मल्टी-गीगाबिट ट्रांसीवर

From Vigyanwiki

मल्टी-गीगाबिट ट्रांसीवर (एमजीटी) एक सेरडेस है जो 1 गीगाबिट/सेकेंड से उपर्युक्त सीरियल बिट दर पर काम करने में सक्षम है। मल्टी-गीगाबिट ट्रांसीवर का डेटा संचार के लिए तेजी से उपयोग किया जाता है क्योंकि वे लंबी दूरी पर संचरित हो सकते हैं, साथ ही कम तारों का उपयोग कर सकते हैं, और इस प्रकार समतुल्य डेटा थ्रूपुट के समानांतर इंटरफेस की तुलना में कम लागत होती है।

कार्य

अन्य सेरडेस की तरह, मल्टी-गीगाबिट ट्रांसीवर का प्राथमिक कार्य समानांतर डेटा को सीरियल बिट्स की धारा के रूप में प्रसारित करना है, और इससे प्राप्त होने वाले सीरियल बिट्स को समानांतर डेटा में परिवर्तित करना है। मल्टी-गीगाबिट ट्रांसीवर का सबसे बुनियादी प्रदर्शन मीट्रिक इसकी सीरियल बिट दर या लाइन दर है, जो प्रति सेकंड प्रसारित या प्राप्त करने वाले सीरियल बिट्स की संख्या है। हालांकि कोई सख्त नियम नहीं है, मल्टी-गीगाबिट ट्रांसीवर सामान्यतः 1 गीगाबिट/सेकंड या उससे अधिक की लाइन दरों पर संचरित हो सकते हैं।

मल्टी-गीगाबिट ट्रांसीवर डेटा प्रोसेसिंग सिस्टम के लिए 'डेटा हाईवे' बन गए हैं जो निम्न डेटा इनपुट और आउटपुट (जैसे वीडियो प्रोसेसिंग एप्लिकेशन) में इनपुट/आउटपुट की मांग करते हैं। वे एफपीजीए पर बहुत साधारण होते जा रहे हैं, ऐसे प्रोग्रामेबल लॉजिक डिवाइस विशेष रूप से समानांतर डेटा प्रोसेसिंग एल्गोरिदम के लिए अच्छी तरह से उपयुक्त होते हैं।

सीरियलाइजेशन और डी-सीरियलाइजेशन से विपरीत मल्टी-गीगाबिट ट्रांसीवर को कई अतिरिक्त तकनीकों को सम्मिलित करना चाहिए ताकि उन्हें उच्च लाइन दरों पर संचालित किया जा सके। इनमें से कुछ नीचे सूचीबद्ध हैं:

तकनीकी कार्यप्रणाली
डिफरेंशियल सिग्नलिंग मल्टी-गीगाबिट ट्रांससेवर सीरियल डेटा संचारित करने और प्राप्त करने के लिए डिफरेंशियल सिग्नलिंग का उपयोग करते हैं। डिफरेंशियल सिग्नलिंग तेजी से स्विचिंग की अनुमति देता है, क्योंकि 1 से 0 या 0 से 1 पर स्विच करने के लिए आवश्यक सिग्नल स्तर में परिवर्तन आधा हो जाता है। इसके अलावा, जब तक प्रत्येक डिफरेंशियल पेयर की दो पंक्तियों के बीच तिरछापन कम किया जाता है, तब तक डिफरेंशियल सिग्नलों द्वारा इलेक्ट्रोमैग्नेटिक इंटरफेरेंस (ईएमआई), क्रॉसस्टॉक के लिए प्रतिरोधक क्षमता बढ़ा दी जाती है।
एमओएस धारा मोड लॉजिक (एमसीएमएल) एमसीएमएल द्विध्रुवी ट्रांजिस्टर के अतिरिक्त एमओएसएफईटी का उपयोग करके कार्यान्वित धारा मोड लॉजिक को संदर्भित करता है। एमसीएमएल ड्राइव करने और कम वोल्टेज का उपयोग करके उच्च गति पर डेटा प्राप्त करने के लिए डिफरेंशियल एम्पलीफायरों का उपयोग करता है
अवधारणा उच्च लाइन दरों पर, सीरियल डेटा ले जाने वाली लाइनें निम्न-पास फिल्टर की तरह गतिविधि करती हैं। यह धारावाहिक डेटा के उच्च आवृत्ति घटकों को कम आवृत्ति घटकों की तुलना में अधिक तेज़ी से शक्ति खोने का कारण बनता है, सिग्नल को विकृत करता है और इंटरसिंबल हस्तक्षेप (आईएसआई) का कारण बनता है। इस समस्या का समाधान करने का एक तरीका प्रीमफैसिस या डीम्फेसिस का उपयोग करना है ताकि संभावित नुकसान की भरपाई के लिए प्रेषित सिग्नल को आकार दिया जा सके।
समानीकरण प्राप्त करें बल देने का एक विकल्प समानीकरण है, जहां एक प्राप्त सिग्नल के व्यतिकरण के उच्च आवृत्ति भागों को कम आवृत्ति वाले भागों की तुलना में अधिक बढ़ाया जाता है, ताकि लाइन के कम-पास गतिविधि की भरपाई की जा सके।
टर्मिनेशन इम्पीडेंस मैचिंग उच्च लाइन दरों पर, सीरियल डेटा को ले जाने के लिए उपयोग किए जाने वाले तारों में ट्रांसमिशन लाइन के कई गुण होते हैं। एक महत्वपूर्ण विशेषता यह है कि यदि ट्रांसमीटर और रिसीवर पर मल्टी-गीगाबिट ट्रांसीवर की प्रतिबाधा लाइन के प्रतिबाधा से समानता नहीं रखती है तो लाइन पर संकेतों को विकृत किया जा सकता है। इसका समाधान करने के लिए, मल्टी-गीगाबिट ट्रांससेवर को सामान्यतः उन तारों की प्रतिबाधा से मिलान करने के लिए डिज़ाइन किया गया है जो उन्हें यथासंभव निकट से जोड़ते हैं। सामान्यतः उपयोग किया जाने वाला इम्पीडेंस वैल्यू 100Ω (डिफरेंशियल, मोटे तौर पर प्रत्येक तार के लिए 50Ω सिंगल एंडेड इम्पीडेंस के बराबर) है।
फेज-लॉक्ड लूप्स (पीएलएल) उच्च गति पर डेटा को क्रमबद्ध करने के लिए, समानांतर डेटा के लिए सीरियल क्लॉक की दर क्लॉक की एक निर्धारित गुणक होनी चाहिए। अधिकांश मल्टी-गीगाबिट ट्रांससेवर वांछित समानांतर दर पर चलने वाली संदर्भ क्लॉक को आवश्यक क्रम दर से गुणा करने के लिए पीएलएल का उपयोग करते हैं।
क्लॉक डेटा रिकवरी (सीडीआर) जब सीरियल डेटा प्राप्त होता है, तो मल्टी-गीगाबिट ट्रांसीवर को उसी सीरियल क्लॉक का उपयोग करना चाहिए जो डेटा को क्रमबद्ध करने के लिए डेटा को अनुक्रम करता है। उच्च लाइन दरों पर, सीरियल क्लॉक को एक अलग तार के साथ प्रदान करना बहुत अव्यावहारिक है क्योंकि डेटा लाइन और क्लॉक लाइन के बीच की लंबाई में साधारण अंतर भी महत्वपूर्ण क्लॉक स्क्यू का कारण बन सकता है। इसके अतिरिक्त, मल्टी-गीगाबिट ट्रांससेवर अपने स्थानीय सीरियल क्लॉक की दर को समायोजित करने के लिए डेटा में संक्रमण का उपयोग करके सीधे डेटा से क्लॉक सिग्नल को पुनर्प्राप्त करते हैं, इसलिए यह अन्य मल्टी-गीगाबिट ट्रांससेवर द्वारा उपयोग की जाने वाली दर पर लॉक हो जाता है। सीडीआर का उपयोग करने वाली प्रणालियां अपने गैर-सीडीआर समकक्षों की तुलना में अधिक दूरी पर उच्च गति से काम कर सकती हैं।
एन्कोडिंग/डिकोडिंग मल्टी-गीगाबिट ट्रांससेवर के बीच क्रमिक रूप से प्रसारित डेटा का पैटर्न उनके प्रदर्शन को प्रभावित कर सकता है।
  • यदि डेटा में बहुत कम बदलाव हैं, तो प्राप्त करने वाला मल्टी-गीगाबिट ट्रांसीवर सीडीआर का उपयोग करने में सक्षम नहीं होगा।
  • यदि डेटा बहुत अधिक दोहराव वाला है, तो उच्च दर पर लाइनें मजबूत क्षेत्र बनाएंगी और ईएमआई का कारण बनेंगी।
  • यदि डेटा में 0s या इसके विपरीत बहुत अधिक 1s हैं, तो एसी युग्मित मल्टी-गीगाबिट ट्रांससेवेर्स डेटा निर्भर जिटर का अनुभव करेंगे, जो संधारित्र के चार्जिंग और डिस्चार्जिंग के कारण होता है।

मल्टी-गीगाबिट ट्रांससेवर के लिए अधिकांश संचार प्रोटोकॉल इन समस्याओं से बचने के लिए डेटा एन्कोडिंग सिस्टम का उपयोग करते हैं।

एन्कोडिंग का एक अतिरिक्त लाभ यह है कि यह नियंत्रण सूचना को डेटा के साथ प्रसारित करने की अनुमति देता है। यह एरर डिटेक्शन, एलाइनमेंट, क्लॉक करेक्शन और चैनल बॉन्डिंग जैसे कार्यों के लिए महत्वपूर्ण है।

कुछ लोकप्रिय कूटलेखन हैं:

  • 8बी/10बी: प्रत्येक ऑक्टेट डेटा को 10-बिट अनुक्रम में मैप किया जाता है।
  • 64बी/66बी: डेटा को 64 बिट्स के सेट में समूहीकृत किया जाता है, स्क्रैम्बल किया जाता है, फिर 2-बिट हेडर के साथ प्रीफिक्स किया जाता है।
  • 64b/67b: 64b/66b की तरह, लेकिन इसके अतिरिक्त 3-बिट हेडर का उपयोग किया जाता है। अतिरिक्त बिट इंगित करता है कि 64 बिट्स उलटे हैं या नहीं, मल्टी-गीगाबिट ट्रांससेवर को यह सुनिश्चित करने के लिए कि 0s और 1s प्रेषित की संख्या मोटे तौर पर संतुलित है।
  • सोनेट/एसडीएच: एक एन्कोडिंग नहीं बल्कि संबंधित मानकों का एक समूह है जो डेटा को निश्चित आकार के ब्लॉक में समूहित करता है, इसे स्क्रैम्बल करता है, और एक फ्रेम जोड़ता है जिसमें एक संरेखण वर्ण सम्मिलित होता है।
एरर डिटेक्शन अधिकांश प्रणालियों को किसी प्रकार की त्रुटि पहचान की आवश्यकता होती है। मल्टी-गीगाबिट ट्रांससेवर में त्रुटि का पता लगाने के सबसे सामान्य रूप हैं:
  • एन्कोडिंग-आधारित त्रुटि का पता लगाना: अधिकांश एनकोडिंग नियम वर्णों के एक सेट और वर्णों के नियम अनुक्रमों को परिभाषित करते हैं। मल्टी-गीगाबिट ट्रांससेवर उपयोग किए गए एन्कोडिंग में अवैध डेटा की तलाश करके त्रुटियों का पता लगा सकते हैं।
  • चक्रीय अतिरेक जाँच (सीआरसी): सीआरसी का उपयोग करने के लिए, डेटा को फ़्रेम (या पैकेटs) में विभाजित किया जाता है, और प्रत्येक फ्रेम पर एक सीआरसी फ़ंक्शन लागू होता है। फ़ंक्शन का परिणाम प्रसारित होने पर फ्रेम में जोड़ा जाता है - रिसीवर प्राप्त डेटा पर उसी फ़ंक्शन को पुनर्गणना कर सकता है और ट्रांसमीटर से परिणाम की तुलना करके यह निर्धारित कर सकता है कि फ्रेम में डेटा (या ट्रांसमीटर का सीआरसी परिणाम) ) संचरण के दौरान दूषित हो गया था।
संरेखण जब एक मल्टी-गीगाबिट ट्रांसीवर सीरियल डेटा प्राप्त करता है, तो उसे डेटा को समानांतर बिट्स के रूप में प्रस्तुत करने से पहले डेटा की बाइट सीमाओं को निर्धारित करने की आवश्यकता होती है। यह कार्य सामान्यतः एक संरेखण ब्लॉक द्वारा किया जाता है। संरेखण के लिए उपयोग की जाने वाली निर्धारित विधि डेटा के लिए प्रयुक्त एन्कोडिंग के प्रकार पर निर्भर करती है:
  • कोमा अलाइनमेंट (8b/10b): रिसीवर इनकमिंग सीरियल स्ट्रीम को कॉमा के लिए खोजता है (8b/10b कंट्रोल कैरेक्टर जो अन्य कैरेक्टर को जोड़कर नहीं बनाया जा सकता है)। जब यह अल्पविराम पाता है, तो अल्पविराम सीमा को उसकी बाइट सीमा तक पंक्तिबद्ध कर देता है, ताकि आने वाले सभी डेटा संरेखित हो जाएं।
  • ब्लॉक तुल्यकालन (64b/66b और 64b/67b): रिसीवर प्रत्येक 64-बिट ब्लॉक के लिए 2-बिट (या 3-बिट, 64b/67b के मामले में) हेडर के लिए आने वाली डेटा स्ट्रीम की खोज करता है।
  • A1/A2 संरेखण (SONET/SDH): सोनेट फ़्रेम में एक हेडर और एक स्क्रैम्बल पेलोड सम्मिलित होता है। सोनेट डेटा प्राप्त करने वाले मल्टी-गीगाबिट ट्रांससेवर बाइट सीमाओं को निर्धारित करने के लिए शीर्षलेख (जिन्हें A1 और A2 कहा जाता है) में संरेखण वर्णों से बार-बार मिलान की तलाश करते हैं।
क्लॉक सुधार संदर्भ क्लॉक स्रोतों के बीच हमेशा एक छोटा आवृत्ति अंतर होता है (सामान्यतः ~+/- 100 पीपीएम), भले ही वे नाममात्र रूप से समान आवृत्ति हों। परिणामस्वरूप, उन प्रणालियों में जहां प्रत्येक मल्टी-गीगाबिट ट्रांसीवर अपनी स्वयं की संदर्भ क्लॉक का उपयोग करता है, प्रत्येक मल्टी-गीगाबिट ट्रांसीवर अपने ट्रांसमिट डेटापथ (TX) के लिए थोड़ी भिन्न आवृत्ति का उपयोग करता है, और इसका डेटापाथ (RX) प्राप्त करता है।

कई प्रोटोकॉल क्लॉक करेक्शन का उपयोग करके क्लॉकिंग को आसान बनाते हैं। क्लॉक करेक्शन में, प्रत्येक मल्टी-गीगाबिट ट्रांसीवर में एक एसिंक्रोनस FIFO सम्मिलित होता है। आरएक्स डेटा सीडीआर से सीरियल क्लॉक का उपयोग करके फीफो को लिखा जाता है, और बाकी सिस्टम (स्थानीय क्लॉक) से समानांतर क्लॉक का उपयोग करके फीफो से पढ़ा जाता है, सामान्यतः वही समानांतर क्लॉक जो TX के लिए उपयोग की जाती थी।

चूंकि सीडीआर क्लॉक और स्थानीय क्लॉक बिल्कुल समान नहीं हैं, फीफो अंततः अतिप्रवाह या अंडरफ्लो होगा जब तक कि इसे ठीक नहीं किया जाता। सुधार की अनुमति देने के लिए, प्रत्येक मल्टी-गीगाबिट ट्रांसीवर समय-समय पर एक या एक से अधिक विशेष वर्ण प्रसारित करता है जिसे रिसीवर को आवश्यकतानुसार फीफो में हटाने या दोहराने की अनुमति है। जब FIFO बहुत भरा हुआ हो तो वर्णों को हटाकर, और जब FIFO बहुत खाली हो तो वर्णों की नकल करके, रिसीवर अतिप्रवाह/अंडरफ्लो को रोक सकता है। इन विशेष वर्णों को सामान्यतः SKIP के रूप में जाना जाता है।

चैनल बंधन कई प्रोटोकॉल एक उच्च थ्रूपुट चैनल (जैसे XAUI, PCI Express बनाने के लिए कई मल्टी-गीगाबिट ट्रांसीवर कनेक्शन को जोड़ते हैं। जब तक प्रत्येक सीरियल कनेक्शन बिल्कुल समान लंबाई का नहीं होता है, तब तक लेन के बीच तिरछा डेटा एक ही समय में प्रेषित डेटा को अलग-अलग समय पर पहुंचने का कारण बन सकता है।

चैनल बॉन्डिंग मल्टी-गीगाबिट ट्रांससेवर को कई कनेक्शनों के बीच तिरछापन की भरपाई करने की अनुमति देता है। मल्टी-गीगाबिट ट्रांससेवर सभी एक साथ एक चैनल बॉन्डिंग कैरेक्टर (या वर्णों के अनुक्रम) को प्रसारित करते हैं। जब अनुक्रम प्राप्त होता है, तो प्राप्त करने वाले मल्टी-गीगाबिट ट्रांससेवर उनके बीच तिरछा निर्धारित कर सकते हैं, फिर क्षतिपूर्ति करने के लिए उनके प्राप्त डेटापथ में FIFO की विलंबता को समायोजित कर सकते हैं।

विद्युत निष्क्रिय/आउट-ऑफ-बैंड सिग्नलिंग कुछ प्रोटोकॉल संदेश भेजने के लिए निर्दिष्ट थ्रेसहोल्ड मान पर अंतर वोल्टेज की अनुपस्थिति का उपयोग करते हैं। उदाहरण के लिए, पीसीआई एक्सप्रेस इलेक्ट्रिकल आइडल सिग्नल का उपयोग यह इंगित करने के लिए करता है कि एंडपॉइंट्स को कम पावर मोड में कब और बाहर जाना चाहिए। इसी तरह, serial ATA बिजली प्रबंधन के लिए COM संकेतों का उपयोग करता है। इन सुविधाओं का समर्थन करने के लिए, मल्टी-गीगाबिट ट्रांससेवर में सीरियल लाइनों पर विद्युत निष्क्रिय/ओओबी सिग्नल उत्पन्न करने और पता लगाने में सक्षम सर्किट सम्मिलित होना चाहिए।

सिग्नल इंटीग्रिटी और प्रकंपन

मल्टी-गीगाबिट ट्रांसीवर के लिए उनकी उच्च लाइन दरों के कारण सिग्नल इंटीग्रिटी महत्वपूर्ण है। दिए गए हाई-स्पीड लिंक की गुणवत्ता को कनेक्शन के बिट एरर रेट (बीईआर - त्रुटि में प्राप्त बिट्स का कुल प्राप्त बिट्स का अनुपात) और प्रकंपन द्वारा विशेषता प्रदान करता है।

बीईआर और प्रकंपन पूरे मल्टी-गीगाबिट ट्रांसीवर कनेक्शन के कार्य हैं, जिसमें मल्टी-गीगाबिट ट्रांसीवर स्वयं, उनकी सीरियल लाइनें, उनकी संदर्भ घड़ियां, उनकी बिजली आपूर्ति और उनके समानांतर डेटा बनाने और उपभोग करने वाले डिजिटल सिस्टम सम्मिलित हैं। परिणामतः, मल्टी-गीगाबिट ट्रांससेवेर्स को प्रायः इस बात से मापा जाता है कि वे कितने कम आवृत्ति (जिटर ट्रांसफर/जिटर जनरेशन) को प्रसारित करते हैं, और अपने बीईआर के बहुत अधिक होने (प्रकंपन टॉलरेंस) से पहले वे कितना प्रकंपन कर सकते हैं। ये माप सामान्यतः बिट त्रुटि दर परीक्षण का उपयोग करके लिए जाते हैं, और एक दृष्टि आरेख का उपयोग करके विश्लेषण किया जाता है।

अन्य विचार

मल्टी-गीगाबिट ट्रांसीवर के लिए कुछ अन्य मेट्रिक्स सम्मिलित हैं:

  • सीडीआर लॉक के नुकसान से पहले अधिकतम रन लेंथ
  • बिजली की खपत
  • लचीलापन (उदाहरण के लिए एकाधिक लाइन दरें, एकाधिक एन्कोडिंग)
  • डिफरेंशियल स्विंग (अधिकतम डिफरेंशियल सिग्नल मल्टी-गीगाबिट ट्रांसीवर ड्राइव कर सकता है)
  • रिसीवर संवेदनशीलता (न्यूनतम अंतर संकेत मल्टी-गीगाबिट ट्रांसीवर पता लगा सकता है)
  • सामान्य मोड अस्वीकृति अनुपात

मल्टी-गीगाबिट ट्रांसीवर का उपयोग करने वाले प्रोटोकॉल

निम्नलिखित सीरियल प्रोटोकॉल के कार्यान्वयन में मल्टी-गीगाबिट ट्रांसीवर का उपयोग किया जाता है:

संदर्भ


बाहरी संबंध