता हैI उदाहरण के लिए चक्का ऊर्जा भंडारण प्रणालियों में एक है।[12] [13] मैग्लेव ट्रेन जैसे उपकरण में चुंबकीय बीयरिंग का भी उपयोग किया जाता है। नुकसान में उच्च लागत, भारी वजन और अपेक्षाकृत बड़े आकार शामिल हैं।

चिलर्स के लिए कुछ केन्द्रापसारक कम्प्रेसर में चुंबकीय बीयरिंगों का उपयोग चुंबकीय बीयरिंगों के बीच चुंबकीय सामग्री से बने शाफ्ट के साथ भी किया जाता है। धारा की एक छोटी मात्रा शाफ्ट को चुंबकीय उत्तोलन प्रदान करती है जो असर और शाफ्ट के बीच शून्य घर्षण सुनिश्चित करते हुए हवा में स्वतंत्र रूप से निलंबित रहती है।

अर्धचालक उत्पादन संयंत्रों में वैक्यूम उत्पादन के लिए सबसे महत्वपूर्ण औद्योगिक अनुप्रयोगों में टर्बोमोलेक्युलर पंप हैं। 1975 में विद्युत चुम्बकीय और 1989 में स्थायी चुंबक आधारित लेयबोल्ड एजी द्वारा यांत्रिक स्थिरीकरण के बिना पहले वाणिज्यिक चुंबकीय असर प्रकार टर्बोपंप का विपणन किया गया था।

वैक्यूम मेट्रोलॉजी के क्षेत्र में स्पिनिंग रोटर गेज को BIPM, पेरिस 1979 द्वारा एक संदर्भ मानक के रूप में पेश किया गया था। इस गेज की पहली प्रयोगशाला सेटअप 1946 में जेसी बीम्स द्वारा स्थापित की गई थी। वाणिज्यिक श्रृंखला उत्पादन के लाइसेंस के तहत 1980 में प्रारम्भ हुआ। सेमीकंडक्टर निर्माण उपकरण में वैक्यूम प्रक्रिया नियंत्रण के लिए एसआरजी महत्वपूर्ण है।

कृत्रिम दिल में चुंबकीय बीयरिंग का एक नया अनुप्रयोग है। वेंट्रिकुलर सहायक उपकरणों में चुंबकीय निलंबन का उपयोग वर्जीनिया विश्वविद्यालय में प्रोफेसर पॉल अलाइरे और प्रोफेसर ह्यूस्टन वुड द्वारा किया गया था, जो 1999 में पहले चुंबकीय रूप से निलंबित वेंट्रिकुलर असिस्ट केन्द्रापसारक कंप्रेसर में समाप्त हुआ था।कुछ वेंट्रिकुलर असिस्ट डिवाइस लाइफफ्लो हार्ट पंप सहित चुंबकीय बियरिंग का उपयोग करते हैंi[14]

कालनिक्स टेक्नॉलॉजी सिंक्रोनी मैग्नेटिक बियरिंग्स "जॉनसन कंट्रोल्स इंटरनेशनल की सहायक कंपनी" वौकेशा मैग्नेटिक बियरिंग्स और "एसटूएम" दुनिया भर में प्रमुख चुंबकीय बियरिंग्स के निर्माताओं में से एक हैं।

भविष्य अग्रिम

एक अक्षीय एकध्रुवीय इलेक्ट्रोडायनामिक असर

मैग्लेव परिवहन इंडकट्रैक सिस्टम में मौजूद प्रेरण-आधारित लेविटेशन सिस्टम के उपयोग के साथ चुंबकीय बीयरिंग हेलबैक एरे और सरल बंद लूप कॉइल का उपयोग करके जटिल नियंत्रण प्रणाली को बदल सकते हैं। यह एक लाभप्रद प्रक्रिया है जो सरल कार्यप्रणाली के लिए जानी जाती हैंI रोटरडायनामिक्स के लिए बहुध्रुवीय हलबैक संरचनाओं के बजाय एकध्रुवीय चुंबक डिजाइन का उपयोग करना संभव है जो नुकसान को काफी कम करता है।

डॉ टोरबजोर्न लेम्बके द्वारा आविष्कृत होमोपोलर इलेक्ट्रोडायनामिक बियरिंग है।[15][16][17] यह एक निष्क्रिय चुंबकीय तकनीक पर आधारित विद्युत चुम्बकीय प्रभाव हैl इसे संचालित करने के लिए किसी नियंत्रण इलेक्ट्रॉनिक्स की आवश्यकता नहीं होती है क्योंकि गति से उत्पन्न विद्युत धाराएं पुनर्स्थापना बल का कारण बनती हैं।[18][19][20]

यह भी देखें

संदर्भ

  1. Charles, D., Spinning a Nuclear Comeback, Science, Vol. 315, (30 March 2007)
  2. Beams, J. , Production and Use of High Centrifugal Fields, Science, Vol. 120, (1954)
  3. Beams, J. , Magnetic Bearings, Paper 810A, Automotive Engineering Conference, Detroit, Michigan, USA, SAE (Jan. 1964)
  4. Schweitzer, G. , Characteristics of a Magnetic Rotor Bearing for Active Vibration Control, Paper C239/76, First International Conference on Vibrations in Rotating Machinery, (1976)
  5. Estelle Croot, Australian Inventors Weekly, NSW Inventors Association, Vol. 3, (April 1987)
  6. Sawsan Ahmed Elhouri Ahmed, Nuha Abdallah Mohammed Babker & Mohamed Toum Fadel, "A Study on Classes of Magnetism," IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 6 Issue 4, 2348 – 7968, (2019).
  7. Kasarda, M. An Overview of Active Magnetic Bearing Technology and Applications, The Shock and Vibration Digest, Vol.32, No. 2: A Publication of the Shock and Vibration Information Center, Naval Research Laboratory, (March 2000)
  8. R. G. Gilbert, "Magnetic suspension" [1] 1955
  9. Johan K. Fremerey, "Permanentmagnetische Lager", November 2000 (in German)
  10. Johan K. Fremerey, "Permanent magnet bearings", March 2019
  11. Meeks, C.R., "Magnetic Bearings - Optimum Design and Application", Paper presented at the International Workshop on Rare Earth Cobalt Permanent Magnets, University of Dayton, Dayton, Ohio, October 14–17, 1974
  12. Johan K. Fremerey and Michael Kolk (1999) "A 500-Wh power flywheel on permanent magnet bearings"
  13. Li, Xiaojun; Anvari, Bahar; Palazzolo, Alan; Wang, Zhiyang; Toliyat, Hamid (2018-08-14). "A Utility Scale Flywheel Energy Storage System with a Shaftless, Hubless, High Strength Steel Rotor". IEEE Transactions on Industrial Electronics. 65 (8): 6667–6675. doi:10.1109/TIE.2017.2772205. S2CID 4557504.
  14. "Recent work on the LifeFlow heart pump". Linz Center of Mechatronics GmbH.
  15. "Design and Analysis of a Novel Low Loss Homopolar Electrodynamic Bearing." Lembke, Torbjörn. PhD Thesis. Stockholm: Universitetsservice US AB, 2005. ISBN 91-7178-032-7
  16. "3D-FEM Analysis of a Low Loss Homopolar Induction Bearing" Archived 2011-06-08 at the Wayback Machine Lembke, Torbjörn. 9th International Symposium on Magnetic Bearings (ISMB9). Aug. 2004.
  17. Seminar at KTH – the Royal Institute of Technology Stockholm. Feb 24. 2010
  18. Amati, N., Tonoli, A., Zenerino, E., Detoni, J. G., Impinna, F., "Design Methodology of Electrodynamic Bearings", XXXVIII Associazione Italiana per l'Analisi delle Solecitazioni, Convegno Nazionale, No. 109, 2009
  19. Filatov, A. V., Maslen, E. H., and Gillies, G. T., "A Method of Suspension of Rotating Bodies Using Electromagnetic Forces", Journal of Applied Physics, Vol. 91
  20. Filatov, A. V., Maslen, E. H., and Gillies, G. T., "Stability of an Electrodynamic Suspension" Journal of Applied Physics, Vol. 92 (2002), pp. 3345-3353.

अग्रिम पठन

बाहरी संबंध