जियोडेसिक वक्रता
रीमैनियन ज्यामिति में, जियोडेसिक वक्रता वक्र का मापता है कि वक्र जियोडेसिक होने से कितनी दूर है। उदाहरण के लिए, 3D अंतरिक्ष में सन्निहित 2D सतह पर 1D वक्रों के लिए, यह सतह के स्पर्शरेखा तल पर प्रक्षेपित वक्र की वक्रता है। सामान्यतः अधिक , दिए गए कई गुना में , जियोडेसिक वक्रता केवल सामान्य वक्रता है (नीचे देखें)। चूंकि, जब वक्र को का उप कई गुना पर झूठ बोलने के लिए प्रतिबंधित है(उदाहरण के लिए सतहों पर वक्र), जियोडेसिक वक्रता का संदर्भ वक्रता से है में और यह सामान्य रूप से की वक्रता से अलग है परिवेश कई गुना में . (परिवेश) वक्रता का दो कारकों पर निर्भर करता है। उप कई गुना की वक्रता कम है (सामान्य वक्रता ), जो केवल वक्र की दिशा और की वक्रता पर निर्भर करता है में देखा (जियोडेसिक वक्रता ), जो एक दूसरे क्रम की मात्रा है। इन के बीच संबंध है . विशेष रूप से जियोडेसिक्स पर शून्य जियोडेसिक वक्रता है वे सीधे हैं, जिससे कि , जो बताता है कि जब भी उप कई गुना होता है तो वे परिवेशी स्थान में घुमावदार क्यों दिखाई देते हैं।
परिभाषा
वक्र पर विचार करें कई गुना में , इकाई स्पर्शरेखा सदिश के साथ चापलम्बाई द्वारा पैरामिट्रीकृत . इसकी वक्रता सहपरिवर्ती व्युत्पन्न के वक्र के साथ का मानक है : . यदि , पर स्थित है , जियोडेसिक वक्रता सहसंयोजक व्युत्पन्न के प्रक्षेपण का मानक है उप कई गुना के स्पर्शरेखा स्थान पर। इसके विपरीत सामान्य वक्रता के प्रक्षेपण का मानक है सामान्य बंडल पर उप कई गुना पर विचार किए गए बिंदु पर।
यदि परिवेश कई गुना यूक्लिडियन स्थान है , फिर सहपरिवर्ती व्युत्पन्न सामान्य व्युत्पन्न है ।
उदाहरण
मान लीजिए इकाई क्षेत्र हो त्रि-आयामी यूक्लिडियन अंतरिक्ष में। की सामान्य वक्रता विचार की दिशा से स्वतंत्र रूप से 1 है। बड़े वृत्तों में वक्रता होती है , इसलिए उनके पास शून्य जियोडेसिक वक्रता है और इसलिए वे जियोडेसिक्स हैं। त्रिज्या के छोटे वृत्त वक्रता होगी और जियोडेसिक वक्रता .
जियोडेसिक वक्रता से जुड़े कुछ परिणाम
- जियोडेसिक वक्रता वक्र की सामान्य वक्रता के अतिरिक्त और कोई नहीं है, जब उप कई गुना में आंतरिक रूप से गणना की जाती है। यह उप कई गुना के विधियों पर निर्भर नहीं करता है , में बैठता है ।
- जियोडेसिक्स शून्य जियोडेसिक वक्रता है, जो ऐसा कहने के बराबर है , स्पर्शरेखा स्थान के लिए ओर्थोगोनल है ।
- दूसरी ओर सामान्य वक्रता दृढ़ता से इस बात पर निर्भर करती है कि उप कई गुना परिवेशी स्थान में कैसे स्थित है, किन्तु सीमांत रूप से वक्र पर: केवल उप कई गुना और दिशा पर बिंदु पर निर्भर करता है , किन्तु पर नहीं।
- सामान्य रिमेंनियन ज्यामिति में, व्युत्पन्न की गणना लेवी-सिविटा कनेक्शन का उपयोग करके की जाती है परिवेश कई गुना: . यह स्पर्शरेखा भाग में विभाजित होता है और सामान्य भाग उप कई गुना में होता है: . स्पर्शरेखा भाग सामान्य व्युत्पन्न में है (यह गॉस-कोडैज़ी समीकरणों में गॉस समीकरण की विशेष स्थिति है), जबकि सामान्य भाग है , कहाँ दूसरे मौलिक रूप को दर्शाता है।
- गॉस-बोनट प्रमेय।
यह भी देखें
- वक्रता
- डार्बौक्स फ्रेम
- गॉस-कोडैज़ी समीकरण
संदर्भ
- do Carmo, Manfredo P. (1976), Differential Geometry of Curves and Surfaces, Prentice-Hall, ISBN 0-13-212589-7
- Guggenheimer, Heinrich (1977), "Surfaces", Differential Geometry, Dover, ISBN 0-486-63433-7.
- Slobodyan, Yu.S. (2001) [1994], "Geodesic curvature", Encyclopedia of Mathematics, EMS Press.