रैखिक निकाय
प्रणाली सिद्धांत में, रैखिक निकाय रैखिक संकारक के उपयोग पर आधारित प्रणाली का गणितीय मॉडल है। रैखिक प्रणालियाँ प्रायः उन विशेषताओं और गुणों को प्रदर्शित करती हैं जो अरैखिक स्थिति की तुलना में बहुत सरल होते हैं। गणितीय संक्षिप्तीकरण या आदर्शीकरण के रूप में, रैखिक प्रणालियों को स्वचालित नियंत्रण सिद्धांत, सिग्नल प्रोसेसिंग और दूरसंचार में महत्वपूर्ण अनुप्रयोग प्राप्त होते हैं। उदाहरण के लिए, वायरलेस संचार प्रणालियों के लिए प्रसार माध्यम को प्रायः रैखिक प्रणालियों द्वारा मॉडल किया जा सकता है।
परिभाषा
सामान्य नियतात्मक प्रणाली को संकारक, H द्वारा वर्णित किया जा सकता है, जो इनपुट, x(t) को आउटपुट, y(t), एक प्रकार के ब्लैक बॉक्स विवरण के रूप में t के फलन के रूप में मैप करता है।
प्रणाली रैखिक होती है यदि और केवल यदि यह अध्यारोपण सिद्धांत, या समतुल्यता और समरूपता गुणों दोनों को बिना किसी प्रतिबंध के संतुष्ट करती है (अर्थात, सभी इनपुट के लिए, सभी स्केलिंग स्थिरांक और सभी समय के लिए)।[1][2][3][4]
अध्यारोपण सिद्धांत का अर्थ है कि प्रणाली में इनपुट का रैखिक संयोजन अलग-अलग इनपुट के अनुरूप अलग-अलग शून्य-अवस्था आउटपुट (अर्थात, प्रारंभिक स्थितियों को शून्य पर सेट करने वाले आउटपुट) का एक रैखिक संयोजन उत्पन्न करता है।[5][6]
ऐसी प्रणाली में जो समरूपता गुण को संतुष्ट करती है, इनपुट को स्केल करने से सदैव एक ही कारक द्वारा शून्य-अवस्था प्रतिक्रिया को स्केल किया जाता है।[6] एक ऐसी प्रणाली में जो योज्यता गुण को संतुष्ट करती है, दो इनपुट जोड़ने से सदैव अलग-अलग इनपुट के कारण संबंधित दो शून्य-अवस्था प्रतिक्रियाओं को जोड़ने में परिणाम प्राप्त होता हैं।[6]
गणितीय रूप से, सतत समय प्रणाली के लिए, दो यादृच्छिक इनपुट दिए गए हैं
जटिल इनपुट के अधीन परिणामी प्रणाली के व्यवहार को सरल इनपुट की प्रतिक्रियाओं के योग के रूप में वर्णित किया जा सकता है। अरैखिक प्रणालियों में, ऐसा कोई संबंध नहीं होता है। यह गणितीय गुण कई अरैखिक प्रणालियों की तुलना में मॉडलिंग समीकरणों के समाधान को सरल बनाता है। समय-अपरिवर्तनीय प्रणालियों के लिए यह आवेग प्रतिक्रिया या आवृत्ति प्रतिक्रिया विधियों (एलटीआई (LTI) प्रणाली सिद्धांत देखें) का आधार है, जो इकाई आवेगों या आवृत्ति घटकों के संदर्भ में एक सामान्य इनपुट फलन x(t) का वर्णन करता है।
रैखिक समय-अपरिवर्तनीय प्रणालियों के विशिष्ट अवकल समीकरणों को सतत स्थिति में लाप्लास परिवर्तन और असतत स्थिति में जेड (Z)-रूपांतरण (विशेषकर कंप्यूटर कार्यान्वयन में) का उपयोग करके विश्लेषण के लिए अच्छी तरह से अनुकूलित किया जाता है।
एक अन्य परिप्रेक्ष्य यह है कि रैखिक प्रणालियों के समाधान में फलनों की प्रणाली सम्मिलित होती है जो ज्यामितीय अर्थ में वेक्टर की तरह कार्य करती है।
रैखिक मॉडलों का सामान्य उपयोग रैखिकरण द्वारा अरैखिक प्रणाली का वर्णन करना है। यह प्रायः गणितीय सुविधा के लिए किया जाता है।
रैखिक निकाय की पूर्व परिभाषा एसआईएसओ (SISO) (एकल-इनपुट एकल-आउटपुट) प्रणालियों पर लागू होती है। एमआईएमओ (MIMO) (एकाधिक-इनपुट एकाधिक-आउटपुट) प्रणाली के लिए, इनपुट और आउटपुट सिग्नल (, , , ) के स्थान पर इनपुट और आउटपुट सिग्नल वेक्टर (, , , ) पर विचार किया जाता है।[2][4]
रैखिक निकाय की यह परिभाषा गणना में रैखिक अवकल समीकरण की परिभाषा, और रैखिक बीजगणित में रैखिक रूपांतरण के अनुरूप है।
उदाहरण
सरल आवर्त दोलक अवकल समीकरण का पालन करता है-
रैखिक प्रणालियों के अन्य उदाहरणों में , , , द्वारा वर्णित प्रणाली और साधारण रैखिक अवकल समीकरणों द्वारा वर्णित कोई भी प्रणाली सम्मिलित है।[4] , , , , , , , द्वारा वर्णित प्रणालियाँ, और रैखिक क्षेत्र और संतृप्ति (स्थिर) क्षेत्र से युक्त विषम-समरूपता आउटपुट वाली प्रणाली, अरैखिक हैं क्योंकि वे सदैव अध्यारोपण सिद्धांत को संतुष्ट नहीं करती हैं।[7][8][9][10]
रैखिक निकाय के आउटपुट बनाम इनपुट ग्राफ़ को मूल बिंदु के माध्यम से एक सीधी रेखा होने की आवश्यकता नहीं है। उदाहरण के लिए, द्वारा वर्णित प्रणाली पर विचार करें (जैसे कि स्थिर-धारिता संधारित्र या स्थिर-प्रेरकत्व प्रेरक)। यह रैखिक है क्योंकि यह अध्यारोपण सिद्धांत को संतुष्ट करता है। हालाँकि, जब इनपुट ज्यावक्र होता है, तो आउटपुट भी ज्यावक्र होता है, और इसलिए इसका आउटपुट-इनपुट प्लॉट मूल बिंदु से गुजरने वाली सीधी रेखा के स्थान पर मूल बिंदु पर केंद्रित दीर्घवृत्त होता है।
इसके अलावा, रैखिक निकाय के आउटपुट में गुणवृत्ति हो सकती है (और इनपुट की तुलना में छोटी मौलिक आवृत्ति होती है) तब भी जब इनपुट ज्यावक्र होता है। उदाहरण के लिए, द्वारा वर्णित प्रणाली पर विचार करें। यह रैखिक है क्योंकि यह अध्यारोपण सिद्धांत को संतुष्ट करता है। हालाँकि, जब इनपुट रूप का ज्यावक्र होता है, तो गुणन-से-योग त्रिकोणमितीय पहचान का उपयोग करके यह आसानी से दिखाया जा सकता है कि आउटपुट है, अर्थात्, आउटपुट में केवल इनपुट (3 रेड/सेकेंड) के समान आवृत्ति के ज्यावक्र सम्मिलित नहीं होते हैं, बल्कि इसके स्थान पर 2 रेड/सेकेंड (rad/s) और 4 रेड/सेकेंड आवृत्तियों के ज्यावक्र भी होते हैं इसके अलावा, आउटपुट के ज्यावक्रों की मौलिक अवधि का सबसे छोटा सामान्य गुणक लेते हुए, यह दिखाया जा सकता है कि आउटपुट की मौलिक कोणीय आवृत्ति 1 रेड/सेकेंड है, जो इनपुट से अलग है।
समय-भिन्न आवेग प्रतिक्रिया
रैखिक निकाय की समय-भिन्न आवेग प्रतिक्रिया को समय पर प्रणाली की प्रतिक्रिया के रूप में परिभाषित किया जाता है, जो समय t = t1 पर लागू एकल आवेग के लिए होती है। दूसरे शब्दों में, यदि रैखिक निकाय में इनपुट x(t) है
संवलन समाकल
किसी भी सामान्य सतत-समय रैखिक निकाय का आउटपुट समाकल द्वारा इनपुट से संबंधित होता है जिसे कार्य-कारण की स्थिति के कारण दोगुनी अनंत सीमा पर लिखा जा सकता है-
असतत-समय प्रणाली
किसी भी असतत समय रैखिक निकाय का आउटपुट समय-भिन्न संवलन योग द्वारा इनपुट से संबंधित होता है-
यह भी देखें
- स्थानांतरण अपरिवर्तनीय प्रणाली
- रैखिक नियंत्रण
- रैखिक समय-अपरिवर्तनीय प्रणाली
- अरैखिक प्रणाली
- प्रणाली विश्लेषण
- रैखिक समीकरणों की प्रणाली
संदर्भ
- ↑ Phillips, Charles L.; Parr, John M.; Riskin, Eve A. (2008). सिग्नल, सिस्टम और ट्रांसफॉर्म (4 ed.). Pearson. p. 74. ISBN 978-0-13-198923-8.
- ↑ 2.0 2.1 Bessai, Horst J. (2005). MIMO सिग्नल और सिस्टम. Springer. pp. 27–28. ISBN 0-387-23488-8.
- ↑ Alkin, Oktay (2014). सिग्नल और सिस्टम: एक MATLAB एकीकृत दृष्टिकोण. CRC Press. p. 99. ISBN 978-1-4665-9854-6.
- ↑ 4.0 4.1 4.2 Nahvi, Mahmood (2014). सिग्नल और सिस्टम. McGraw-Hill. pp. 162–164, 166, 183. ISBN 978-0-07-338070-4.
- ↑ Sundararajan, D. (2008). सिग्नल और सिस्टम के लिए एक व्यावहारिक दृष्टिकोण. Wiley. p. 80. ISBN 978-0-470-82353-8.
- ↑ 6.0 6.1 6.2 Roberts, Michael J. (2018). सिग्नल और सिस्टम: ट्रांसफ़ॉर्म मेथड्स और MATLAB® का उपयोग करके विश्लेषण (3 ed.). McGraw-Hill. pp. 131, 133–134. ISBN 978-0-07-802812-0.
- ↑ Deergha Rao, K. (2018). सिग्नल और सिस्टम. Springer. pp. 43–44. ISBN 978-3-319-68674-5.
- ↑ Chen, Chi-Tsong (2004). सिग्नल और सिस्टम (3 ed.). Oxford University Press. p. 55-57. ISBN 0-19-515661-7.
- ↑ ElAli, Taan S.; Karim, Mohammad A. (2008). MATLAB के साथ निरंतर सिग्नल और सिस्टम (2 ed.). CRC Press. p. 53. ISBN 978-1-4200-5475-0.
- ↑ Apte, Shaila Dinkar (2016). सिग्नल और सिस्टम: सिद्धांत और अनुप्रयोग. Cambridge University Press. p. 187. ISBN 978-1-107-14624-2.