जॉर्डन बीजगणित
सामान्य बीजगणित में, एक जॉर्डन बीजगणित एक क्षेत्र पर एक गैर-सहयोगी बीजगणित बीजगणित है जिसका गुणन (गणित) निम्नलिखित स्वयं सिद्धो को संतुष्ट करता है:
- (विनिमेय नियम)
- (जॉर्डन पहचान).
जॉर्डन बीजगणित में दो तत्वों x और y के गुणन को भी x ∘ y के रूप में दर्शाया गया है, विशेष रूप से संबंधित सहयोगी बीजगणित के गुणन के साथ भ्रम से बचने के लिए।
स्वयंसिद्धों का तात्पर्य है [1] कि एक जॉर्डन बीजगणित बल-सहयोगी है, जिसका अर्थ है , इससे स्वतंत्र है हम कि इस अभिव्यक्ति को कैसे कोष्ठक करते हैं वे भी बताते हैं | [1] वह सभी धनात्मक पूर्णांकों m और n के लिए होता है । इस प्रकार, हम समान रूप से एक जॉर्डन बीजगणित को एक क्रमविनिमेय, बल-सहयोगी बीजगणित के रूप में परिभाषित कर सकते हैं जैसे कि किसी भी तत्व के लिए , शक्तियों द्वारा गुणा करने का संचालन सभी कम्यूट करते हैं।
क्वांटम इलेक्ट्रोडायनामिक्स में वेधशालाओं के बीजगणित की धारणा को औपचारिक रूप देने के प्रयास में पास्कल जॉर्डन (1933) द्वारा प्रारंभ किया गया था। तुरंत यह दिखाया गया कि बीजगणित इस संदर्भ में उपयोगी नहीं थे, चूंकि तब से उन्हें गणित में कई अनुप्रयोग मिले हैं। [2] बीजगणित को मूल रूप से R-नंबर प्रणाली कहा जाता था, किन्तु बाद में इसका नाम बदलकर जॉर्डन बीजगणित कर दिया गया अब्राहम एड्रियन अल्बर्ट (1946), जिन्होंने सामान्य जॉर्डन बीजगणित का व्यवस्थित अध्ययन शुरू किया था।
विशेष जॉर्डन बीजगणित
एक सहयोगी बीजगणित A2 (विशेषता (बीजगणित) का नहीं) दिया गया है, एक ही अंतर्निहित अतिरिक्त सदिश अंतरिक्ष का उपयोग करके एक जॉर्डन बीजगणित A+ का निर्माण कर सकता है। पहले ध्यान दें कि एक साहचर्य बीजगणित एक जॉर्डन बीजगणित है यदि और केवल यदि यह क्रमविनिमेय है। यदि यह क्रमविनिमेय नहीं है तो हम इसे क्रमविनिमेय बनाने के लिए A पर एक नए गुणन को परिभाषित कर सकते हैं, और वास्तव में इसे एक जॉर्डन बीजगणित बना सकते हैं। नया गुणन x ∘ y 'जॉर्डन गुणन' है:
यह जॉर्डन बीजगणित A+ को परिभाषित करता है, और हम इन जॉर्डन बीजगणित, साथ ही साथ इन जॉर्डन बीजगणित के किसी भी उप-लजेब्रा, विशेष जॉर्डन बीजगणित कहते हैं। अन्य सभी जॉर्डन बीजगणित असाधारण जॉर्डन बीजगणित कहलाते हैं। अनातोली शिर्शोव प्रमेय कहता है कि कोई भी जॉर्डन बीजगणित दो जनरेटिंग समुच्चय के साथ विशेष है।[3] इससे संबंधित, मैकडोनाल्ड के प्रमेय में कहा गया है कि तीन चरों में कोई भी बहुपद, जिसकी एक चर में डिग्री एक है, और जो प्रत्येक विशेष जॉर्डन बीजगणित में गायब हो जाता है, प्रत्येक जॉर्डन बीजगणित में गायब हो जाता है। [4]
हर्मिटियन जॉर्डन बीजगणित
यदि (A, σ) एक जुड़ाव (गणित) σ के साथ एक सहयोगी बीजगणित है, तो यदि σ(x)=x और σ(y)=y यह इस प्रकार है इस प्रकार इनवोल्यूशन (कभी-कभी हेर्मिटियन तत्व कहा जाता है) द्वारा तय किए गए सभी तत्वों का समुच्चय A+ का एक सबलजेब्रा बनाता है, जिसे कभी-कभी H(A,σ) से दर्शाया जाता है।
उदाहरण
1. गुणन के साथ स्व-संलग्न वास्तविक संख्या, जटिल संख्या, या चतुष्कोणीय आव्युह का समुच्चय
एक विशेष जॉर्डन बीजगणित बनाएँ।
2. ऑक्टोनियन पर 3 × 3 स्वयं-संबद्ध आव्युह का समुच्चय, फिर गुणा के साथ
एक 27 आयामी, असाधारण जॉर्डन बीजगणित है (यह असाधारण है क्योंकि ऑक्टोनियन साहचर्य नहीं हैं)। यह अल्बर्ट बीजगणित का पहला उदाहरण था। इसका ऑटोमोर्फिज़्म समूह असाधारण लाई समूह F4 (गणित) है | F4 चूंकि सम्मिश्र संख्याओं में यह तुल्याकारिता तक का एकमात्र असाधारण जॉर्डन बीजगणित है,[5] इसे अधिकांशतः असाधारण जॉर्डन बीजगणित के रूप में जाना जाता है। वास्तविक संख्याओं में सरल असाधारण जॉर्डन बीजगणित के तीन समरूपता वर्ग हैं।[5]
व्युत्पत्ति और संरचना बीजगणित
जॉर्डन बीजगणित A का एक व्युत्पन्न (अमूर्त बीजगणित) A का एक एंडोमोर्फिज्म D है जैसे D (xy) = D (x) y + x D (y)। व्युत्पत्ति एक लाई बीजगणित A बनाती है। जॉर्डन की पहचान का तात्पर्य है कि यदि x और y A के तत्व हैं, तो x(yz)−y(xz) को z भेजने वाला एंडोमोर्फिज्म एक व्युत्पत्ति है। इस प्रकार A और 'der'(A) का सीधा योग एक लाइ बीजगणित में बनाया जा सकता है, जिसे A, 'str'(A) का 'संरचना बीजगणित' कहा जाता है।
हर्मिटियन जॉर्डन बीजगणित एच (A, σ) द्वारा एक सरल उदाहरण प्रदान किया गया है। इस स्थिति में σ(x)=−x के साथ A का कोई भी तत्व x एक व्युत्पत्ति को परिभाषित करता है। कई महत्वपूर्ण उदाहरणों में, H(A,σ) की संरचना बीजगणित A है।
व्युत्पत्ति और संरचना बीजगणित भी फ्रायडेंथल मैजिक स्क्वायर के जैक्स स्तन के निर्माण का भाग हैं।
औपचारिक रूप से वास्तविक जॉर्डन बीजगणित
वास्तविक संख्याओं पर एक (संभवतः गैर-सहयोगी) बीजगणित को औपचारिक रूप से वास्तविक कहा जाता है यदि यह संपत्ति को संतुष्ट करता है कि n वर्गों का योग केवल तभी गायब हो सकता है जब प्रत्येक व्यक्ति व्यक्तिगत रूप से गायब हो जाए। 1932 में, जॉर्डन ने यह कहकर क्वांटम सिद्धांत को स्वयंसिद्ध करने का प्रयास किया कि किसी भी क्वांटम प्रणाली के वेधशालाओं का बीजगणित औपचारिक रूप से वास्तविक बीजगणित होना चाहिए जो क्रमविनिमेय (xy = yx) और बल-सहयोगी (सहयोगी नियम) केवल x वाले उत्पादों के लिए होल्ड करता है, जिससे किसी भी तत्व x की शक्तियां स्पष्ट रूप से परिभाषित हों)। उन्होंने सिद्ध किया कि ऐसा कोई बीजगणित जॉर्डन बीजगणित है।
प्रत्येक जॉर्डन बीजगणित औपचारिक रूप से वास्तविक नहीं है, किन्तु जॉर्डन, न्यूमैन द्वारा & विग्नर (1934) परिमित-आयामी औपचारिक रूप से वास्तविक जॉर्डन बीजगणित को वर्गीकृत किया, जिसे यूक्लिडियन जॉर्डन बीजगणित भी कहा जाता है। प्रत्येक औपचारिक रूप से वास्तविक जॉर्डन बीजगणित को तथाकथित सरल लोगों के प्रत्यक्ष योग के रूप में लिखा जा सकता है, जो स्वयं एक गैर-तुच्छ तरीके से प्रत्यक्ष योग नहीं हैं। परिमित आयामों में, सरल औपचारिक रूप से असली जॉर्डन बीजगणित एक असाधारण स्थिति के साथ चार अनंत परिवारों में आते हैं:
- ऊपर के रूप में 'n×n स्वयं-समीप वास्तविक मैट्रिसेस का जॉर्डन बीजगणित ।
- ऊपर के रूप में n×n स्व-संबद्ध जटिल मैट्रिसेस का जॉर्डन बीजगणित।
- एन×एन स्व-संबद्ध क्वाटरनियोनिक मैट्रिसेस का जॉर्डन बीजगणित। ऊपरोक्त अनुसार।
- संबंधों के साथ आरn द्वारा स्वतंत्र रूप से उत्पन्न जॉर्डन बीजगणित
- जहां Rn पर सामान्य आंतरिक गुणन का उपयोग करके दाएं हाथ की ओर परिभाषित किया गया है. इसे कभी-कभी 'स्पिन कारक' या 'क्लिफोर्ड प्रकार' का जॉर्डन बीजगणित कहा जाता है।
- 3×3 स्व-संलग्न अष्टकोणीय आव्यूहों का जॉर्डन बीजगणित, ऊपर के रूप में (एक असाधारण जॉर्डन बीजगणित जिसे अल्बर्ट बीजगणित कहा जाता है)।
इन संभावनाओं में से, अब तक ऐसा प्रतीत होता है कि प्रकृति अवलोकन के बीजगणित के रूप में केवल n×n जटिल आव्यूहों का उपयोग करती है। चूंकि, स्पिन कारक विशेष सापेक्षता में एक भूमिका निभाते हैं, और औपचारिक रूप से वास्तविक जॉर्डन बीजगणित प्रक्षेपी ज्यामिति से संबंधित हैं।
पियर्स अपघटन
यदि e जॉर्डन बीजगणित A (e2 = e) में एक है और R, e से गुणा करने की संक्रिया है, तो
- R(2R − 1)(R − 1) = 0
इसलिए R के केवल एगेंवालुस 0, 1/2, 1 हैं। यदि जॉर्डन बीजगणित A परिमित-आयामी है, विशेषता के क्षेत्र में 2 नहीं है, तो इसका अर्थ है कि यह उप-स्थानों का एक सीधा योग है A = A0(e) ⊕ A1/2(e) ⊕ A1(e) तीन इगेंस्कीपसेस इस अपघटन पर सबसे पहले जॉर्डन, न्यूमैन द्वारा & विग्नर (1934) पूरी तरह से वास्तविक जॉर्डन बीजगणित के लिए विचार किया गया था बाद में अल्बर्ट (1947) द्वारा इसका पूर्ण सामान्य अध्ययन किया गया और A के पीयरस अपघटन को इडेम्पोटेंट e के सापेक्ष कहा जाता है।[6]
विशेष प्रकार और सामान्यीकरण
अनंत-आयामी जॉर्डन बीजगणित
1979 में, एफिम ज़ेलमैनोव ने अनंत-आयामी सरल (और प्रमुख गैर-पतित) जॉर्डन बीजगणित को वर्गीकृत किया। वे या तो हर्मिटियन या क्लिफोर्ड प्रकार के हैं। विशेष रूप से, केवल असाधारण सरल जॉर्डन बीजगणित परिमित-आयामी अल्बर्ट बीजगणित हैं, जिनका आयाम 27 है।
जॉर्डन ऑपरेटर बीजगणित
जॉर्डन ऑपरेटर बीजगणित को कवर करने के लिए ऑपरेटर बीजगणित के सिद्धांत को विस्तारित किया गया है।
C*-एलजेब्रा के प्रतिरूप जेबी एल्जेब्रा हैं, जो परिमित आयामों में यूक्लिडियन जॉर्डन बीजगणित कहलाते हैं। वास्तविक जॉर्डन बीजगणित पर मानदंड पूर्ण मीट्रिक स्थान होना चाहिए और सिद्धांतों को पूरा करना चाहिए:
ये अभिगृहीत गारंटी देते हैं कि जॉर्डन बीजगणित औपचारिक रूप से वास्तविक है, इसलिए, यदि शब्दों के वर्गों का योग शून्य है, तो वे शब्द शून्य होने चाहिए। जेबी बीजगणित की जटिलताओं को जॉर्डन सी * - बीजगणित या जेबी * - बीजगणित कहा जाता है। मैक्स कोएचर | कोचर के जॉर्डन बीजीय उपचार को सीमित सममित डोमेन के अनंत आयामों तक विस्तारित करने के लिए जटिल ज्यामिति में उनका व्यापक रूप से उपयोग किया गया है। सभी जेबी बीजगणितों को एक हिल्बर्ट स्थान पर स्व-संलग्न संचालकों के जॉर्डन बीजगणित के रूप में महसूस नहीं किया जा सकता है, बिल्कुल परिमित आयामों के रूप में। असाधारण अल्बर्ट बीजगणित सामान्य बाधा है।
वॉन न्यूमैन बीजगणित का जॉर्डन बीजगणित एनालॉग जेबीडब्ल्यू बीजगणित द्वारा खेला जाता है। ये जेबी बीजगणित निकलते हैं, जो बनच रिक्त स्थान के रूप में, बनच स्थान के दोहरे स्थान हैं। वॉन न्यूमैन बीजगणित के अधिकांश संरचना सिद्धांत को जेबीडब्ल्यू बीजगणित में ले जाया जा सकता है। विशेष रूप से JBW कारक- जिनका केंद्र R तक कम हो गया है- को वॉन न्यूमैन बीजगणित के संदर्भ में पूरी तरह से समझा जाता है। असाधारण अल्बर्ट बीजगणित के अतिरिक्त, सभी जेडब्ल्यूबी कारकों को अशक्त ऑपरेटर टोपोलॉजी में बंद हिल्बर्ट स्पेस पर स्व-संबद्ध ऑपरेटरों के जॉर्डन बीजगणित के रूप में महसूस किया जा सकता है। इनमें से स्पिन कारकों का निर्माण बहुत ही सरलता से वास्तविक हिल्बर्ट स्थानों से किया जा सकता है। अन्य सभी जेडब्ल्यूबी कारक या तो वॉन न्यूमैन बीजगणित कारकों के स्व-संलग्न भाग हैं या वॉन न्यूमैन कारक के 2 *-एंटीऑटोमॉर्फिज्म की अवधि के अनुसार इसके निश्चित बिंदु सबलजेब्रा हैं।[7]
जॉर्डन के छल्ले
एक जॉर्डन रिंग जॉर्डन बीजगणित का एक सामान्यीकरण है, जिसके लिए केवल यह आवश्यक है कि जॉर्डन रिंग एक क्षेत्र के अतिरिक्त एक सामान्य रिंग के ऊपर हो। वैकल्पिक रूप से एक जॉर्डन रिंग को एक कम्यूटेटिव गैर-सहयोगी रिंग के रूप में परिभाषित कर सकता है जो जॉर्डन पहचान का सम्मान करता है।
जॉर्डन बीजगणित
जॉर्डन सुपरलेजेब्रस काक, कांटोर और कप्लान्स्की द्वारा प्रारंभ किए गए थे; ये -श्रेणीबद्ध बीजगणित कहाँ एक जॉर्डन बीजगणित है और में मूल्यों के साथ लाइ जैसा गुणन है.[8]
कोई -श्रेणीबद्ध साहचर्य बीजगणित ग्रेडेड जॉर्डन ब्रेस के संबंध में एक जॉर्डन सुपरएलजेब्रा बन जाता है
विशेषता 0 के बीजगणितीय रूप से बंद क्षेत्र पर जॉर्डन सरल सुपरलेजेब्रस काक (1977) द्वारा वर्गीकृत किया गया था . उनमें विशेष रूप से कई परिवार और कुछ असाधारण बीजगणित सम्मिलित हैं जैसे और है |
जे-संरचनाएं
जे-संरचना की अवधारणा स्प्रिंगर (1973) द्वारा प्रारंभ की गई थी रैखिक बीजगणितीय समूह और सिद्धांतों का उपयोग करके जॉर्डन बीजगणित के सिद्धांत को विकसित करने के लिए जॉर्डन उलटा मूल संचालन और हुआ की पहचान को मूल संबंध के रूप में लेना।विशेषता में 2 के सामान नहीं जे-संरचनाओं का सिद्धांत अनिवार्य रूप से जॉर्डन बीजगणित के समान है।
द्विघात जॉर्डन बीजगणित
क्वाड्रैटिक जॉर्डन बीजगणित (रैखिक) जॉर्डन बीजगणित का एक सामान्यीकरण है केविन मैकक्रिमोन (1966). एक रेखीय जॉर्डन बीजगणित के द्विघात प्रतिनिधित्व की मूलभूत पहचानों को मनमाना विशेषता के क्षेत्र में एक द्विघात जॉर्डन बीजगणित को परिभाषित करने के लिए स्वयंसिद्धों के रूप में उपयोग किया जाता है। विशेषता से स्वतंत्र, परिमित-आयामी सरल द्विघात जॉर्डन बीजगणित का एक समान विवरण है: विशेषता में 2 के सामान नहीं है, द्विघात जॉर्डन बीजगणित का सिद्धांत रेखीय जॉर्डन बीजगणित को कम करता है।
यह भी देखें
- फ्रायडेंथल बीजगणित
- जॉर्डन ट्रिपल प्रणाली
- जॉर्डन जोड़ी
- कंटोर-कोचर-स्तन निर्माण
- स्कोर्ज़ा किस्म
टिप्पणियाँ
- ↑ 1.0 1.1 Jacobson 1968, pp. 35–36, specifically remark before (56) and theorem 8
- ↑ Dahn, Ryan (2023-01-01). "Nazis, émigrés, and abstract mathematics". Physics Today. 76 (1): 44–50.
- ↑ McCrimmon 2004, p. 100
- ↑ McCrimmon 2004, p. 99
- ↑ 5.0 5.1 Springer & Veldkamp 2000, §5.8, p. 153
- ↑ McCrimmon 2004, pp. 99 et seq, 235 et seq
- ↑ See:
- ↑ McCrimmon 2004, pp. 9–10
संदर्भ
- Albert, A. Adrian (1946), "On Jordan algebras of linear transformations", Transactions of the American Mathematical Society, 59 (3): 524–555, doi:10.1090/S0002-9947-1946-0016759-3, ISSN 0002-9947, JSTOR 1990270, MR 0016759
- Albert, A. Adrian (1947), "A structure theory for Jordan algebras", Annals of Mathematics, Second Series, 48 (3): 546–567, doi:10.2307/1969128, ISSN 0003-486X, JSTOR 1969128, MR 0021546
- Baez, John C. (2002). "§3: Projective Octonionic Geometry". The Octonions. pp. 145–205. doi:10.1090/S0273-0979-01-00934-X. MR 1886087. S2CID 586512.
{{cite book}}
:|journal=
ignored (help). Online HTML version. - Faraut, J.; Koranyi, A. (1994), Analysis on symmetric cones, Oxford Mathematical Monographs, Oxford University Press, ISBN 0198534779
- Hanche-Olsen, H.; Størmer, E. (1984), Jordan operator algebras, Monographs and Studies in Mathematics, vol. 21, Pitman, ISBN 0273086197
- Jacobson, Nathan (2008) [1968], Structure and representations of Jordan algebras, American Mathematical Society Colloquium Publications, vol. 39, Providence, R.I.: American Mathematical Society, ISBN 9780821831793, MR 0251099
- Jordan, Pascual (1933), "Über Verallgemeinerungsmöglichkeiten des Formalismus der Quantenmechanik", Nachr. Akad. Wiss. Göttingen. Math. Phys. Kl. I, 41: 209–217
- Jordan, P.; von Neumann, J.; Wigner, E. (1934), "On an algebraic generalization of the quantum mechanical formalism", Annals of Mathematics, 35 (1): 29–64, doi:10.2307/1968117, JSTOR 1968117
- Kac, Victor G (1977), "Classification of simple Z-graded Lie superalgebras and simple Jordan superalgebras", Communications in Algebra, 5 (13): 1375–1400, doi:10.1080/00927877708822224, ISSN 0092-7872, MR 0498755
- McCrimmon, Kevin (1966), "A general theory of Jordan rings", Proc. Natl. Acad. Sci. U.S.A., 56 (4): 1072–1079, Bibcode:1966PNAS...56.1072M, doi:10.1073/pnas.56.4.1072, JSTOR 57792, MR 0202783, PMC 220000, PMID 16591377, Zbl 0139.25502
- McCrimmon, Kevin (2004), A taste of Jordan algebras, Universitext, Berlin, New York: Springer-Verlag, doi:10.1007/b97489, ISBN 978-0-387-95447-9, MR 2014924, Zbl 1044.17001, Errata
- Ichiro Satake (1980), Algebraic Structures of Symmetric Domains, Princeton University Press, ISBN 978-0-691-08271-4. Review
- Schafer, Richard D. (1996), An introduction to nonassociative algebras, Courier Dover Publications, ISBN 978-0-486-68813-8, Zbl 0145.25601
- Zhevlakov, K.A.; Slin'ko, A.M.; Shestakov, I.P.; Shirshov, A.I. (1982) [1978]. Rings that are nearly associative. Academic Press. ISBN 0-12-779850-1. MR 0518614. Zbl 0487.17001.
- Slin'ko, A.M. (2001) [1994], "जॉर्डन बीजगणित", Encyclopedia of Mathematics, EMS Press
- Springer, Tonny A. (1998) [1973], Jordan algebras and algebraic groups, Classics in Mathematics, Springer-Verlag, doi:10.1007/978-3-642-61970-0, ISBN 978-3-540-63632-8, MR 1490836, Zbl 1024.17018
- Springer, Tonny A.; Veldkamp, Ferdinand D. (2000) [1963], Octonions, Jordan algebras and exceptional groups, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-662-12622-6, ISBN 978-3-540-66337-9, MR 1763974
- Upmeier, H. (1985), Symmetric Banach manifolds and Jordan C∗-algebras, North-Holland Mathematics Studies, vol. 104, ISBN 0444876510
- Upmeier, H. (1987), Jordan algebras in analysis, operator theory, and quantum mechanics, CBMS Regional Conference Series in Mathematics, vol. 67, American Mathematical Society, ISBN 082180717X
अग्रिम पठन
- Knus, Max-Albert; Merkurjev, Alexander; Rost, Markus; Tignol, Jean-Pierre (1998), The book of involutions, Colloquium Publications, vol. 44, With a preface by J. Tits, Providence, RI: American Mathematical Society, ISBN 0-8218-0904-0, Zbl 0955.16001
बाहरी संबंध
- Jordan algebra at PlanetMath
- Jordan-Banach and Jordan-Lie algebras at PlanetMath