मूल्यांकन (माप सिद्धांत)
माप सिद्धांत में, या न्यूनतम डोमेन सिद्धांत के माध्यम से इसके दृष्टिकोण में, मूल्यांकन एक टोपोलॉजिकल स्पेस के विवृत समुच्चयों के वर्ग से लेकर अपरिमित सहित धनात्मक वास्तविक संख्याओं के समुच्चय तक का प्रतिचित्र है, जिसमें कुछ गुण होते हैं। यह एक माप से निकटता से संबंधित अवधारणा है, और इस तरह, यह माप सिद्धांत, संभाव्यता सिद्धांत और सैद्धांतिक कंप्यूटर विज्ञान में अनुप्रयोग पाता है।
डोमेन/माप सिद्धांत परिभाषा
मान लीजिए टोपोलॉजिकल स्पेस है: मूल्यांकन कोई भी निर्धारित फ़ंक्शन है
निरंतर मूल्यांकन
मूल्यांकन (जैसा कि डोमेन सिद्धांत/माप सिद्धांत में परिभाषित किया गया है) को विवृत समुच्चयों के प्रत्येक निर्देशित परिवार के लिए निरंतर कहा जाता है (यानी विवृत समुच्चयों का अनुक्रमित परिवार जो इस अर्थ में भी निर्देशित होता है कि प्रत्येक जोड़ी सूचकांक के लिए) और सूचकांक समुच्चय से संबंधित हैं, सूचकांक उपस्थित है जैसे कि और निम्नलिखित समानता रखते हैं:
सरल मूल्यांकन
मूल्यांकन (जैसा कि डोमेन सिद्धांत/माप सिद्धांत में परिभाषित किया गया है) को सरल कहा जाता है यदि यह डायराक मूल्यांकन के ऋणेतर गुणांक के साथ सीमित रैखिक संयोजन है, अर्थात,
जहां हमेशा सभी सूचकांक के लिए शून्य से अधिक या न्यूनतम बराबर होता है। सरल मूल्यांकन स्पष्ट रूप से उपरोक्त अर्थ में निरंतर हैं। सरल मूल्यांकनों के निर्देशित परिवार का सर्वोच्च (अर्थात् सरल मूल्यांकनों का अनुक्रमित परिवार जो इस अर्थ में भी निर्देशित है कि सूचकांकों की प्रत्येक जोड़ी के लिए और सूचकांक समुच्चय से संबंधित हैं, सूचकांक उपस्थित है जैसे कि को अर्ध-सरल मूल्यांकन कहा जाता है।
यह भी देखें
- दिए गए मूल्यांकन के लिए विस्तार समस्या (डोमेन सिद्धांत/माप सिद्धांत के अर्थ में) इसमें यह पता लगाना सम्मिलित है कि किस प्रकार की स्थितियों के तहत इसे उचित टोपोलॉजिकल स्पेस पर माप तक बढ़ाया जा सकता है, जो वही स्थान हो भी सकता है और नहीं भी जहां इसे परिभाषित किया गया है: संदर्भ अनुभाग में अल्वारेज़-मनिला, एडलाट और साहेब-जहरोमी 2000 और गौबॉल्ट-लारेक 2005 के पेपर इस उद्देश्य के लिए समर्पित हैं और कई ऐतिहासिक विवरण भी देते हैं।
- उत्तल समुच्चय पर मूल्यांकन और मैनिफ़ोल्ड पर मूल्यांकन की अवधारणाएं डोमेन/माप सिद्धांत के अर्थ में मूल्यांकन का सामान्यीकरण हैं। उत्तल समुच्चयों पर मूल्यांकन को जटिल मूल्यों को मानने की अनुमति है, और अंतर्निहित टोपोलॉजिकल स्पेस परिमित-आयामी वेक्टर स्पेस के गैर-खाली उत्तल कॉम्पैक्ट उपसमुच्चय का समुच्चय है: मैनिफोल्ड्स पर मूल्यांकन जटिल-मूल्यवान परिमित रूप से योगात्मक माप है जो दिए गए मैनिफोल्ड्स के सभी कॉम्पैक्ट सबमैनिफोल्ड के वर्ग के एक उचित उपसमुच्चय पर परिभाषित किया गया है।[lower-alpha 1]
उदाहरण
डिराक मूल्यांकन
मान लीजिए टोपोलॉजिकल स्पेस है, और मान लीजिए कि , का एक बिंदु है: यह प्रतिचित्र
यह भी देखें
टिप्पणियाँ
उद्धृत कार्य
- Alvarez-Manilla, Maurizio; Edalat, Abbas; Saheb-Djahromi, Nasser (2000), "An extension result for continuous valuations", Journal of the London Mathematical Society, 61 (2): 629–640, CiteSeerX 10.1.1.23.9676, doi:10.1112/S0024610700008681.
- Goubault-Larrecq, Jean (2005), "Extensions of valuations", Mathematical Structures in Computer Science, 15 (2): 271–297, doi:10.1017/S096012950400461X
बाहरी संबंध
- Alesker, Semyon, "various preprints on valuation s", arXiv preprint server, primary site at Cornell University. Several papers dealing with valuations on convex sets, valuations on manifolds and related topics.
- The nLab page on valuations