मशीनी औज़ार
मशीनी औज़ार, धातु या अन्य कठोर सामग्री को संभालने या मशीनिंग सामान्यतः काटने, वेधन (निर्माण), अपघर्षी कर्तन, अपरुपण, या अन्य प्रकार के विरूपण के द्वारा करने के लिए औज़ार है। मशीनी औज़ार किसी प्रकार के उपकरण का उपयोग करते हैं जो काटने या आकार देने का काम करता है। सभी मशीनी औज़ार के पास कृत्यक को बाधित करने और मशीन के हिस्सों के निर्देशित गतिविधि प्रदान करने के कुछ साधन हैं। इस प्रकार, कृत्यक और कर्तन औजार (जिसे टूलपाथ कहा जाता है) के बीच सापेक्ष गति को मशीन द्वारा पूरी तरह से रूखेपन या मुक्तहस्त के अतिरिक्त कम से कम कुछ हद तक नियंत्रित या बाधित किया जाता है। यह शक्ति चालित धातु काटने की मशीन है जो काटने के उपकरण और प्रकरण सामग्री के आकार और स्वरूप को बदलने वाले कार्य के बीच आवश्यक सापेक्ष गति को प्रबंधित करने में सहायता करती है। [1]
मशीनी औज़ार शब्द की सटीक परिभाषा उपयोगकर्ताओं के बीच भिन्न होती है, जैसा कि नीचे चर्चा की गई है। जबकि सभी मशीनी औज़ार "मशीनें हैं जो लोगों को चीजें बनाने में मदद करती हैं", सभी फैक्ट्री मशीनें औज़ार नहीं हैं।
आज मशीनी औज़ार सामान्यतः मानव मांसपेशियों (उदाहरण के लिए, विद्युत, द्रवचालित, या लाइन शाफ्ट के माध्यम से) के अतिरिक्त संचालित होते हैं, जो विभिन्न तरीकों से निर्मित भागों (घटकों) को बनाने के लिए उपयोग किया जाता है जिसमें काटने या कुछ अन्य प्रकार के विरूपण सम्मिलित होते हैं।
अपनी अंतर्निहित सटीकता के साथ, मशीनी औज़ार विनिमेय भागों के किफायती उत्पादन को सक्षम करते हैं।
नामकरण और प्रमुख अवधारणाएं, परस्पर संबंधित
प्रौद्योगिकी के कई इतिहासकारों का मानना है कि सच्चे मशीनी औज़ार उत्पन्न तब हुआ जब टूलपाथ पहली बार मशीन द्वारा ही किसी तरह से निर्देशित हुआ, कम से कम कुछ हद तक, जिससे कि टूलपाथ (हाथों, पैरों या मुंह से) का प्रत्यक्ष, मुक्तहस्त मानव मार्गदर्शन हो सकता है। अब केवल काटने या बनाने की प्रक्रिया में उपयोग किया जाने वाला मार्गदर्शन नहीं था। परिभाषा के इस दृष्टिकोण में, शब्द, ऐसे समय में उत्पन्न हुआ जब उस समय तक के सभी उपकरण हाथ के उपकरण थे, बस "उपकरण जो हाथ के उपकरण के अतिरिक्त मशीन थे" के लिए एक लेबल प्रदान किया है। प्रारंभिक खराद, मध्यकालीन काल के अंत से पहले, और आधुनिक लकड़ी के काम करने वाले खराद और चाक इस परिभाषा के अंतर्गत आ सकते हैं या नहीं भी हो सकते हैं, यह इस बात पर निर्भर करता है कि हेडस्टॉक तर्कु (औजार) को कैसे देखा जाता है, लेकिन काटने के उपकरण के पथ के प्रत्यक्ष यांत्रिक नियंत्रण के साथ खराद का सबसे पुराना ऐतिहासिक अभिलेखबद्ध चूड़ी कर्तन (पेंच-कटिंग) खराद का है जो लगभग 1483 का है।[2] यह खराद "लकड़ी से पेंच चुड़ी का उत्पादन करता है और सच्चे यौगिक सर्पक को नियोजित करता है"।
यांत्रिक टूलपाथ मार्गदर्शन विभिन्न मूल अवधारणाओं से विकसित हुआ:
- पहले तर्कु (औजार) अवधारणा ही है, जो निश्चित अक्ष के चारों ओर घूमने के लिए कृत्यक या औज़ार गतिविधि को बाधित करता है। यह प्राचीन अवधारणा मशीनी औज़ार से पहले की है, प्रारंभिक खराद और चाक ने इसे कृत्यक के लिए सम्मिलित किया, लेकिन इन मशीनों पर उपकरण की आवाजाही पूरी तरह से मुक्तहस्त थी।
- मशीन सर्पक (उपकरण तरीका), जिसके कई रूप हैं, जैसे तफसील तरीके, बॉक्स तरीके या बेलनाकार कॉलम तरीके हैं। मशीन सर्पक उपकरण या कृत्यक आंदोलन को रैखिक रूप से बाधित करती है। यदि ठहरावजोड़ा जाता है, तो लाइन की लंबाई को भी सटीक रूप से नियंत्रित किया जा सकता है। (मशीन सर्पक अनिवार्य रूप से रैखिक व्यवहार का उपवर्ग है, चूंकि इन विभिन्न मशीन तत्व को वर्गीकृत करने के लिए उपयोग की जाने वाली भाषा को कुछ संदर्भों में कुछ उपयोगकर्ताओं द्वारा अलग-अलग परिभाषित किया जा सकता है, और कुछ तत्वों को दूसरों के साथ तुलना करके अलग किया जा सकता है)
- अनुरेखण, जिसमें मॉडल या टेम्पलेट की रूपरेखा का पालन करना और परिणामी गति को टूलपाथ में स्थानांतरित करना सम्मिलित है।
- कैम संक्रिया, जो सैद्धांतिक रूप से अनुरेखण से संबंधित है, लेकिन अनुरेख किए गए तत्व के पुनरुत्पादित तत्व के अंतिम आकार से मेल खाने से एक या दो चरण हटाए जा सकते हैं। उदाहरण के लिए, कई कैम, जिनमें से कोई भी सीधे वांछित निर्गत आकार से मेल नहीं खाता है, घटक सदिश राशि बनाकर जटिल टूलपाथ को क्रियान्वित कर सकता है जो नेट टूलपाथ तक जुड़ता है।
- वैन डेर वाल का बल समान सामग्रियों के बीच अधिक है, चौकोर प्लेटों का मुक्तहस्त निर्माण, केवल चौकोर, सपाट, मशीन उपकरण निर्माण संदर्भ घटकों का उत्पादन करता है, जो एक इंच के लाखोंवें हिस्से तक सटीक होता है, लेकिन लगभग कोई विविधता नहीं है। सुविधा प्रतिकृति की प्रक्रिया पेषण मशीन अनुप्रस्थ सर्पक असेंबली की समतलता और चौकोरता की अनुमति देती है, या खराद मशीन के दो अक्षों की गोलाई, शंकु की कमी, और चौकोरता को यथार्थता एवं परिशुद्धता के साथ मशीनी कृत्यक में स्थानांतरित करने की अनुमति देती है। एक इंच का हजारवाँ भाग, एक इंच के दस लाखवें हिस्से जितना महीन नहीं है। निर्मित उत्पाद, मशीन, या मशीन उपकरण के तरीके फिसलने वाले हिस्सों के बीच अनुरूप इंच माप के इस महत्वपूर्ण हजारवें हिस्से तक पहुंचता है, वैन डेर वाल्स बल को धातुओं की तरह साथ वेल्डिंग से रोकने के लिए स्नेहन और केशिका क्रिया गठबंधन, स्लाइडिंग भागों के स्नेहित जीवन का विस्तार हजारों से लाखों का कारक, पारंपरिक स्वचालित इंजन में तेल की कमी की आपदा आवश्यकता का सुलभ प्रदर्शन है, और वांतरिक्ष डिजाइन में, वैन डेर वाल्स वेल्डिंग को संगामी सतहों को नष्ट करने से रोकने के लिए ठोस स्नेहक के साथ-साथ विपरीत डिजाइन का उपयोग किया जाता है। धातुओं की लोच के मापांक को देखते हुए, एक इंच के हजारवें हिस्से के पास अनुरूप सहिष्णुता की सीमा चरम पर, दो संगामी भागों की स्थायी असेंबली और दूसरे पर, उन्हीं दो के एक फ्री स्लाइडिंग अनुरूप के बीच प्रतिबंध की प्रासंगिक सीमा से संबंधित होती है।
सार रूप से प्रोग्राम करने योग्य टूलपाथ मार्गदर्शन यांत्रिक समाधानों के साथ प्रारंभ हुआ, जैसे संगीत पेटी कैम और जैक्वार्ड करघे में है। मशीनी औज़ार टूलपाथ नियंत्रण के साथ क्रमादेश्य युक्ति मैकेनिकल नियंत्रण के तकनीकी अभिसरण में कई दशकों की देरी हुई, क्योंकि संगीत पेटी और लूम के क्रमादेश्य युक्ति नियंत्रण तरीकों में मशीनी औज़ार टूलपाथ के लिए कठोरता का अभाव था। बाद में, वैधुत यांत्रिक समाधान (जैसे सर्वोमैकेनिज्म) और जल्द ही इलेक्ट्रॉनिक समाधान (कंप्यूटर सहित) जोड़े गए, जिससे संख्यात्मक नियंत्रण हो गया है।
मुक्तहस्त टूलपाथ और मशीन-विवश टूलपाथ के बीच अंतर पर विचार करते समय, यथार्थता एवं परिशुद्धता, दक्षता और उत्पादकता की अवधारणा यह समझने में महत्वपूर्ण हो जाती है कि मशीन-विवश विकल्प मूल्य (अर्थशास्त्र) जोड़ता है।
पदार्थ योजक, पदार्थ संरक्षित, और पदार्थ घटाव विनिर्माण सोलह तरीकों से आगे बढ़ सकता है: सबसे पहले, काम या तो हाथ में या कीलक से हो सकता है, दूसरे, उपकरण सहायक हो सकता है या तो एक हाथ में, या कीलक, तीसरा, ऊर्जा या तो उपकरण और/या काम करने वाले हाथों से, या किसी बाहरी स्रोत से आ सकती है, जिसमें उदाहरण के लिए ही कार्यकर्ता द्वारा पदचालित, या मोटर सम्मिलित है, बिना किसी सीमा के, और अंत में, नियंत्रण या तो उपकरण और/या काम से, या कंप्यूटर संख्यात्मक नियंत्रण सहित किसी अन्य स्रोत से आ सकता है। चार मापदंडों में से प्रत्येक के लिए दो विकल्पों के साथ, प्रकारों को सोलह प्रकार के विनिर्माण के लिए गिना जाता है, जहां पदार्थ योजक का मतलब कैनवस पर पेंटिंग करना हो सकता है क्योंकि इसका मतलब कंप्यूटर नियंत्रण के अनुसार 3डी प्रिंटिंग हो सकता है, पदार्थ संरक्षित का मतलब कोयले की आग में फोर्जिंग हो सकता है। उतनी ही तत्परता से जितनी आसानी से लाइसेंस प्लेटों पर मुहर लगाई जाती है, और पदार्थ-घटाव का अर्थ हो सकता है पेंसिल बिंदु को आकस्मिक रूप से छीलना, क्योंकि इसका अर्थ हो सकता है कि लेज़र जमा टर्बाइन ब्लेड के अंतिम रूप को पीसता है।
मनुष्य सामान्यतः अपनी मुक्तहस्त गतिविधियों में काफी प्रतिभाशाली होते हैं, माइकल एंजेलो या लियोनार्डो दा विंची जैसे कलाकारों और अनगिनत अन्य प्रतिभाशाली लोगों के चित्र, पेंटिंग और मूर्तियां दर्शाती हैं कि मानव मुक्तहस्त टूलपाथ में काफी संभावनाएं हैं। मशीनी औज़ार ने इन मानवीय प्रतिभाओं में जो मूल्य (अर्थशास्त्र) जोड़ा है, वह कठोरता के क्षेत्रों में है (हजारों न्यूटन (पाउंड) बल के बावजूद प्रतिबंध के विरूद्व लड़ने के लिए टूलपाथ को बाधित करना), यथार्थता एवं परिशुद्धता, दक्षता, और उत्पादकता है। मशीनी औज़ार के साथ, टूलपाथ जो कि कोई मानव मांसपेशी विवश नहीं कर सकती है, और टूलपाथ जो तकनीकी रूप से मुक्तहस्त विधियों के साथ संभव हैं, लेकिन निष्पादित करने के लिए जबरदस्त समय और कौशल की आवश्यकता होगी, इसके बजाय कम मुक्तहस्त प्रतिभा वाले लोगों द्वारा भी जल्दी और आसानी से निष्पादित किया जा सकता है (क्योंकि मशीन इसका ख्याल रखती है)। मशीनी औज़ार के बाद वाले पहलू को अधिकांशतः प्रौद्योगिकी के इतिहासकारों द्वारा उपकरण में कौशल के निर्माण के रूप में संदर्भित किया जाता है, टूलपाथ-बाधित कौशल के विपरीत उपकरण चलाने वाले व्यक्ति में होता है। एक उदाहरण के रूप में, पूरी तरह से मुक्तहस्त टूलपाथ के साथ विनिमेय भागों के पेंच, बोल्ट और नट बनाना शारीरिक रूप से संभव है। लेकिन उन्हें केवल मशीनी औज़ार से बनाना आर्थिक रूप से व्यावहारिक है।
1930 के दशक में, यूएस नेशनल ब्यूरो ऑफ इकोनॉमिक रिसर्च (एनबीईआर) ने मशीनी औज़ार की परिभाषा को हाथ की शक्ति के अतिरिक्त किसी अन्य मशीन के रूप में संदर्भित किया, जो धातु पर काम करने के लिए उपकरण का उपयोग करती है।[3]
शब्द का सबसे संकीर्ण बोलचाल का अर्थ केवल उन मशीनों के लिए आरक्षित है जो धातु काटने का काम करती हैं - दूसरे शब्दों में, [पारंपरिक] मशीनिंग और पीस (अपघर्षक काटने) के कई प्रकार है। ये प्रक्रियाएँ प्रकार की विकृति हैं जो धातु बुरादा उत्पति करती हैं। चूंकि, अर्थशास्त्री थोड़े व्यापक अर्थ का उपयोग करते हैं जिसमें अन्य प्रकार के धातु विरूपण भी सम्मिलित होते हैं जो धातु को आकार में निष्पीड़न हैं, जैसे कि रोलिंग, साँचा के साथ मुद्रांकन (निर्माण), अपरुपण, स्वैगिंग, कीलक और अन्य हैं। इस प्रकार मशीन प्रेस को सामान्यतः मशीनी औज़ार की आर्थिक परिभाषा में सम्मिलित किया जाता है। उदाहरण के लिए, यह मैक्स हॉलैंड द्वारा बर्गमास्टर और हौडेल इंडस्ट्रीज के अपने इतिहास में उपयोग की गई परिभाषा की चौड़ाई है,[4] जो 1940 के दशक से 1980 के दशक तक सामान्य रूप से मशीनी औज़ार उद्योग का इतिहास भी है, वह हॉडेल और उद्योग में अन्य फर्मों द्वारा उपयोग किए जाने वाले शब्द की भावना को प्रतिबिंबित कर रहा था। मशीनी औज़ार निर्यात और आयात और इसी तरह के आर्थिक विषयों पर कई विवरणी इस व्यापक परिभाषा का उपयोग करती हैं।
दशकों से बदलती तकनीक के कारण [पारंपरिक] धातु काटने की बोलचाल की भावना भी अप्रचलित हो रही है। कई और हाल ही में विकसित की गई प्रक्रियाओं को लेबल मशीनिंग, जैसे विद्युत निर्वहन मशीनिंग, विद्युत रासायनिक मशीनिंग, इलेक्ट्रॉन बीम मशीनिंग, फोटोकैमिकल मशीनिंग, और अल्ट्रासोनिक मशीनिंग, या यहां तक कि प्लाज्मा कर्तक और जेल जेट कर्तक, अधिकांशतः मशीनों द्वारा किया जाता है जो सबसे तार्किक रूप से मशीनी औज़ार कहा जा सकता है। इसके अतिरिक्त, कुछ नई विकसित योगात्मक निर्माण प्रक्रियाएं, जो सामग्री को काटने के बारे में नहीं हैं, बल्कि इसे जोड़ने के बारे में हैं, उन मशीनों द्वारा की जाती हैं, जो कुछ स्थितियों में, मशीनी औज़ार के रूप में लेबल किए जाने की संभावना है। वास्तव में, मशीनी औज़ार बिल्डर पहले से ही ऐसी मशीनें विकसित कर रहे हैं जिनमें काम के आवरण में घटाव निर्माण और योगात्मक विनिर्माण दोनों सम्मिलित हैं,[5] और मौजूदा मशीनों को फिर से जोड़ने का काम चल रहा है।[6]
मशीनी औज़ार की सटीकता में उन्नति का पता हेनरी मॉडस्ले को लगाया जा सकता है और जोसेफ व्हिटवर्थ द्वारा परिष्कृत किया जा सकता है कि मौडस्ले ने 1809 में लंदन में थेम्स नदी के दक्षिण में वेस्टमिंस्टर रोड पर स्थित अपनी क़ारखाना (मॉडस्ले एंड फील्ड) में मास्टर समतल गेज के निर्माण और उपयोग की स्थापना की थी, जिसे जेम्स नेस्मिथ ने प्रमाणित किया था।[7] जो 1829 में मौडस्ले द्वारा नियोजित किया गया था और नस्मीथ ने अपनी आत्मकथा में उनके उपयोग का दस्तावेजीकरण किया था।
जिस प्रक्रिया से मास्टर समतल गेज का उत्पादन किया गया था, वह प्राचीन काल से है, लेकिन मॉडस्ले शॉप में अभूतपूर्व डिग्री तक परिष्कृत किया गया था। प्रक्रिया तीन वर्गाकार प्लेटों से प्रारंभ होती है जिनमें से प्रत्येक को पहचान दी जाती है (उदा., 1,2 और 3)। पहला कदम प्लेट 1 और 2 को एक साथ अंकन माध्यम (जिसे आज ब्लूइंग कहा जाता है) के साथ घिसना है, जो ऊँचे धब्बे को प्रकट करता है जिसे स्टील खुरचनी से हाथ से खुरच कर हटा दिया जाएगा, जब तक कि कोई अनियमितता दिखाई न देती है। यह सही समतल सतहों का उत्पादन नहीं करेगा लेकिन गेंद और सॉकेट अवतल-अवतल और उत्तल-उत्तल अनुरूप , क्योंकि यह यांत्रिक अनुरूप, दो पूर्ण विमानों की तरह, एक दूसरे के ऊपर सर्पक कर सकते हैं और कोई उच्च स्थान नहीं दिखा सकते हैं। अवतल-उत्तल आलू-चिप वक्रता को खत्म करने के लिए रगड़ और अंकन को 1 से 90 डिग्री के सापेक्ष 2 घुमाने के बाद दोहराया जाता है। इसके बाद, प्लेट नंबर 3 की तुलना की जाती है और उसी दो परीक्षणों में प्लेट नंबर 1 के अनुरूप क्षेप्य किया जाता है। इस तरह प्लेट नंबर 2 और 3 एक जैसे हो जाएंगे। अगली प्लेट नंबर 2 और 3 को एक दूसरे के विरूद्व जांचा जाएगा जिससे कि यह निर्धारित किया जा सके कि क्या स्थिति सम्मिलित है, या तो दोनों प्लेटें बॉल या सॉकेट या चिप्स या संयोजन थीं। जब तक कोई उच्च स्थान सम्मिलित न हो और फिर प्लेट नंबर 1 की तुलना में तब तक इन्हें क्षेप्य किया जाएगा। तीन प्लेटों की तुलना करने और क्षेप्य करने की इस प्रक्रिया को दोहराने से एक इंच के लाखवें हिस्से (अंकन माध्यम की मोटाई) के भीतर समतल सतहों का सटीक उत्पादन हो सकता है।
सतह के गेज के उत्पादन की पारंपरिक विधि में उच्च स्थानों को हटाने के लिए प्लेटों के बीच घिसने वाले अपघर्षक पाउडर का उपयोग किया जाता था, लेकिन यह व्हिटवर्थ था जिसने हाथ से खुरचने के साथ अपघर्षी कर्तन की जगह शोधन में योगदान दिया था। 1825 के कुछ समय बाद, व्हाटवर्थ माउडस्ले के लिए काम करने के लिए चला गया और यह वहां था कि व्हाईटवर्थ ने मास्टर सतह समतल गेज के हाथों को खुरचने में सिद्ध किया था। 1840 में ग्लासगो में ब्रिटिश एसोसिएशन फॉर द एडवांसमेंट ऑफ साइंस को प्रस्तुत किए गए अपने पेपर में, व्हिटवर्थ ने बिना किसी नियंत्रण के अपघर्षी कर्तन की अंतर्निहित अशुद्धि की ओर इशारा किया और इस प्रकार प्लेटों के बीच अपघर्षक सामग्री के असमान वितरण प्लेटें से सामग्री के असमान हटाने का उत्पादन होता है ।
इस तरह की उच्च सटीकता के मास्टर समतल गेज के निर्माण के साथ, मशीनी औज़ार के सभी महत्वपूर्ण घटकों (अर्थात, मार्गदर्शक सतहों जैसे मशीन तरीके) की तुलना उनके साथ की जा सकती है और वांछित सटीकता के लिए क्षेप्य की जा सकती है। बिक्री के लिए पेश किए गए पहले मशीनी औज़ार (अर्थात्, व्यावसायिक रूप से उपलब्ध) का निर्माण इंग्लैंड में मैथ्यू मरे द्वारा 1800 के आसपास किया गया था।[8] अन्य, जैसे कि हेनरी मॉडस्ले, जेम्स नैस्मिथ, और जोसेफ व्हिटवर्थ, ने जल्द ही बिक्री के लिए मशीनी औज़ार के निर्माण के क्षेत्र में निर्मित अंत उत्पादों और मिलराइट कार्य से अपनी उद्यमिता का विस्तार करने के मार्ग का अनुसरण किया था।
महत्वपूर्ण प्रारंभिक मशीनी औज़ार में सर्पक रेस्ट खराद, पेंच काटने वाला खराद, बुर्ज खराद, पेषण मशीन, पैटर्न अनुरेखण खराद, संरूपित्र और प्लानर (मेटल वर्किंग) सम्मिलित थे, जो सभी 1840 से पहले उपयोग में थे।[9] इन मशीनी औज़ार के साथ विनिमेय भागों के उत्पादन के दशकों पुराने उद्देश्य को आखिरकार साकार किया गया था। अब दी गई किसी चीज़ का महत्वपूर्ण प्रारंभिक उदाहरण पेंच कसनी जैसे नट और बोल्ट का मानकीकरण था। 19वीं शताब्दी की प्रारंभिक से पहले, इनका उपयोग जोड़े में किया जाता था, और यहां तक कि एक ही मशीन के पेंच भी सामान्यतः विनिमेय नहीं होते थे।[10] उपयोग किए जा रहे खराद में संभरण पेंच की तुलना में पेंच चुड़ी को अधिक सटीकता से काटने के तरीके विकसित किए गए थे। इसने 19वीं और 20वीं सदी की प्रारंभिक के बार मीटर का नेतृत्व किया था।
द्वितीय विश्व युद्ध में मित्र राष्ट्रों की जीत में मशीनी औज़ार का अमेरिकी उत्पादन महत्वपूर्ण कारक था। युद्ध में संयुक्त राज्य अमेरिका में मशीनी औज़ार का उत्पादन तीन गुना हो गया था। द्वितीय विश्व युद्ध की तुलना में कोई भी युद्ध अधिक औद्योगीकृत नहीं था, और यह लिखा गया है कि युद्ध मशीन दुकान से उतना ही जीता गया जितना कि मशीनगनों से था।[11][12]
मशीनी औज़ार का उत्पादन दुनिया भर के लगभग 10 देशों में केंद्रित है: चीन, जापान, जर्मनी, इटली, दक्षिण कोरिया, ताइवान, स्विट्जरलैंड, अमेरिका, ऑस्ट्रिया, स्पेन और कुछ अन्य है। दुनिया भर में कई सार्वजनिक और निजी अनुसंधान केंद्रों में मशीनी औज़ार का नवाचार जारी है।
ड्राइव पावर स्रोत
"श्री स्लेटर द्वारा निर्मित कपास मशीनरी के लिए लोहे की सभी मोड़ हाथ की छेनी के साथ की गई थी, जो हाथ की शक्ति से क्रैंक द्वारा बदली गई खराद में उपकरण हैं"। डेविड विल्किंसन (मशीनिस्ट)[13]
मशीनी औज़ार को विभिन्न स्रोतों से संचालित किया जा सकता है। मानव और पशु शक्ति (क्रैंक (तंत्र) के माध्यम से, ट्रेडल, ट्रेडमिल, या ट्रेडव्हील) का उपयोग अतीत में किया जाता था, जैसा कि जल शक्ति (पानी का गतिपालक चक्र के माध्यम से) में किया जाता था, चूंकि, 19वीं शताब्दी के मध्य में उच्च दबाव वाले भाप इंजनों के विकास के बाद, कारखानों ने तेजी से भाप की शक्ति का उपयोग किया हैं। कारखानों ने द्रवचालित और वायवीय शक्ति का भी उपयोग किया हैं। 1900 के बाद विद्युतीकरण तक कई छोटी कार्यशालाओं ने पानी, मानव और पशु शक्ति का उपयोग करना जारी रखा हैं।[14]
आज अधिकांश मशीनी औज़ार बिजली से संचालित होते हैं, द्रवचालित और वायवीय शक्ति का कभी-कभी उपयोग किया जाता है, लेकिन यह असामान्य है।
स्वचालित नियंत्रण
मशीनी औज़ार को हस्तचालित रूप से या स्वचालित नियंत्रण में संचालित किया जा सकता है।[15] प्रारंभिक मशीनों ने अपनी गति को स्थिर करने के लिए गतिपालक चक्र का उपयोग किया और मशीन और जिस हिस्सा पर काम किया जा रहा था, उसे नियंत्रित करने के लिए गियर और लीवर की जटिल प्रणाली थी। द्वितीय विश्व युद्ध के तुरंत बाद, संख्यात्मक नियंत्रण (एनसी) मशीन विकसित की गई थी। एनसी मशीनों ने अपनी गति को नियंत्रित करने के लिए कागज का टेप या छिद्रित कार्ड पर छिद्रित संख्याओं की श्रृंखला का उपयोग किया है। 1960 के दशक में, प्रक्रिया को और भी अधिक लचीलापन देने के लिए कंप्यूटर जोड़े गए थे। ऐसी मशीनों को कम्प्यूटरीकृत संख्यात्मक नियंत्रण (सीएनसी) मशीनों के रूप में जाना जाता है। एनसी और सीएनसी मशीनें बार-बार दृश्यों को सटीक रूप से दोहरा सकती हैं, और यहां तक कि सबसे कुशल औज़ार संचालक की तुलना में कहीं अधिक जटिल टुकड़े उत्पन्न कर सकती हैं।
लंबे समय से पहले, मशीनें स्वचालित रूप से उपयोग किए जा रहे विशिष्ट काटने और आकार देने वाले उपकरणों को बदल सकती थीं। उदाहरण के लिए, ड्रिल मशीन में विभिन्न आकारों के छेद बनाने के लिए विभिन्न ड्रिल बिट वाली पत्रिका हो सकती है। पहले, या तो मशीन संचालक को सामान्यतः इन विभिन्न कार्यों को करने के लिए बिट को हस्तचालित रूप से बदलना पड़ता था या कृत्यक को दूसरे स्टेशन पर ले जाना पड़ता था। अगला तार्किक कदम कंप्यूटर नियंत्रण के अनुसार कई अलग-अलग मशीनी औज़ार को एक साथ जोड़ना था। इन्हें मशीन केन्द्र के रूप में जाना जाता है, और इसने भागों के निर्माण के तरीके को नाटकीय रूप से बदल दिया है।
उदाहरण
मशीनी औज़ार के उदाहरण हैं:
- ब्रोच (मेटलवर्क)
- ड्रिल प्रेस
- गियर संरूपित्र
- हॉबिंग मशीन
- होनिंग (मेटल वर्किंग)
- खराद (उपकरण)
- पेंच मशीन (स्वचालित खराद) एस
- पेषण मशीन
- कतरनी (चादर धातु)
- संरूपित्र
- पट्टीआराआरी
- प्लानर (मेटल वर्किंग)
- स्टीवर्ट मंच मिल्स
- अपघर्षी कर्तन वाली मशीनें
- मल्टीटास्किंग मशीन (एमटीएम) - सीएनसी मशीनी औज़ार कई कुल्हाड़ियों के साथ जो एक उच्च स्वचालित मशीनी औज़ार में टर्निंग, पेषण, अपघर्षी कर्तन की मशीन मटीरियल हैंडलिंग को जोड़ती हैं
भागों को गढ़ने या आकार देने के दौरान, अवांछित धातु को हटाने के लिए कई तकनीकों का उपयोग किया जाता है। इनमें से हैं:
- बिजली की निर्वहन मशीनिंग
- पीसना (अपघर्षक कर्तक)
- कर्तन औजार (मेटलवर्किंग)
- एकल किनारे काटने के औज़ार
वांछित सामग्री जोड़ने के लिए अन्य तकनीकों का उपयोग किया जाता है। सामग्री के चयनात्मक जोड़ द्वारा घटकों को बनाने वाले उपकरणों को रैपिड प्रोटोटाइप मशीन कहा जाता है।
मशीन उपकरण निर्माण उद्योग
मार्केट रिसर्च फर्म गार्डनर रिसर्च के सर्वेक्षण के मुताबिक 2014 में मशीनी औज़ार के लिए विश्वव्यापी बाजार लगभग 81 अरब डॉलर का उत्पादन था।[16] 23.8 बिलियन डॉलर के उत्पादन के साथ मशीनी औज़ार का सबसे बड़ा उत्पादक चीन था, जिसके बाद जर्मनी और जापान क्रमशः 12.9 बिलियन डॉलर और 12.88 बिलियन डॉलर के साथ ग्रीवा और ग्रीवा पर थे।[16]दक्षिण कोरिया और इटली क्रमशः 5.6 बिलियन डॉलर और 5 बिलियन डॉलर के राजस्व के साथ शीर्ष 5 उत्पादकों में सम्मिलित हैं।[16]
यह भी देखें
संदर्भ
- ↑ Define Metal Cutting, mechanicalsite.com, retrieved 2019-05-04.
- ↑ Moore 1970, p. 137, figure 213.
- ↑ Jerome 1934, p. 178, Ch. 4, Note 75.
- ↑ Holland 1989.
- ↑ Zelinski, Peter (2013-11-08), "Hybrid machine combines milling and additive manufacturing", Modern Machine Shop.
- ↑ Zelinski, Peter (2014-02-21), "The capacity to build 3D metal forms is a retrofittable option for subtractive CNC machine tools", Modern Machine Shop Additive Manufacturing Supplement.
- ↑ "James Nasmyth". www.nationalgalleries.org (in English). Retrieved 2022-11-01.
- ↑ Moore 1970.
- ↑ Thomson 2009, p. [page needed].
- ↑ Rybczynsky, One Good Turn, 2000, ISBN 0-684-86729-X
- ↑ Herman, Arthur. Freedom's Forge: How American Business Produced Victory in World War II, pp. 87, 112, 121, 146-50, 161, Random House, New York, NY. ISBN 978-1-4000-6964-4.
- ↑ Parker, Dana T. Building Victory: Aircraft Manufacturing in the Los Angeles Area in World War II, pp. 5, 7-8, Cypress, CA, 2013. ISBN 978-0-9897906-0-4.
- ↑ Thomson 2009, p. 24.
- ↑ Hunter, Louis C.; Bryant, Lynwood (1991), A History of Industrial Power in the United States, 1730-1930, Vol. 3: The Transmission of Power, Cambridge, Massachusetts, London: MIT Press, ISBN 0-262-08198-9
- ↑ "What is a CNC machine for natural stone?". Thibaut (in English). 23 January 2020. Retrieved 2020-07-29.
- ↑ 16.0 16.1 16.2 "2015 World Machine-Tool Output and Consumption Survey" (PDF). Gardner Business Media, Inc. Archived from the original (PDF) on 2015-09-21.
ग्रन्थसूची
- Holland, Max (1989), When the Machine Stopped: A Cautionary Tale from Industrial America, Boston: Harvard Business School Press, ISBN 978-0-87584-208-0, OCLC 246343673. A history most specifically of Burgmaster, which specialized in turret drills, but in telling Burgmaster's story, and that of its acquirer Houdaille, Holland provides a history of the machine tool industry in general between World War II and the 1980s that ranks with Noble's coverage of the same era (Noble 1984) as a seminal history. Later republished under the title From Industry to Alchemy: Burgmaster, a Machine Tool Company.
- Jerome, Harry (1934), "Mechanization in Industry", NBER, Cambridge, Massachusetts, US: US National Bureau of Economic Research.
- Moore, Wayne R. (1970), Foundations of Mechanical Accuracy (1st ed.), Bridgeport, Connecticut, US: Moore Special Tool Co., LCCN 73127307. The Moore family firm, the Moore Special Tool Company, independently invented the jig borer (contemporaneously with its Swiss invention), and Moore's monograph is a seminal classic of the principles of machine tool design and construction that yield the highest possible accuracy and precision in machine tools (second only to that of metrological machines). The Moore firm epitomized the art and science of the tool and die maker.
- Roe, Joseph Wickham (1916), English and American Tool Builders, New Haven, Connecticut: Yale University Press, LCCN 16011753. Reprinted by McGraw-Hill, New York and London, 1926 (LCCN 27-24075); and by Lindsay Publications, Inc., Bradley, Illinois (ISBN 978-0-917914-73-7).. A seminal classic of machine tool history. Extensively cited by later works.
- Thomson, Ross (2009), Structures of Change in the Mechanical Age: Technological Invention in the United States 1790-1865, Baltimore, MD: The Johns Hopkins University Press, ISBN 978-0-8018-9141-0
- Woodbury, Robert S. (1972a). "History of the Lathe to 1850: A Study in the Growth of a Technical Element of an Industrial Economy". In Woodbury (1972).
- Woodbury, Robert S. (1972) [1961], Studies in the History of Machine Tools, Cambridge, Massachusetts, US, and London, England: MIT Press, ISBN 978-0-262-73033-4, LCCN 72006354. Collection of previously published monographs bound as one volume. A collection of seminal classics of machine tool history.
अग्रिम पठन
- Colvin, Fred H. (1947), Sixty Years with Men and Machines, New York and London: McGraw-Hill, LCCN 47003762. Available as a reprint from Lindsay Publications (ISBN 978-0-917914-86-7). Foreword by Ralph Flanders. A memoir that contains quite a bit of general history of the industry.
- Floud, Roderick C. (2006) [1976], The British Machine Tool Industry, 1850–1914, Cambridge, England: Cambridge University Press, ISBN 978-0-521-02555-3, LCCN 2006275684, OCLC 70251252. A monograph with a focus on history, economics, and import and export policy. Original 1976 publication: LCCN 75-046133, ISBN 0-521-21203-0.
- Hounshell, David A. (1984), From the American System to Mass Production, 1800–1932: The Development of Manufacturing Technology in the United States, Baltimore, Maryland: Johns Hopkins University Press, ISBN 978-0-8018-2975-8, LCCN 83016269, OCLC 1104810110 One of the most detailed histories of the machine tool industry from the late 18th century through 1932. Not comprehensive in terms of firm names and sales statistics (like Floud focuses on), but extremely detailed in exploring the development and spread of practicable interchangeability, and the thinking behind the intermediate steps. Extensively cited by later works.
- Noble, David F. (1984), Forces of Production: A Social History of Industrial Automation, New York, New York, USA: Knopf, ISBN 978-0-394-51262-4, LCCN 83048867. One of the most detailed histories of the machine tool industry from World War II through the early 1980s, relayed in the context of the social impact of evolving automation via NC and CNC.
- Roe, Joseph Wickham (1937), James Hartness: A Representative of the Machine Age at Its Best, New York: American Society of Mechanical Engineers, LCCN 37016470, OCLC 3456642. link from HathiTrust.
. A biography of a machine tool builder that also contains some general history of the industry.
- Rolt, L. T. C. (1965), A Short History of Machine Tools, Cambridge, Massachusetts, USA: MIT Press, OCLC 250074. Co-edition published as Rolt, L. T. C. (1965), Tools for the Job: a Short History of Machine Tools, London: B. T. Batsford, LCCN 65080822.
- Ryder, Thomas and Son, Machines to Make Machines 1865 to 1968, a centenary booklet, (Derby: Bemrose & Sons, 1968)
बाहरी संबंध