नाइक्विस्ट दर

From Vigyanwiki

चित्र 1: नाइक्विस्ट आवृत्ति और दर का विशिष्ट उदाहरण। वे शायद ही कभी समान होते हैं, क्योंकि इसके लिए 2 के कारक (यानी 4 गुना बैंडविड्थ) द्वारा अधिक-प्रतिदर्श की आवश्यकता होगी।

संकेत प्रक्रमण में, नाइक्विस्ट दर, हैरी नाइक्विस्ट के नाम पर, एक मान (प्रति सेकंड प्रतिदर्श की इकाइयों में[1] या हर्ट्ज़, हर्ट्ज) है जो किसी दिए गए फलन या संकेत की उच्चतम आवृत्ति (बैंडविड्थ) के दोगुने के बराबर होता है। जब फलन को उच्च प्रतिदर्श दर पर अंकीकृत किया जाता है (देखें § क्रांतिक आवृत्ति), परिणामी असतत-समय अनुक्रम को एलियासिंग के रूप में जाना जाने वाला विकृति से मुक्त कहा जाता है। इसके विपरीत, दिए गए प्रतिदर्श-दर के लिए Hz (हर्ट्ज) में संबंधित नाइक्विस्ट आवृत्ति प्रतिदर्श-दर का आधा होता है। ध्यान दें कि नाइक्विस्ट दर एक सतत काल सिग्नल का गुण है, जबकि नाइक्विस्ट आवृत्ति एक असतत-समय प्रणाली की एक संपत्ति है।

नाइक्विस्ट दर शब्द का उपयोग प्रति सेकंड प्रतीकों की इकाइयों के साथ एक अलग संदर्भ में भी किया जाता है, जो वास्तव में वह क्षेत्र है जिसमें हैरी न्यक्विस्ट काम कर रहा था। उस संदर्भ में यह एक बैंडविड्थ-सीमित बेसबैंड चैनल जैसे टेलीग्राफ लाइन[2] या पासबैंड चैनल जैसे सीमित रेडियो आवृत्ति बैंड या आवृत्ति विभाजन मल्टीप्लेक्स चैनल में प्रतीक दर के लिए ऊपरी सीमा है।

प्रतिदर्श के सापेक्ष

चित्र 2: बैंड सीमित फलन का फूरियर रूपांतरण (आयाम बनाम आवृत्ति)

जब एक सतत फलन, को एक स्थिर दर पर, प्रतिदर्श /सेकंड पर प्रतिदर्शित किया जाता है, अतः अन्य सतत फलनों की सदैव एक असीमित संख्या होती है जो प्रतिदर्श के एक ही समुच्चय में फिट होती है। परन्तु उनमें से केवल एक चक्र/सेकंड (हर्ट्ज) तक बैंड सीमित होते है,[upper-alpha 1] जिसका अर्थ है कि इसका फोरियर रूपांतरण, सभी के लिए है। गणितीय एल्गोरिदम जो सामान्यतः प्रतिदर्श से सतत फलन को पुनः बनाने के लिए उपयोग किए जाते हैं, इस सैद्धांतिक, परन्तु असीम रूप से लंबे, फलन के लिए मनमाने ढंग से अच्छे अनुमान लगाते हैं। यह इस प्रकार है कि यदि मूल फलन, को तक सीमित किया जाता है जिसे नाइक्विस्ट मापदंड कहा जाता है, तो यह एक विशिष्ट फलन है जो अंतःक्षेप एल्गोरिदम का अनुमान लगाता है। फलन की अपनी बैंडविड्थ के संदर्भ में, जैसा कि यहां दिखाया गया है, नाइक्विस्ट मानदंड को प्रायः होता है और को बैंडविड्थ वाले फलन के लिए नाइक्विस्ट दर कहा जाता है। जब नाइक्विस्ट मानदंड say, को पूरा नहीं करता है, तो एलियासिंग नामक एक स्थिति उत्पन्न होती है, जिसके परिणामस्वरूप और कम बैंडविड्थ वाले पुनर्निर्मित फलन के बीच कुछ अपरिहार्य अंतर होता है। अधिकतर स्थितयों में, अंतर को विकृति के रूप में देखा जाता है।

चित्र 3: शीर्ष 2 ग्राफ़ 2 अलग-अलग फलनों के फोरियर रूपांतरण को दर्शाते हैं जो एक विशेष दर पर प्रतिदर्श लेने पर समान परिणाम उत्पन्न करते हैं। बेसबैंड फलन को इसकी नाइक्विस्ट दर की तुलना में तेज़ी से प्रतिदर्श लिया जाता है, और बैंडपास फलन को अंडरसैंपल किया जाता है, इसे प्रभावी रूप से बेसबैंड में परिवर्तित किया जाता है। निचले रेखांकन इंगित करते हैं कि प्रतिदर्श प्रक्रिया के उपनामों द्वारा समान वर्णक्रमीय परिणाम कैसे बनाए जाते हैं।

साभिप्राय एलियासिंग

चित्र 3 में बेसबैंड या निम्नपास नामक एक प्रकार के फलन को दर्शाया गया है, क्योंकि इसकी महत्वपूर्ण ऊर्जा की धनात्मक-आवृत्ति सीमा [0, B) है। इसके बजाय, आवृत्ति सीमा (A, A+B) है, कुछ A > B के लिए, इसे बैंडपास कहा जाता है, और एक सामान्य इच्छा (विभिन्न कारणों से) इसे बेसबैंड में परिवर्तित करना है। ऐसा करने का एक तरीका आवृत्ति-मिक्सिंग (हेटेरोडाइन) है, बैंडपास फलन आवृत्ति सीमा (0, B) तक नीचे जाता है। संभावित कारणों में से एक अधिक कुशल संचयन के लिए नाइक्विस्ट दर को कम करना है। और यह पता चला है कि एक उप-न्याक्विस्ट प्रतिदर्श-दर पर बैंडपास फलन का प्रतिदर्श लेकर सीधे एक ही परिणाम प्राप्त कर सकता है जो आवृत्ति ए का सबसे छोटा पूर्णांक-उप-गुणक है जो बेसबैंड नाइक्विस्ट मानदंड को पूरा करता है: fs > 2B। अधिक सामान्य चर्चा के लिए, बैंडपास सैंपलिंग देखें।

सिग्नलिंग के सापेक्ष

हैरी नाइक्विस्ट का नाम प्रतिदर्श से जुड़ा होने से बहुत पहले, नाइक्विस्ट दर शब्द का अलग-अलग उपयोग किया गया था, जिसका अर्थ नाइक्विस्ट वास्तव में अध्ययन के करीब था। हेरोल्ड एस. ब्लैक की 1953 की पुस्तक मॉड्यूलेशन सिद्धांत का उद्धरण देते हुए, शुरुआती अध्याय ऐतिहासिक पृष्ठभूमि के नाइक्विस्ट अन्तराल खंड में:

"यदि आवश्यक आवृत्ति सीमा प्रति सेकंड B चक्रों तक सीमित है, तो 2B को नाइक्विस्ट द्वारा प्रति सेकंड कोड तत्वों की अधिकतम संख्या के रूप में दिया गया था, जिसे स्पष्ट रूप से हल किया जा सकता है, यह मानते हुए कि शीर्ष का व्यतिकरण अर्ध क्वान्टम क्रम से कम है। इस दर को सामान्यतः नाइक्विस्ट दर पर संकेतन के रूप में संदर्भित किया जाता है और 1/(2B) को नाइक्विस्ट अंतराल कहा जाता है।"

OED के अनुसार, 2B के संबंध में ब्लैक का कथन नाइक्विस्ट दर शब्द की उत्पत्ति हो सकता है।[3]

नाइक्विस्ट का प्रसिद्ध 1928 का पेपर इस बात पर एक अध्ययन था कि सीमित बैंडविड्थ के एक चैनल के माध्यम से प्रति सेकंड कितने स्पंदन (कोड तत्व) प्रसारित किए जा सकते हैं, और पुनर्प्राप्त किए जा सकते हैं।[4] नाइक्विस्ट दर पर संकेतन देने का अर्थ है एक टेलीग्राफ चैनल के माध्यम से उतने ही कोड दाल डालना जितना इसकी बैंडविड्थ अनुमति देती है। शैनन ने नाइक्विस्ट के दृष्टिकोण का उपयोग किया जब उन्होंने 1948 में प्रतिदर्श प्रमेय को सिद्ध किया, परन्तु नाइक्विस्ट ने नमूने पर काम नहीं किया।

"द सैम्पलिंग सिद्धांत" पर ब्लैक का बाद का अध्याय नाइक्विस्ट को कुछ प्रासंगिक गणित का श्रेय देता है:

"नाइक्विस्ट (1928) ने इंगित किया कि, यदि फलन समय अंतराल T तक काफी हद तक सीमित है, तो 2BT मान फलन को निर्दिष्ट करने के लिए पर्याप्त हैं, जो समय अंतराल T पर फलन के फोरियर श्रृंखला प्रतिनिधित्व पर उनके निष्कर्षों को आधार बनाते हैं।"

यह भी देखें

  • नाइक्विस्ट आवृत्ति
  • नाइक्विस्ट ISI मानदंड
  • नाइक्विस्ट–शैनन प्रतिदर्श प्रमेय
  • प्रतिदर्श (सिग्नल प्रोसेसिंग)

टिप्पणियाँ

  1. The factor of has the units cycles/sample (see Sampling and Sampling theorem).


संदर्भ

  1. Oppenheim, Alan V.; Schafer, Ronald W.; Buck, John R. (1999). Discrete-time signal processing (2nd ed.). Upper Saddle River, N.J.: Prentice Hall. p. 140. ISBN 0-13-754920-2. T is the sampling period, and its reciprocal, fs=1/T, is the sampling frequency, in samples per second.  url=https://d1.amobbs.com/bbs_upload782111/files_24/ourdev_523225.pdf
  2. Roger L. Freeman (2004). Telecommunication System Engineering. John Wiley & Sons. p. 399. ISBN 0-471-45133-9.
  3. Black, H. S., Modulation Theory, v. 65, 1953, cited in OED
  4. Nyquist, Harry. "Certain topics in telegraph transmission theory", Trans. AIEE, vol. 47, pp. 617–644, Apr. 1928 Reprint as classic paper in: Proc. IEEE, Vol. 90, No. 2, Feb 2002.