समान अभिसरण

From Vigyanwiki


विश्लेषण के गणितीय क्षेत्र में, समान अभिसरण बिंदुवार अभिसरण से अधिक प्रबल फलन के अभिसरण का एक विधि है। फलन का एक क्रम समुच्चय पर फलन डोमेन के रूप में एक सीमित फलन में समान रूप से परिवर्तित होता है, यदि कोई इच्छानुसार से छोटी धनात्मक संख्या दी गई हो, तो एक संख्या पाया जा सकता है जैसे कि प्रत्येक फलन में प्रत्येक बिंदु पर से से अधिक भिन्न नहीं है। अनौपचारिक विधि से वर्णित है, यदि समान रूप से में परिवर्तित होता है, तो वह दर जिस पर, तक पहुंचता है निम्नलिखित अर्थों में अपने संपूर्ण डोमेन में "समान" है: यह दिखाने के लिए कि समान रूप से एक निश्चित दूरी के अंदर आता है, हमें प्रश्न में का मान जानने की आवश्यकता नहीं है — प्रश्न में का एक ही मान पाया जा सकता है - का एक ही मान पाया जा सकता है से स्वतंत्र, जैसे कि चुनने से यह सुनिश्चित हो जाएगा कि सभी के लिए के के अंदर है। इसके विपरीत, से का बिंदुवार अभिसरण केवल यह आश्वासन देता है कि पहले से दिए गए किसी भी के लिए, हम पा सकते हैं (अथार्त , , के मान पर निर्भर हो सकता है) जैसे कि, उस विशेष के लिए, के अंतर्गत आता है का जब भी (एक अलग x को बिंदुवार अभिसरण के लिए एक अलग N की आवश्यकता होती है)।

कैलकुलस के इतिहास में आरंभ में समान अभिसरण और बिंदुवार अभिसरण के बीच अंतर को पूरी तरह से सराहा नहीं गया था, जिससे दोषपूर्ण तर्क के उदाहरण सामने आए है। यह अवधारणा, जिसे पहली बार कार्ल वीयरस्ट्रैस द्वारा औपचारिक रूप दिया गया था, महत्वपूर्ण है क्योंकि फलन के कई गुण, जैसे निरंतरता, रीमैन इंटीग्रेबिलिटी, और, अतिरिक्त परिकल्पनाओं के साथ, भिन्नता, अभिसरण होने पर सीमा में समष्टि हो जाते हैं एक समान है, किंतु जरूरी नहीं कि अभिसरण एक समान न हो।

इतिहास

1821 में ऑगस्टिन-लुई कॉची ने एक प्रमाण प्रकाशित किया कि निरंतर फलन का एक अभिसरण योग सदैव निरंतर होता है, जिसके लिए 1826 में नील्स हेनरिक एबेल ने फूरियर श्रृंखला के संदर्भ में कथित प्रति-उदाहरण पाए, यह तर्क देते हुए कि कॉची का प्रमाण गलत होना चाहिए। उस समय अभिसरण की पूरी तरह से मानक धारणाएं उपस्थित नहीं थीं, और कॉची ने अनंत विधियों का उपयोग करके अभिसरण को संभाला जाता है। आधुनिक भाषा में कहें तो, कॉची ने जो सिद्ध किया वह यह है कि निरंतर फलन के एक समान रूप से अभिसरण अनुक्रम की एक निरंतर सीमा होती है। निरंतर फलन को एक सतत फलन में परिवर्तित करने के लिए केवल बिंदुवार-अभिसरण सीमा की विफलता फलन के अनुक्रमों को संभालते समय विभिन्न प्रकार के अभिसरण के बीच अंतर करने के महत्व को दर्शाती है।[1]


एक समान अभिसरण शब्द का प्रयोग संभवत: सबसे पहले क्रिस्टोफ गुडेरमैन ने 1838 में अण्डाकार फलन पर एक पेपर में किया था, जहां उन्होंने "समान विधि से अभिसरण" वाक्यांश का प्रयोग तब किया था जब एक श्रृंखला का "अभिसरण का विधि " चर से स्वतंत्र होता है। और जबकि उन्होंने सोचा कि यह एक "उल्लेखनीय तथ्य" है जब एक श्रृंखला इस तरह से मिलती है, उन्होंने कोई औपचारिक परिभाषा नहीं दी, न ही अपने किसी भी प्रमाण में संपत्ति का उपयोग किया।[2]

बाद में गुडरमैन के शिष्य कार्ल वेइरस्ट्रैस, जिन्होंने 1839-1840 में अण्डाकार फलन पर उनके पाठ्यक्रम में भाग लिया था, ने ग्लीचमाज़िग कन्वर्जेंट (जर्मन: समान रूप से अभिसरण) शब्द गढ़ा, जिसका उपयोग उन्होंने 1894 में प्रकाशित अपने 1841 के पेपर ज़ूर थियोरी डेर पोटेंज़रेइहेन में किया। स्वतंत्र रूप से, समान अवधारणाएं थीं फिलिप लुडविग वॉन सीडेल[3] और जॉर्ज गेब्रियल स्टोक्स द्वारा व्यक्त। जी. एच. हार्डी ने अपने पेपर "सर जॉर्ज स्टोक्स और एक समान अभिसरण की अवधारणा" में तीन परिभाषाओं की तुलना की और टिप्पणी की: "वीयरस्ट्रैस की खोज सबसे प्रारंभिक थी, और उन्होंने अकेले ही विश्लेषण के मौलिक विचारों में से एक के रूप में इसके दूरगामी महत्व को पूरी तरह से अनुभव किया।"

वीयरस्ट्रैस और बर्नहार्ड रीमैन के प्रभाव में इस अवधारणा और संबंधित प्रश्नों का 19वीं शताब्दी के अंत में हरमन हैंकेल, पॉल डू बोइस-रेमंड, यूलिसिस दीनी, सेसारे अर्ज़ेला और अन्य द्वारा गहन अध्ययन किया गया था।

परिभाषा

हम पहले वास्तविक-मूल्यवान फलन के लिए समान अभिसरण को परिभाषित करते हैं। वास्तविक-मूल्यवान फलन, चूँकि अवधारणा को मीट्रिक समष्टि और अधिक सामान्यतः एकसमान समष्टि (यूनिफ़ॉर्म कन्वर्जेंस या सामान्यीकरण देखें) के लिए फलन मैपिंग के लिए आसानी से सामान्यीकृत किया जाता है।

मान लीजिए कि एक समुच्चय है और उस पर वास्तविक-मूल्यवान फलन का एक क्रम है। हम कहते हैं कि अनुक्रम , पर सीमा के साथ समान रूप से अभिसरण है यदि प्रत्येक के लिए, एक प्राकृतिक संख्या उपस्थित है जैसे कि सभी के लिए और सभी के लिए है

से के समान अभिसरण के लिए संकेतन अधिक मानकीकृत नहीं है और विभिन्न लेखकों ने विभिन्न प्रकार के प्रतीकों का उपयोग किया है, जिनमें (लोकप्रियता के लगभग घटते क्रम में) सम्मिलित हैं:

अधिकांशतः किसी विशेष प्रतीक का उपयोग नहीं किया जाता है, और लेखक बस लिखते हैं

यह इंगित करने के लिए कि अभिसरण एक समान है। (इसके विपरीत, क्रियाविशेषण के बिना E पर अभिव्यक्ति को पर बिंदुवार अभिसरण के रूप में लिया जाता है: सभी , के लिए के रूप में है।

चूँकि एक पूर्ण मीट्रिक समष्टि है, कॉची मानदंड का उपयोग समान अभिसरण के लिए समकक्ष वैकल्पिक सूत्रीकरण देने के लिए किया जा सकता है: } पर समान रूप से अभिसरण करता है (पिछले अर्थ में) यदि और केवल तभी यदि प्रत्येक के लिए, ऐसी कोई प्राकृतिक संख्या उपस्थित होता है

.

एक और समतुल्य सूत्रीकरण में, यदि हम परिभाषित करें

तब में एकत्रित हो जाता है समान रूप से यदि और केवल यदि जैसा . इस प्रकार, हम एक समान अभिसरण की विशेषता बता सकते हैं पर (सरल) अभिसरण के रूप में फलन समष्टि में द्वारा परिभाषित समान मानदंड (जिसे सर्वोच्च मीट्रिक भी कहा जाता है) के संबंध में

प्रतीकात्मक रूप से,

.

अनुक्रम को समष्टि रूप से सीमा के साथ समान रूप से अभिसरण कहा जाता है यदि एक मीट्रिक समष्टि है और में प्रत्येक के लिए, एक उपस्थित है जैसे कि समान रूप से पर अभिसरण करता है। यह स्पष्ट है कि एक समान अभिसरण का तात्पर्य समष्टि समान अभिसरण से है, जिसका तात्पर्य बिंदुवार अभिसरण से है।

टिप्पणियाँ

Intuitively, a sequence of functions converges uniformly to if, given an arbitrarily small , we can find an so that the functions with all fall within a "tube" of width centered around (i.e., between and ) for the entire domain of the function.

Note that interchanging the order of quantifiers in the definition of uniform convergence by moving "for all " in front of "there exists a natural number " results in a definition of pointwise convergence of the sequence. To make this difference explicit, in the case of uniform convergence, can only depend on , and the choice of has to work for all , for a specific value of that is given. In contrast, in the case of pointwise convergence, may depend on both and , and the choice of only has to work for the specific values of and that are given. Thus uniform convergence implies pointwise convergence, however the converse is not true, as the example in the section below illustrates.


सामान्यीकरण

कोई सीधे रूप से अवधारणा को फलन E → M तक विस्तारित कर सकता है, जहां (M, d) प्रतिस्थापित करके एक मीट्रिक समष्टि है जिसके समष्टि पर साथ .

सबसे सामान्य समुच्चयिंग फलन EX, के नेट (गणित) का एक समान अभिसरण है, जहां X एक समान समष्टि है। हम कहते हैं कि नेट सीमा f : E → X के साथ समान रूप से अभिसरण होता है यदि और केवल यदि X में प्रत्येक प्रतिवेश (टोपोलॉजी) V के लिए एक उपस्थित है, जैसे कि E और प्रत्येक में प्रत्येक x के लिए , V में है। इस स्थिति में सतत फलनों की एकसमान सीमा सतत् बनी रहती है।

अतिवास्तविक समुच्चयिंग में परिभाषा

एकसमान अभिसरण एक अतियथार्थवादी समुच्चयिंग में एक सरलीकृत परिभाषा को स्वीकार करता है। इस प्रकार, एक अनुक्रम समान रूप से f में परिवर्तित हो जाता है यदि के डोमेन में सभी x और सभी अनंत n के लिए, अपरिमित रूप से के समीप है (समान निरंतरता की समान परिभाषा के लिए सूक्ष्म निरंतरता देखें)।

उदाहरण

के लिए, एक समान अभिसरण का एक मूल उदाहरण इस प्रकार चित्रित किया जा सकता है: अनुक्रम समान रूप से अभिसरण करता है, जबकि नहीं करता. विशेष रूप से, मान लें कि x के मान की परवाह किए बिना, होने पर प्रत्येक फलन से कम या उसके समान होता है। दूसरी ओर, के लगातार बढ़ते मानों पर केवल से कम या उसके समान होता है जब के मानों को 1 के समीप और समीप चुना जाता है (नीचे और अधिक गहराई से समझाया गया है)।

एक टोपोलॉजिकल समष्टि

फिर एकसमान अभिसरण का सीधा सा अर्थ है एकसमान मानदंड टोपोलॉजी में एक अनुक्रम की सीमा:

.

फलन का क्रम  :


फलन के अनुक्रम का एक उत्कृष्ट उदाहरण है जो किसी फलन में बिंदुवार रूप से परिवर्तित होता है लेकिन समान रूप से नहीं। इसे दिखाने के लिए, हम पहले देखते हैं कि की बिंदुवार सीमा के रूप में फलन है, जो द्वारा दिया गया है

बिंदुवार अभिसरण: और के लिए अभिसरण तुच्छ है, क्योंकि और , सभी के लिए और दिए गए के लिए, हम यह सुनिश्चित कर सकते हैं कि जब भी चुनकर (यहां ऊपरी वर्ग कोष्ठक गोल करने का संकेत देते हैं, सीलिंग फलन देखें)। इसलिए, सभी के लिए बिंदुवार। ध्यान दें कि का चुनाव और के मान पर निर्भर करता है। इसके अतिरिक्त , की एक निश्चित पसंद के लिए, (जिसे छोटे के रूप में परिभाषित नहीं किया जा सकता है) जैसे-जैसे 1 के समीप पहुंचता है, बिना किसी सीमा के बढ़ता है। ये अवलोकन एकसमान अभिसरण की संभावना को रोकते हैं।

अभिसरण की गैर-एकरूपता: अभिसरण एक समान नहीं है, क्योंकि हम एक पा सकते हैं ताकि हम कितना भी बड़ा चुनें, और जैसे मान होंगे किइसे देखने के लिए, पहले देखें कि चाहे कितना भी बड़ा हो जाए जो सदैव एक होता है जैसे कि इस प्रकार, यदि हम चुनते हैं तो हम कभी नहीं पा सकते हैं एक ऐसा कि सभी और के लिए स्पष्ट रूप से, हम के लिए जो भी उम्मीदवार चुनते हैं, वह पर के मान पर विचार करता है। तब से

उम्मीदवार असफल हो जाता है क्योंकि हमें इसका एक उदाहरण मिला है यह प्रत्येक को सीमित करने के हमारे प्रयास से बच गया के दायरे में का सभी के लिए . वास्तव में, यह देखना आसान है

उस आवश्यकता के विपरीत यदि .

इस उदाहरण में कोई आसानी से देख सकता है कि बिंदुवार अभिसरण भिन्नता या निरंतरता को संरक्षित नहीं करता है। जबकि अनुक्रम का प्रत्येक फलन सुचारू है, कहने का तात्पर्य यह है कि सभी n के लिए, , सीमा सतत भी नहीं है.

घातीय फलन

वेइरस्ट्रैस एम-टेस्ट का उपयोग करके घातीय फलन के श्रृंखला विस्तार को किसी भी परिबद्ध उपसमुच्चय पर समान रूप से अभिसरण के रूप में दिखाया जा सकता है।

प्रमेय (वीयरस्ट्रैस एम-टेस्ट)। मान लीजिए फलन का एक अनुक्रम है और मान लीजिए कि सभी के लिए है, तो यह धनात्मक वास्तविक संख्याओं का एक क्रम है।और में यदि अभिसरण होता है, तो पूर्णतः और समान रूप से पर अभिसरण होता है।

सम्मिश्र घातीय फलन को श्रृंखला के रूप में व्यक्त किया जा सकता है:

कोई भी परिबद्ध उपसमुच्चय त्रिज्या की किसी डिस्क का उपसमुच्चय है, जो सम्मिश्र तल में मूल बिंदु पर केन्द्रित है। वीयरस्ट्रैस M-परीक्षण के लिए हमें श्रृंखला की नियमो पर एक ऊपरी सीमा खोजने की आवश्यकता है, जिसमें डिस्क में स्थिति से स्वतंत्र है:

ऐसा करने के लिए, हम नोटिस करते हैं

और

यदि अभिसरण है, तो एम-परीक्षण यह प्रमाणित करता है कि मूल श्रृंखला समान रूप से अभिसरण है।

अनुपात परीक्षण का उपयोग यहां किया जा सकता है:

जिसका अर्थ है कि पर श्रृंखला अभिसरण है। इस प्रकार मूल श्रृंखला सभी के लिए समान रूप से अभिसरण होती है और के बाद से, श्रृंखला भी पर समान रूप से अभिसरण होती है।

गुण

  • प्रत्येक समान रूप से अभिसरण अनुक्रम समष्टि रूप से समान रूप से अभिसरण होता है।
  • प्रत्येक समष्टि रूप से समान रूप से अभिसरण अनुक्रम सघन रूप से अभिसरण होता है।
  • समष्टि रूप से सघन समष्टिों के लिए समष्टि समान अभिसरण और सघन अभिसरण मेल खाते हैं।
  • मीट्रिक रिक्त समष्टि पर निरंतर फलन का एक क्रम, छवि मीट्रिक समष्टि पूर्ण होने के साथ, समान रूप से अभिसरण होता है यदि और केवल यदि यह समान रूप से कॉची अनुक्रम है।
  • यदि एक सघन समष्टि अंतराल (या सामान्यतः एक सघन टोपोलॉजिकल समष्टि) है, और एक एकरस अनुक्रम है (अर्थ)। बिंदुवार सीमा के साथ निरंतर फलन के सभी n और x) के लिए जो निरंतर भी है, तो अभिसरण आवश्यक रूप से एक समान है (दीनी का प्रमेय)। यदि समान अभिसरण की भी आश्वासन है एक सघन अंतराल है और एक समसंगति अनुक्रम है जो बिंदुवार परिवर्तित होता है।

अनुप्रयोग

निरंतरता के लिए

एकसमान अभिसरण प्रमेय को प्रबल करने का प्रति उदाहरण, जिसमें एकसमान अभिसरण के अतिरिक्त बिंदुवार अभिसरण माना जाता है। सतत हरित फलन करता है गैर-निरंतर लाल फलन में परिवर्तित करें। ऐसा तभी हो सकता है जब अभिसरण एक समान न हो।

यदि और टोपोलॉजिकल समष्टि हैं, तो फ़ंक्शंस के निरंतर फलन (टोपोलॉजी) के बारे में बात करना समझ में आता है . यदि हम आगे यह मान लें एक मीट्रिक समष्टि है, तो (समान) अभिसरण को भी अच्छी तरह से परिभाषित है. निम्नलिखित परिणाम बताता है कि निरंतरता एक समान अभिसरण द्वारा संरक्षित है:

Uniform limit theorem — Suppose is a topological space, is a metric space, and is a sequence of continuous functions . If on , then is also continuous.


यह प्रमेय "ε/3 ट्रिक" द्वारा सिद्ध किया गया है, और यह इस ट्रिक का आदर्श उदाहरण है: किसी दी गई असमानता (ε) को साबित करने के लिए, कोई 3 असमानताएं (ε/3) उत्पन्न करने के लिए निरंतरता और समान अभिसरण की परिभाषाओं का उपयोग करता है। और फिर वांछित असमानता उत्पन्न करने के लिए उन्हें त्रिकोण असमानता के माध्यम से जोड़ता है।

यह प्रमेय वास्तविक और फूरियर विश्लेषण के इतिहास में एक महत्वपूर्ण है, क्योंकि 18वीं सदी के कई गणितज्ञों की सहज समझ थी कि निरंतर फलन का एक क्रम सदैव एक निरंतर फलन में परिवर्तित होता है। ऊपर दी गई छवि एक प्रति-उदाहरण दिखाती है, और कई असंतत फलन, वास्तव में, निरंतर फलन की फूरियर श्रृंखला के रूप में लिखे जा सकते हैं। यह गलत प्रमाणित कि निरंतर फलन के अनुक्रम की बिंदुवार सीमा निरंतर है (मूल रूप से निरंतर फलन की अभिसरण श्रृंखला के संदर्भ में कहा गया है) को कॉची के गलत प्रमेय के रूप में जाना जाता है। समान सीमा प्रमेय से पता चलता है कि सीमा फलन में निरंतरता के संरक्षण को सुनिश्चित करने के लिए अभिसरण, समान अभिसरण का एक प्रबल रूप आवश्यक है।

अधिक स्पष्ट रूप से, यह प्रमेय बताता है कि समान रूप से निरंतर फलन की एक समान सीमा समान रूप से निरंतर होती है; समष्टि रूप से सघन समष्टि के लिए, निरंतरता समष्टि समान निरंतरता के समान है, और इस प्रकार निरंतर फलन की एक समान सीमा निरंतर है।

विभिन्नता के लिए

यदि S एक अंतराल है और सभी फलन अवकलनीय हैं और एक सीमा में परिवर्तित होते हैं, तो अनुक्रम की सीमा लेकर व्युत्पन्न फलन को निर्धारित करना प्रायः वांछनीय होता है। चूँकि , यह सामान्य रूप से संभव नहीं है: यथार्त अभिसरण एक समान हो, सीमा फलन को विभेदित करने की आवश्यकता नहीं है (यथार्त अनुक्रम में हर जगह-विश्लेषणात्मक फलन सम्मिलित हों, वीयरस्ट्रैस फलन देखें), और यथार्त यह विभेदक हो, का व्युत्पन्न सीमा फलन को डेरिवेटिव की सीमा के समान होना आवश्यक नहीं है। उदाहरण के लिए समान सीमा के साथ पर विचार करें। स्पष्टतः, भी समान रूप से शून्य है। चूँकि फलन के अनुक्रम के व्युत्पन्न द्वारा दिए गए हैं और अनुक्रम या यहां तक कि किसी भी फलन में परिवर्तित नहीं होता है भिन्न-भिन्न फलन के अनुक्रम की सीमा और डेरिवेटिव के अनुक्रम की सीमा के बीच संबंध सुनिश्चित करने के लिए, डेरिवेटिव के अनुक्रम का एक समान अभिसरण और कम से कम एक बिंदु पर फलन के अनुक्रम का अभिसरण आवश्यक है:[4]

यदि पर भिन्न-भिन्न फलन का एक क्रम है, जैसे कि कुछ के लिए उपस्थित है (और परिमित है) और अनुक्रम समान रूप से पर अभिसरण करता है, फिर समान रूप से पर एक फलन में परिवर्तित हो जाता है, और के लिए होता है

अभिन्नता के लिए

इसी तरह, कोई भी अधिकांशतः इंटीग्रल और सीमा प्रक्रियाओं का आदान-प्रदान करना चाहता है। रीमैन इंटीग्रल के लिए, यह तब किया जा सकता है जब एकसमान अभिसरण मान लिया जाए:

यदि एक सघन अंतराल पर परिभाषित रीमैन इंटीग्रल फलन का एक क्रम है जो सीमा के साथ समान रूप से अभिसरण करता है, फिर रीमैन इंटीग्रल है और इसके अभिन्न अंग की गणना इसके अभिन्नों की सीमा के रूप में की जा सकती है :

वास्तव में, एक अंतराल पर बंधे हुए फलन के एक समान रूप से अभिसरण वर्ग के लिए, ऊपरी और निचले रीमैन इंटीग्रल्स सीमा फलन के ऊपरी और निचले रीमैन इंटीग्रल्स में परिवर्तित हो जाते हैं। ऐसा इसलिए होता है, क्योंकि पर्याप्त रूप से बड़े n के लिए, का ग्राफ़ f के ग्राफ़ के ε के अंदर होता है, और इसलिए का ऊपरी योग और निचला योग प्रत्येक के अंदर होता है। क्रमशः के ऊपरी और निचले योग के मान में परिवर्तित होता है ।

इस संबंध में अधिक प्रबल प्रमेय, जिनके लिए बिंदुवार अभिसरण से अधिक की आवश्यकता नहीं होती है, प्राप्त किए जा सकते हैं यदि कोई रीमैन इंटीग्रल को छोड़ देता है और इसके बजाय लेबेस्ग एकीकरण का उपयोग करता है।

विश्लेषणात्मकता के लिए

मोरेरा के प्रमेय का उपयोग करके, कोई यह दिखा सकता है कि यदि विश्लेषणात्मक फलन फलन का अनुक्रम सम्मिश्र समष्टि के क्षेत्र एस में समान रूप से परिवर्तित होता है, तो सीमा एस में विश्लेषणात्मक है। यह उदाहरण दर्शाता है कि सम्मिश्र फलन वास्तविक फलन की तुलना में अधिक अच्छी तरह से व्यवहार किए जाते हैं, क्योंकि वास्तविक अंतराल पर विश्लेषणात्मक फलन की एकसमान सीमा को विभेदित करने की भी आवश्यकता नहीं है (वीयरस्ट्रैस फलन देखें)।

श्रृंखला के लिए

हम ऐसा कहते हैं अभिसरण:

  1. pointwise on E if and only if the sequence of partial sums converges for every .
  2. uniformly on E if and only if sn converges uniformly as .
  3. absolutely on E if and only if converges for every .

इस परिभाषा के साथ निम्नलिखित परिणाम आता है:

<ब्लॉककोट>

मान लीजिए x0 समुच्चय E में समाहित है और प्रत्येक fn x0 पर सतत है। यदि E पर समान रूप से अभिसरण करता है तो E में x0 पर f निरंतर है। मान लीजिए कि और प्रत्येक fn E पर पूर्णांक है। यदि पर समान रूप से अभिसरण करता है तो f , E पर पूर्णांक है और fn के अभिन्नों की श्रृंखला fn की श्रृंखला के अभिन्न अंग के समान है।

लगभग एकसमान अभिसरण

यदि फलन का डोमेन एक माप समष्टि ई है तो लगभग समान अभिसरण की संबंधित धारणा को परिभाषित किया जा सकता है। हम कहते हैं कि फलन का अनुक्रम E पर लगभग समान रूप से अभिसरण करता है यदि प्रत्येक के लिए एक मापने योग्य समुच्चय उपस्थित है जिसका माप से कम है जैसे कि फलन का अनुक्रम पर समान रूप से अभिसरण करता है। दूसरे शब्दों में, लगभग एकसमान अभिसरण का मतलब है कि इच्छानुसार से छोटे माप के समुच्चय हैं जिनके लिए फलन का क्रम उनके पूरक पर समान रूप से परिवर्तित होता है।

ध्यान दें कि अनुक्रम के लगभग एक समान अभिसरण का अर्थ यह नहीं है कि अनुक्रम लगभग हर जगह समान रूप से अभिसरण करता है जैसा कि नाम से अनुमान लगाया जा सकता है। चूँकि, ईगोरोव का प्रमेय यह आश्वासन देता है कि एक सीमित माप समष्टि पर, फलन का एक क्रम जो बिंदुवार अभिसरण को परिवर्तित करता है या लगभग हर जगह अभिसरण भी एक ही समुच्चय पर लगभग समान रूप से अभिसरण करता है।

लगभग एकसमान अभिसरण का तात्पर्य लगभग हर जगह माप में अभिसरण और अभिसरण से है।

यह भी देखें

टिप्पणियाँ

  1. Sørensen, Henrik Kragh (2005). "Exceptions and counterexamples: Understanding Abel's comment on Cauchy's Theorem". Historia Mathematica. 32 (4): 453–480. doi:10.1016/j.hm.2004.11.010.
  2. Jahnke, Hans Niels (2003). "6.7 The Foundation of Analysis in the 19th Century: Weierstrass". A history of analysis. AMS Bookstore. p. 184. ISBN 978-0-8218-2623-2.
  3. Lakatos, Imre (1976). प्रमाण एवं खण्डन. Cambridge University Press. pp. 141. ISBN 978-0-521-21078-2.
  4. Rudin, Walter (1976). Principles of Mathematical Analysis 3rd edition, Theorem 7.17. McGraw-Hill: New York.


संदर्भ


बाहरी संबंध