द्विघात रूप

From Vigyanwiki

गणित में, एक द्विघात रूप एक बहुपद है जिसमें बहुपद दो की सभी डिग्री होती है (रूप (गणित) एक सजातीय बहुपद का दूसरा नाम है)। उदाहरण के लिए,

चरों में द्विघात रूप है x और y. गुणांक आमतौर पर एक निश्चित क्षेत्र (गणित) से संबंधित होते हैं K, जैसे कि वास्तविक संख्या या सम्मिश्र संख्याएँ, और एक द्विघात रूप की बात करता है K. यदि , और द्विघात रूप केवल शून्य लेता है जब सभी चर एक साथ शून्य होते हैं, तो यह एक निश्चित द्विघात रूप है, अन्यथा यह एक आइसोट्रोपिक द्विघात रूप है।

द्विघात रूप गणित की विभिन्न शाखाओं में एक केंद्रीय स्थान पर अधिकार कर लेते हैं, जिनमें संख्या सिद्धांत, रैखिक बीजगणित, समूह सिद्धांत (ऑर्थोगोनल समूह), अंतर ज्यामिति (रिमेंनियन मीट्रिक, दूसरा मौलिक रूप), अंतर टोपोलॉजी (चौराहे का रूप (4-कई गुना) चार- शामिल हैं। मैनिफोल्ड्स), और लाई थ्योरी (मारक रूप)।

द्विघात रूपों को द्विघात समीकरण के साथ भ्रमित नहीं होना चाहिए, जिसमें केवल एक चर होता है और इसमें डिग्री दो या उससे कम की उपबंध सम्मिलित होती हैं। एक द्विघात रूप सजातीय बहुपद की अधिक सामान्य अवधारणा की एक घटना है।

परिचय

द्विघात रूप एन चर में सजातीय द्विघात बहुपद हैं। एक, दो और तीन चर के प्रकरणों में उन्हें 'यूनरी', 'द्विआधारी द्विघात रूप' और 'टर्नरी' कहा जाता है और निम्नलिखित स्पष्ट रूप होते हैं:

जहाँ a, ..., f 'गुणांक' हैं।[1] अंकन प्रायः प्रयोग किया जाता है[citation needed] द्विघात रूप के लिए

उनके अध्ययन में प्रयुक्त द्विघात रूपों और विधियों का सिद्धांत गुणांक की प्रकृति पर काफी हद तक निर्भर करता है, जो वास्तविक संख्या या सम्मिश्र संख्या, परिमेय संख्या या पूर्णांक हो सकता है। रेखीय बीजगणित, विश्लेषणात्मक ज्यामिति और द्विघात रूपों के अधिकांश अनुप्रयोगों में, गुणांक वास्तविक या सम्मिश्र संख्याएँ हैं। द्विघात रूपों के बीजगणितीय सिद्धांत में, गुणांक एक निश्चित क्षेत्र (बीजगणित) के तत्व हैं। द्विघात रूपों के अंकगणितीय सिद्धांत में, गुणांक एक निश्चित क्रमविनिमेय अंगूठी से संबंधित होते हैं, प्रायः पूर्णांक जेड या पी- आदिक पूर्णांक | पी- आदिक पूर्णांक जेडपी.[2] द्विआधारी द्विघात रूपों का व्यापक रूप से संख्या सिद्धांत में अध्ययन किया गया है, विशेष रूप से, द्विघात क्षेत्र के सिद्धांत, निरंतर अंश ों और मॉड्यूलर रूपों में। एन चरों में अभिन्न द्विघात रूपों के सिद्धांत में बीजगणितीय टोपोलॉजी के लिए महत्वपूर्ण अनुप्रयोग हैं।

सजातीय निर्देशांक ों का उपयोग करते हुए, एन चरों में एक गैर-शून्य द्विघात रूप (एन−1)-आयामी प्रक्षेपी स्थान में एक (एन−2)-आयामी [[ क्वाड्रिक (प्रक्षेपी ज्यामिति) ]] को परिभाषित करता है। यह प्रक्षेपी ज्यामिति में एक बुनियादी निर्माण है। इस तरह कोई 3-आयामी वास्तविक द्विघात रूपों को शंक्वाकार वर्गों के रूप में देख सकता है।

एक उदाहरण त्रि-आयामी यूक्लिडियन अंतरिक्ष और यूक्लिडियन मानदंड के वर्ग (बीजगणित) द्वारा दिया गया है जो निर्देशांक के साथ एक बिंदु के बीच की दूरी को व्यक्त करता है। (x, y, z) और उत्पत्ति:

ज्यामितीय अधिस्वरों के साथ निकट से संबंधित धारणा एक द्विघात स्थान है, जो एक जोड़ी है (V, q), V के साथ एक क्षेत्र K पर एक सदिश स्थान, और q : VK वी। देखें पर एक द्विघात रूप § Definitions सदिश स्थान पर द्विघात रूप की परिभाषा के लिए नीचे।

इतिहास

विशेष द्विघात रूपों का अध्ययन, विशेष रूप से यह प्रश्न कि क्या एक दिया गया पूर्णांक, पूर्णांकों पर द्विघात रूप का मान हो सकता है, कई सदियों पहले का है। ऐसा ही एक मामला दो वर्गों के योग पर फ़र्मेट का प्रमेय है, जो यह निर्धारित करता है कि कब एक पूर्णांक को रूप में व्यक्त किया जा सकता है x2 + y2, जहाँ x, y पूर्णांक हैं। यह समस्या पायथागॉरियन ट्रिपल शोध करने की समस्या से संबंधित है, जो दूसरी सहस्राब्दी ईसा पूर्व में सामने आई थी।[3]

628 में, भारतीय गणितज्ञ ब्रह्मगुप्त ने ब्रह्मस्फुटसिद्धांत लिखा, जिसमें कई अन्य बातों के अतिरिक्त, फॉर्म के समीकरणों का अध्ययन सम्मिलित है। x2ny2 = c. विशेष रूप से उन्होंने उस पर विचार किया जिसे अब पेल का समीकरण कहा जाता है, x2ny2 = 1, और इसके समाधान के लिए एक तरीका ढूंढा।[4] यूरोप में इस समस्या का अध्ययन विलियम ब्रॉन्कर, द्वितीय विस्काउंट ब्रॉन्कर, लियोनहार्ड यूलर और जोसेफ लुइस लाग्रेंज ने किया था।

1801 में कार्ल फ्रेडरिक गॉस ने अंकगणितीय शोध प्रकाशित किया, जिसका एक बड़ा हिस्सा पूर्णांकों पर द्विआधारी द्विघात रूपों के एक पूर्ण सिद्धांत के लिए समर्पित था। तब से, अवधारणा को सामान्यीकृत किया गया है, और द्विघात संख्या क्षेत्र ों, मॉड्यूलर समूह और गणित के अन्य क्षेत्रों के साथ संबंधों को और स्पष्ट किया गया है।

संबद्ध सममित मैट्रिक्स

कोई भी n×n आव्यूह A एक द्विघात रूप निर्धारित करता है qA में n द्वारा चर

कहां .

उदाहरण

तीन चरों में द्विघात रूपों के घटना पर विचार करें साँचा A रूप है

उपरोक्त सूत्र देता है

इसलिए, दो अलग-अलग मैट्रिक्स एक ही द्विघात रूप को परिभाषित करते हैं यदि और केवल यदि उनके विकर्ण पर समान तत्व हैं और संपत्ति के लिए समान मान हैं और विशेष रूप से, द्विघात रूप एक अद्वितीय सममित मैट्रिक्स द्वारा परिभाषित किया गया है

यह निम्नानुसार चरों की किसी भी संख्या का सामान्यीकरण करता है।

सामान्य मामला

एक द्विघात रूप दिया मैट्रिक्स द्वारा परिभाषित साँचा

सममित मैट्रिक्स है, समान द्विघात रूप को परिभाषित करता है A, और अद्वितीय सममित मैट्रिक्स है जो परिभाषित करता है तो, वास्तविक संख्याओं पर (और, अधिक आम तौर पर, दो से भिन्न विशेषता (बीजगणित) के एक क्षेत्र (गणित) पर), द्विघात रूपों और सममित मैट्रिक्स के बीच एक-से-एक पत्राचार होता है जो उन्हें निर्धारित करता है।

वास्तविक द्विघात रूप

एक मौलिक प्रश्न रैखिक परिवर्तन के तहत वास्तविक द्विघात रूप का वर्गीकरण है।

कार्ल गुस्ताव जैकोबी ने साबित किया कि, प्रत्येक वास्तविक द्विघात रूप के लिए, एक ओर्थोगोनल विकर्णीकरण होता है, जो कि एक ओर्थोगोनल परिवर्तन है जो द्विघात रूप को एक विकर्ण रूप में रखता है।

जहां संबद्ध सममित मैट्रिक्स विकर्ण मैट्रिक्स है। इसके अलावा, गुणांक λ1, λ2, ..., λn एक क्रमपरिवर्तन तक विशिष्ट रूप से निर्धारित होते हैं।[5]

यदि चर का परिवर्तन एक व्युत्क्रमणीय मैट्रिक्स द्वारा दिया जाता है, जो कि आवश्यक रूप से ऑर्थोगोनल नहीं है, तो कोई यह मान सकता है कि सभी गुणांक λi 0, 1, या -1 हैं। सिल्वेस्टर के जड़त्व के नियम में कहा गया है कि प्रत्येक 1 और -1 की संख्या द्विघात रूप के अपरिवर्तनीय (गणित) हैं, इस अर्थ में कि किसी भी अन्य विकर्णकरण में प्रत्येक की समान संख्या होगी। द्विघात रूप का हस्ताक्षर त्रिक है (n0, n+, n), जहां एन0 0s और n की संख्या है± ±1s की संख्या है। सिल्वेस्टर के जड़त्व के नियम से पता चलता है कि यह द्विघात रूप से जुड़ी एक अच्छी तरह से परिभाषित मात्रा है।

मामला जब सभी λi एक ही चिन्ह होना विशेष रूप से महत्वपूर्ण है: इस मामले में द्विघात रूप को सकारात्मक निश्चित रूप (सभी 1) या नकारात्मक निश्चित (सभी -1) कहा जाता है। यदि कोई भी पद 0 नहीं है, तो प्रपत्र कहलाता है nondegenerate; इसमें धनात्मक निश्चित, ऋणात्मक निश्चित और समदैशिक द्विघात रूप (1 और -1 का मिश्रण) शामिल हैं; समतुल्य रूप से, एक गैर-डीजेनरेट द्विघात रूप वह है जिसका संबंधित सममित रूप एक गैर-डीजेनरेट फॉर्म है। इंडेक्स के एक अनिश्चित नॉनडिजेनरेट द्विघात रूप के साथ एक वास्तविक वेक्टर स्पेस (p, q) (p 1s और q −1s को दर्शाते हुए) को प्रायः 'R' के रूप में दर्शाया जाता हैp,q विशेष रूप से अंतरिक्ष-समय के भौतिक सिद्धांत में।

द्विघात रूप का विवेचक#विभेदक, ठोस रूप से K/(K) में प्रतिनिधित्व करने वाले मैट्रिक्स के निर्धारक का वर्ग×)2 (गैर-शून्य वर्गों तक) को भी परिभाषित किया जा सकता है, और एक वास्तविक द्विघात रूप के लिए हस्ताक्षर की तुलना में एक अपरिष्कृत रूप है, केवल "सकारात्मक, शून्य या नकारात्मक" के मान लेते हुए। शून्य पतित से मेल खाता है, जबकि एक गैर-पतित रूप के लिए यह नकारात्मक गुणांक की संख्या की समानता है,

इन परिणामों को नीचे एक अलग प्रकार से सुधारा गया है।

चलो क्यू एक एन-आयामी वास्तविक संख्या वेक्टर अंतरिक्ष पर परिभाषित द्विघात रूप है। मान लीजिए A किसी दिए गए आधार पर द्विघात रूप q का आव्यूह है। इसका अर्थ है कि A सममित है n × n मैट्रिक्स ऐसा है

जहाँ x चयनित आधार पर v के निर्देशांकों का स्तंभ सदिश है। आधार में परिवर्तन के तहत, स्तंभ x को बाईं ओर a से गुणा किया जाता है n × n व्युत्क्रमणीय मैट्रिक्स एस, और सममित वर्ग मैट्रिक्स ए सूत्र के अनुसार समान आकार के एक अन्य सममित वर्ग मैट्रिक्स बी में परिवर्तित हो जाता है

किसी भी सममित मैट्रिक्स ए को विकर्ण मैट्रिक्स में परिवर्तित किया जा सकता है

ऑर्थोगोनल मैट्रिक्स एस की उपयुक्त पसंद से, और बी की विकर्ण प्रविष्टियां विशिष्ट रूप से निर्धारित की जाती हैं - यह जैकोबी का प्रमेय है। यदि S को किसी भी व्युत्क्रमणीय मैट्रिक्स की अनुमति है तो B को विकर्ण पर केवल 0,1, और -1, और प्रत्येक प्रकार की प्रविष्टियों की संख्या (n) बनाया जा सकता है एन0 के लिए 0, एन+ के लिए 1 और एन के लिए -1) केवल A पर निर्भर करता है। यह सिल्वेस्टर के जड़त्व के नियम और संख्या n के योगों में से एक है n+ और n जड़त्व के धनात्मक और ऋणात्मक सूचक कहलाते हैं। हालांकि उनकी परिभाषा में संबंधित वास्तविक सममित मैट्रिक्स 'ए' के ​​आधार और विचार सम्मिलित थे, सिल्वेस्टर के जड़त्व के नियम का अर्थ है कि वे द्विघात रूप 'क्यू' के अपरिवर्तनीय हैं।

द्विघात रूप q धनात्मक निश्चित (उत्तर, ऋणात्मक निश्चित) है यदि q(v) > 0 (सं., q(v) < 0) प्रत्येक अशून्य सदिश v के लिए।[6] जब q(v) धनात्मक और ऋणात्मक दोनों मान ग्रहण करता है, q एक 'अनिश्चित' द्विघात रूप है। जैकोबी और सिल्वेस्टर के प्रमेयों से पता चलता है कि एन चर में किसी भी सकारात्मक निश्चित द्विघात रूप को एक उपयुक्त व्युत्क्रमणीय रैखिक परिवर्तन द्वारा एन वर्गों के योग में लाया जा सकता है: ज्यामितीय रूप से, प्रत्येक आयाम का केवल एक सकारात्मक निश्चित वास्तविक द्विघात रूप होता है। इसका आइसोमेट्री समूह एक कॉम्पैक्ट जगह ऑर्थोगोनल ग्रुप ओ (एन) है। यह अनिश्चित रूपों के मामले के विपरीत है, जब संबंधित समूह, अनिश्चितकालीन ऑर्थोगोनल समूह ओ (पी, क्यू), गैर-कॉम्पैक्ट है। इसके अलावा, क्यू और -क्यू के आइसोमेट्री समूह समान हैं (O(p, q) ≈ O(q, p)), लेकिन संबंधित क्लिफोर्ड बीजगणित (और इसलिए पिन समूह) अलग हैं।

परिभाषाएँ

एक क्षेत्र 'के' पर एक द्विघात रूप एक नक्शा है एक परिमित-आयामी K-वेक्टर स्थान से K तक ऐसा है सबके लिए और समारोह द्विरेखीय है।

अधिक ठोस रूप से, एक फ़ील्ड K पर एक n-ary 'द्विघात रूप', K में गुणांक के साथ एन चर में डिग्री 2 का एक सजातीय बहुपद है:

मैट्रिक्स का उपयोग करके यह सूत्र फिर से लिखा जा सकता है: x को घटक x के साथ कॉलम वेक्टर होने दें एक्स1,..., एक्सn और A = (aij) K पर n×n मैट्रिक्स बनें जिसकी प्रविष्टियाँ q के गुणांक हैं। फिर

एक सदिश शून्य सदिश है यदि q(v) = 0.

दो n-आरी द्विघात रूप φ और ψ K के ऊपर 'समतुल्य' हैं यदि एक गैर-एकवचन रैखिक परिवर्तन मौजूद है CGL(n, K) ऐसा है कि

बता दें कि K का अभिलाक्षणिक (क्षेत्र) 2 से भिन्न है।[7] क्यू के गुणांक मैट्रिक्स ए को सममित मैट्रिक्स द्वारा प्रतिस्थापित किया जा सकता है (A + AT)/2 एक ही द्विघात रूप के साथ, इसलिए यह आरंभ से ही माना जा सकता है कि A सममित है। इसके अलावा, एक सममित मैट्रिक्स ए विशिष्ट द्विघात रूप से विशिष्ट रूप से निर्धारित होता है। तुल्यता C के अंतर्गत, φ का सममित आव्यूह A और ψ का सममित आव्यूह B इस प्रकार संबंधित हैं:

एक द्विघात रूप q से संबंधित द्विरेखीय रूप को परिभाषित किया गया है

इस प्रकार, बीq मैट्रिक्स A के साथ K के ऊपर एक सममित द्विरेखीय रूप है। इसके विपरीत, कोई भी सममित द्विरेखीय रूप b एक द्विघात रूप को परिभाषित करता है

और ये दोनों प्रक्रियाएँ एक दूसरे की प्रतिलोम हैं। परिणामस्वरूप, 2 के बराबर नहीं विशेषता के एक क्षेत्र पर, सममित द्विरेखीय रूपों के सिद्धांत और एन चर में द्विघात रूपों के सिद्धांत अनिवार्य रूप से समान हैं।

द्विघात स्थान

क्षेत्र K पर एक n-आयामी सदिश स्थान V दिया गया है, V पर एक द्विघात रूप एक फलन (गणित) है जिसकी निम्नलिखित संपत्ति है: कुछ आधार के लिए, फ़ंक्शन q जो निर्देशांक को मैप करता है को द्विघात रूप है। विशेष रूप से, अगर इसके मानक आधार के साथ, एक है

आधार सूत्रों के परिवर्तन से पता चलता है कि द्विघात रूप होने का गुण V में किसी विशिष्ट आधार की पसंद पर निर्भर नहीं करता है, हालाँकि द्विघात रूप q आधार के चुनाव पर निर्भर करता है।

एक द्विघात रूप के साथ परिमित-आयामी सदिश स्थान को 'द्विघात स्थान' कहा जाता है।

नक्शा क्यू डिग्री 2 का एक सजातीय कार्य है, जिसका अर्थ है कि इसकी संपत्ति है, सभी के लिए के में और वी में वी:

जब K की विशेषता 2 नहीं है, बिलिनियर मैप B : V × VK K पर परिभाषित किया गया है:

यह द्विरेखीय रूप B सममित है। वह है, B(x, y) = B(y, x) वी में सभी एक्स, वाई के लिए और यह क्यू निर्धारित करता है: Q(x) = B(x, x) वी में सभी एक्स के लिए।

जब K की विशेषता 2 है, ताकि 2 एक इकाई (रिंग थ्योरी) न हो, तब भी एक सममित द्विरेखीय रूप को परिभाषित करने के लिए द्विघात रूप का उपयोग करना संभव है B′(x, y) = Q(x + y) − Q(x) − Q(y). यद्यपि, Q(x) को अब इस B′ से उसी तरह से पुनर्प्राप्त नहीं किया जा सकता है, क्योंकि B′(x, x) = 0 सभी एक्स के लिए (और इस प्रकार वैकल्पिक है)।[8] वैकल्पिक रूप से, हमेशा एक द्विरेखीय रूप B″ मौजूद होता है (सामान्य रूप से या तो अद्वितीय या सममित नहीं) जैसे कि B″(x, x) = Q(x).

जोड़ा (V, Q) K पर एक परिमित-आयामी सदिश स्थान V और V से K तक द्विघात मानचित्र Q से मिलकर एक 'द्विघात स्थान' कहा जाता है, और B जैसा कि यहाँ परिभाषित किया गया है, Q का संबद्ध सममित द्विरेखीय रूप है। द्विघात स्थान की धारणा एक है द्विघात रूप की धारणा का समन्वय-मुक्त संस्करण। कभी-कभी Q को द्विघात रूप भी कहा जाता है।

दो एन-आयामी द्विघात स्थान (V, Q) और (V′, Q′) सममितीय हैं यदि कोई व्युत्क्रमणीय रेखीय परिवर्तन मौजूद है T : VV (आइसोमेट्री) ऐसा कि

K पर n-आयामी द्विघात स्थानों की आइसोमेट्री कक्षाएं K पर n-ary द्विघात रूपों के तुल्यता वर्गों के अनुरूप हैं।

सामान्यीकरण

आर को एक कम्यूटेटिव रिंग होने दें, एम एक आर- मॉड्यूल (गणित) हो, और b : M × MR एक आर-बिलिनियर फॉर्म बनें।[9] एक मानचित्रण q : MR : vb(v, v) b का संबद्ध द्विघात रूप है, और B : M × MR : (u, v) ↦ q(u + v) − q(u) − q(v) क्यू का ध्रुवीय रूप है।

एक द्विघात रूप q : MR निम्नलिखित समकक्ष तरीकों से विशेषता हो सकती है:

  • एक R-बिलिनियर रूप मौजूद है b : M × MR ऐसा है कि q(v) संबद्ध द्विघात रूप है।
  • q(av) = a2q(v) सबके लिए aR और vM, और q का ध्रुवीय रूप R-बिलिनियर है।

संबंधित अवधारणाएं

V के दो तत्व v और w को ओर्थोगोनल ' कहा जाता है यदि B(v, w) = 0. द्विरेखीय रूप 'बी' के कर्नेल में ऐसे तत्व होते हैं जो वी के प्रत्येक तत्व के लिए ओर्थोगोनल होते हैं। Q गैर-एकवचन है यदि इससे संबंधित द्विरेखीय रूप का कर्नेल {0} है। यदि में शून्येतर का अस्तित्व है जैसे कि Q(v) = 0, द्विघात रूप Q 'आइसोट्रोपिक द्विघात रूप' है, अन्यथा यह 'अनिसोट्रोपिक' है। यह शब्दावली द्विघात स्थान के सदिशों और उपसमष्टियों पर भी लागू होती है। यदि वी के एक उप-स्थान यू के लिए क्यू का प्रतिबंध समान रूप से शून्य है, तो यू 'पूरी तरह से एकवचन' है।

एक गैर-एकवचन द्विघात रूप क्यू का ऑर्थोगोनल समूह वी के रैखिक ऑटोमोर्फिम्स का समूह है जो क्यू को संरक्षित करता है: यानी, आइसोमेट्री का समूह (V, Q) अपने आप में।

यदि एक द्विघात स्थान (A, Q) एक उत्पाद है ताकि ए एक क्षेत्र पर बीजगणित हो, और संतुष्ट हो

तो यह एक रचना बीजगणित है।

रूपों की समानता

विशेषता के एक क्षेत्र पर n चर में प्रत्येक द्विघात रूप q 2 के बराबर नहीं है, एक 'विकर्ण रूप' के लिए मैट्रिक्स सर्वांगसम है

इस तरह के एक विकर्ण रूप को प्रायः द्वारा निरूपित किया जाता है

तुल्यता तक सभी द्विघात रूपों का वर्गीकरण इस प्रकार विकर्ण रूपों के मामले में कम किया जा सकता है।

ज्यामितीय अर्थ

कार्टेशियन का उपयोग तीन आयामों में निर्देशांक करता है, आइएऔर जाने, , एक सममित मैट्रिक्स 3-बाय -3 मैट्रिक्स बनें। फिर समीकरण के समाधान सेट की ज्यामितीय प्रकृति मैट्रिक्स के eigenvalues ​​​​पर निर्भर करता है .

यदि सभी eigenvalue s गैर-शून्य हैं, तो समाधान सेट एक दीर्घवृत्ताभ या एक अतिपरवलयज है[citation needed]. यदि सभी eigenvalues ​​धनात्मक हैं, तो यह एक दीर्घवृत्ताभ है; यदि सभी eigenvalues ​​​​नकारात्मक हैं, तो यह एक काल्पनिक दीर्घवृत्ताकार है (हमें एक दीर्घवृत्ताभ का समीकरण मिलता है लेकिन काल्पनिक त्रिज्या के साथ); यदि कुछ eigenvalues ​​धनात्मक हैं और कुछ ऋणात्मक हैं, तो यह एक अतिपरवलयज है।

यदि एक या अधिक eigenvalues ​​​​मौजूद हैं , तो आकार इसी पर निर्भर करता है . यदि संगत , तो समाधान सेट एक परवलयिक (या तो अण्डाकार या अतिशयोक्तिपूर्ण) है; यदि संगत , फिर आयाम पतित हो जाता है और चलन में नहीं आता है, और ज्यामितीय अर्थ अन्य eigenvalues ​​​​और के अन्य घटकों द्वारा निर्धारित किया जाएगा . जब समाधान सेट एक पैराबोलॉइड होता है, चाहे वह दीर्घवृत्तीय हो या अतिपरवलयिक इस बात से निर्धारित होता है कि क्या अन्य सभी गैर-शून्य ईजेनवेल्यू एक ही संकेत के हैं: यदि वे हैं, तो यह अण्डाकार है; अन्यथा, यह अतिशयोक्तिपूर्ण है।

अभिन्न द्विघात रूप

पूर्णांकों के वलय पर द्विघात रूपों को अभिन्न द्विघात रूप कहा जाता है, जबकि संबंधित मॉड्यूल द्विघात जालक (कभी-कभी, केवल जाली (समूह)) होते हैं। वे संख्या सिद्धांत और टोपोलॉजी में महत्वपूर्ण भूमिका निभाते हैं।

एक अभिन्न द्विघात रूप में पूर्णांक गुणांक होते हैं, जैसे x2 + xy + y2; समतुल्य रूप से, एक सदिश स्थान V में एक जाली Λ दिया गया है (विशेषता 0 के साथ एक क्षेत्र पर, जैसे 'Q' या 'R'), एक द्विघात रूप Q, Λ के संबंध में अभिन्न है अगर और केवल अगर यह पूर्णांक-मूल्यवान है एल, अर्थ Q(x, y) ∈ Z यदि x, y ∈ Λ.

यह शब्द का वर्तमान उपयोग है; अतीत में इसे कभी-कभी अलग तरीके से इस्तेमाल किया जाता था, जैसा कि नीचे बताया गया है।

ऐतिहासिक उपयोग

ऐतिहासिक रूप से इस बात को लेकर कुछ भ्रम और विवाद था कि क्या अभिन्न द्विघात रूप की धारणा का अर्थ होना चाहिए:

Twos in
पूर्णांक गुणांक वाले सममित मैट्रिक्स से जुड़ा द्विघात रूप
ट्वॉस आउट
पूर्णांक गुणांक वाला एक बहुपद (इसलिए संबंधित सममित मैट्रिक्स में विकर्ण से आधा-पूर्णांक गुणांक हो सकता है)

यह बहस द्विघात रूपों (बहुपदों द्वारा प्रतिनिधित्व) और सममित द्विरेखीय रूपों (मैट्रिसेस द्वारा प्रतिनिधित्व) के भ्रम के कारण थी, और दो बाहर अब स्वीकृत सम्मेलन है; इसके बदले ट्वोस इन इंटीग्रल सिमेट्रिक बिलिनियर फॉर्म्स (इंटीग्रल सिमिट्रिक मैट्रिसेस) का सिद्धांत है।

दो में, द्विघात द्विघात रूप के रूप हैं , सममित मैट्रिक्स द्वारा दर्शाया गया है

यह वह परिपाटी है जिसका उपयोग गॉस डिसक्विजिशन अरिथमेटिका में करता है।

दुहने में, द्विघात द्विघात रूप के होते हैं , सममित मैट्रिक्स द्वारा दर्शाया गया है

कई दृष्टिकोणों का अर्थ है कि दो को मानक परिपाटी के रूप में अपनाया गया है। इनमें शामिल हैं:

  • द्विघात रूपों के 2-एडिक सिद्धांत की बेहतर समझ, कठिनाई का 'स्थानीय' स्रोत;
  • जाली (समूह) दृष्टिकोण, जिसे आमतौर पर 1950 के दशक के दौरान द्विघात रूपों के अंकगणित में विशेषज्ञों द्वारा अपनाया गया था;
  • प्रतिच्छेदन सिद्धांत के लिए टोपोलॉजी में अभिन्न द्विघात रूप सिद्धांत की वास्तविक आवश्यकताएं;
  • झूठ समूह और बीजगणितीय समूह पहलू।

सार्वभौमिक द्विघात रूप

एक अभिन्न द्विघात रूप जिसकी छवि में सभी सकारात्मक पूर्णांक होते हैं, उसे कभी-कभी सार्वभौमिक कहा जाता है। लैग्रेंज का चार-वर्ग प्रमेय यह दर्शाता है सार्वभौमिक है। रामानुजन ने इसका सामान्यीकरण किया और 54 मल्टीसेट मिले {a, b, c, d} वह प्रत्येक सभी सकारात्मक पूर्णांक उत्पन्न कर सकता है, अर्थात्,

{1, 1, 1, डी}, 1 ≤ डी ≤ 7
{1, 1, 2, डी}, 2 ≤ डी ≤ 14
{1, 1, 3, डी}, 3 ≤ डी ≤ 6
{1, 2, 2, डी}, 2 ≤ डी ≤ 7
{1, 2, 3, डी}, 3 ≤ डी ≤ 10
{1, 2, 4, डी}, 4 ≤ डी ≤ 14
{1, 2, 5, डी}, 6 ≤ डी ≤ 10

ऐसे रूप भी हैं जिनकी छवि में सकारात्मक पूर्णांकों में से एक को छोड़कर सभी शामिल हैं। उदाहरण के लिए, {1,2,5,5} में अपवाद के रूप में 15 है। हाल ही में, 15 और 290 प्रमेय ों ने पूरी तरह से सार्वभौमिक अभिन्न द्विघात रूपों की विशेषता बताई है: यदि सभी गुणांक पूर्णांक हैं, तो यह सभी सकारात्मक पूर्णांकों का प्रतिनिधित्व करता है यदि और केवल यदि यह 290 तक सभी पूर्णांकों का प्रतिनिधित्व करता है; यदि इसमें एक अभिन्न मैट्रिक्स है, तो यह सभी सकारात्मक पूर्णांकों का प्रतिनिधित्व करता है यदि और केवल यदि यह 15 तक सभी पूर्णांकों का प्रतिनिधित्व करता है।

यह भी देखें

  • ε- द्विघात रूप|ε-द्विघात रूप
  • घन रूप
  • विभेदक# द्विघात रूप का विवेचक
  • हस्से-मिन्कोव्स्की प्रमेय
  • क्वाड्रिक
  • रामानुजन का द्विघात रूप
  • वर्गाकार वर्ग
  • विट समूह
  • विट की प्रमेय

टिप्पणियाँ

  1. A tradition going back to Gauss dictates the use of manifestly even coefficients for the products of distinct variables, that is, 2b in place of b in binary forms and 2b, 2d, 2f in place of b, d, f in ternary forms. Both conventions occur in the literature.
  2. away from 2, that is, if 2 is invertible in the ring, quadratic forms are equivalent to symmetric bilinear forms (by the polarization identities), but at 2 they are different concepts; this distinction is particularly important for quadratic forms over the integers.
  3. Babylonian Pythagoras
  4. Brahmagupta biography
  5. Maxime Bôcher (with E.P.R. DuVal)(1907) Introduction to Higher Algebra, § 45 Reduction of a quadratic form to a sum of squares via HathiTrust
  6. If a non-strict inequality (with ≥ or ≤) holds then the quadratic form q is called semidefinite.
  7. The theory of quadratic forms over a field of characteristic 2 has important differences and many definitions and theorems must be modified.
  8. This alternating form associated with a quadratic form in characteristic 2 is of interest related to the Arf invariantIrving Kaplansky (1974), Linear Algebra and Geometry, p. 27.
  9. The bilinear form to which a quadratic form is associated is not restricted to being symmetric, which is of significance when 2 is not a unit in R.


संदर्भ


आगे की पढाई









बाहरी कड़ियाँ