लिफ्ट (गणित)

From Vigyanwiki
रूपवाद h, f की लिफ्ट है (क्रमविनिमेय आरेख)

श्रेणी सिद्धांत में, गणित की एक शाखा, एक रूपवाद f: f = gh हम कहते हैं कि f, h के माध्यम से गुणनखंड करता है।

टोपोलॉजी में मूलभूत उदाहरण टोपोलॉजिकल समिष्ट में पथ (टोपोलॉजी) को समिष्ट को आवरण में पथ तक उठाना है।[1] उदाहरण के लिए, गोले पर विपरीत बिंदुओं को ही बिंदु पर मैप करने पर विचार करें, प्रक्षेप्य तल को आवरण करने वाले गोले से सतत फलन (टोपोलॉजी) प्रक्षेप्य तल में पथ इकाई अंतराल [0,1] से सतत मैप है। इस प्रकार हम गोले के दो बिंदुओं में से किसी को चुनकर पथ के पहले बिंदु पर मैप करके ऐसे पथ को गोले तक उठा सकते हैं, फिर निरंतरता बनाए रख सकते हैं। इस स्थिति में, दो प्रारंभिक बिंदुओं में से प्रत्येक गोले पर अद्वितीय पथ को बल देता है, इस प्रकार प्रक्षेप्य तल में पथ की लिफ्ट इस प्रकार रूपात्मकता के रूप में निरंतर मैपों के साथ टोपोलॉजिकल रिक्त समिष्ट की श्रेणी में, हमारे समीप है

लिफ्टें सर्वव्यापी हैं; उदाहरण के लिए, कंपन की परिभाषा और इस प्रकार भिन्न-भिन्न रूपवाद के मूल्यांकन मानदंड और तन्तु (गणित) के उचित मैप अस्तित्व के संदर्भ में तैयार किए जाते हैं और (अंतिम स्थिति में) कुछ लिफ्टों की विशिष्टता प्रमेय का उपयोग किया जाता है।

बीजगणितीय टोपोलॉजी और होमोलॉजिकल बीजगणित में, टेंसर उत्पाद और होम संचालक टेंसर-होम एडजंक्शन हैं; चूँकि, वह सदैव स्पष्ट अनुक्रम तक नही पहुँचते है। इस प्रकार इससे एक्सट संचालक और फ़ंक्टर टोर की परिभाषा सामने आती है।

बीजगणितीय तर्क

जब परिमाणक (तर्क) को स्थापित डोमेन और बाइनरी संबंधों की श्रेणियों में समिष्टांतरित कर दिया जाता है, जिससे प्रथम-क्रम विधेय तर्क के नोटेशन को सुव्यवस्थित किया जाता है। इस प्रकार गुंथर श्मिट और माइकल विंटर ने अपनी पुस्तक रिलेशनल टोपोलॉजी में टोपोलॉजी की पारंपरिक तार्किक अभिव्यक्तियों को संबंधों की गणना तक उठाने की विधि का वर्णन किया है।[2]

उनका लक्ष्य अवधारणाओं को संबंधपरक स्तर तक उठाना है, जिससे वह बिंदु मुक्त और साथ ही मात्रात्मक मुक्त हो सकते है उन्हें प्रथम क्रम विधेय तर्क की शैली से मुक्त करना और बीजगणितीय तर्क की स्पष्टता तक पहुंचना है।

उदाहरण के लिए, आंशिक फलन एम समावेशन से मेल खाता है जहाँ एम की सीमा पर पहचान संबंध को दर्शाता है। इस प्रकार परिमाणीकरण के लिए संकेतन छिपा हुआ है और संबंधपरक संचालन (यहां ट्रांसपोज़िशन और संरचना) और इस प्रकार उनके नियमों की टाइपिंग में गहराई से सम्मिलित रहता है।

वृत्त मैप

किसी वृत्त के मानचित्रों के लिए, वास्तविक रेखा तक लिफ्ट की परिभाषा थोड़ी भिन्न होती है (एक सामान्य अनुप्रयोग रोटेशन संख्या की गणना है)। एक वृत्त पर एक मानचित्र दिया गया है, इस प्रकार जिसके लिए एक प्रक्षेपण (या, आवरण मैप), उपस्थित है , जैसे कि है [3]

यह भी देखें

  • समिष्ट को आवरण करना
  • प्रोजेक्टिव मॉड्यूल
  • औपचारिक रूप से सुचारू मानचित्र असीम उठाने वाली प्रोपर्टी को संतुष्ट करता है।
  • श्रेणियों में प्रोपर्टी उठाना
  • मोन्स्की-वॉश्निट्ज़र कोहोलॉजी पी-एडिक प्रकार को विशेषता शून्य तक ले जाती है।
  • एसबीआई रिंग नपुंसक को जैकबसन रेडिकल से ऊपर उठाने की अनुमति देती है।
  • इकेदा लिफ्ट
  • सीगल मॉड्यूलर रूपों की मियावाकी लिफ्ट
  • मॉड्यूलर रूपों की सैटो-कुरोकावा लिफ्ट
  • घूर्णन संख्या वृत्त की समरूपता को वास्तविक रेखा तक उठाने का उपयोग करती है।
  • अंकगणित ज्यामिति: एंड्रयू विल्स (1995) मॉड्यूलरिटी लिफ्टिंग
  • हेंसल की लेम्मा
  • मोनाड (फलनल प्रोग्रामिंग) सरल संचालकों को मोनाडिक रूप में लाने के लिए मैप फलनल का उपयोग करता है।
  • स्पर्शरेखा बंडल लिफ्ट्स

संदर्भ

  1. Jean-Pierre Marquis (2006) "A path to Epistemology of Mathematics: Homotopy theory", pages 239 to 260 in The Architecture of Modern Mathematics, J. Ferreiros & J.J. Gray, editors, Oxford University Press ISBN 978-0-19-856793-6
  2. Gunther Schmidt and Michael Winter (2018): Relational Topology, page 2 to 5, Lecture Notes in Mathematics vol. 2208, Springer books, ISBN 978-3-319-74451-3
  3. Robert L. Devaney (1989): An Introduction to Chaotic Dynamical Systems, pp. 102-103, Addison-Wesley