स्वयंसिद्ध क्वांटम क्षेत्र सिद्धांत
अभिगृहीत क्वांटम क्षेत्र सिद्धांत गणितीय अनुशासन है जिसका उद्देश्य कठोर अभिगृहीतों के संदर्भ में क्वांटम क्षेत्र सिद्धांतों का वर्णन करना है। यह कार्यात्मक विश्लेषण और ऑपरेटर बीजगणित के साथ दृढ़ता से जुड़ा हुआ है, किंतु आधुनिक वर्षों में अधिक ज्यामितीय और कार्यात्मक परिप्रेक्ष्य से भी इसका अध्ययन किया गया है।
इस अनुशासन में दो मुख्य चुनौतियाँ हैं। सबसे पहले, किसी को सिद्धांतों का सेट प्रस्तावित करना चाहिए जो किसी भी गणितीय वस्तु के सामान्य गुणों का वर्णन करता है जिसे क्वांटम क्षेत्र सिद्धांत कहा जाता है। फिर, कोई इन अभिगृहीतों को संतुष्ट करने वाले उदाहरणों की कठोर गणितीय रचनाएँ देता है।
विश्लेषणात्मक दृष्टिकोण
वेटमैन अभिगृहीत
1950 के दशक के प्रारंभ में आर्थर वाइटमैन द्वारा क्वांटम क्षेत्र सिद्धांतों के पहले सेट को वाइटमैन एक्सिओम्स के रूप में जाना जाता है। हिल्बर्ट स्पेस पर कार्यरत ऑपरेटर-मूल्यवान वितरण के रूप में क्वांटम फ़ील्ड्स के संबंध में इन सिद्धांतों ने फ्लैट मिन्कोव्स्की स्पेसटाइम पर क्यूएफटी का वर्णन करने का प्रयास किया है। प्रयोग में, अधिकांशतः वाइटमैन पुनर्निर्माण प्रमेय का उपयोग किया जाता है, जो आश्वासन देता है कि ऑपरेटर-मूल्यवान वितरण और हिल्बर्ट स्पेस को सहसंबंध कार्यों (क्वांटम फील्ड थ्योरी) के संग्रह से पुनर्प्राप्त किया जा सकता है।
ओस्टरवाल्डर-श्रेडर अभिगृहीत
वाइटमैन सिद्धांतों को संतुष्ट करने वाले क्यूएफटी के सहसंबंध कार्य अधिकांशतः विश्लेषणात्मक निरंतरता रूप से लोरेंत्ज़ हस्ताक्षर से यूक्लिडियन हस्ताक्षर तक प्रचलित रखा जा सकता है। (गंभीरता से, कोई समय चर को बदल देता है काल्पनिक समय के साथ के कारक मीट्रिक टेन्सर के समय-समय घटकों के चिह्न को बदलें।) परिणामी कार्यों को श्विंगर कार्य कहा जाता है। श्विंगर कार्यों के लिए नियमो की सूची है - विश्लेषणात्मक निरंतरता, क्रमचय समरूपता, यूक्लिडियन सहप्रसरण, और प्रतिबिंब सकारात्मकता - जो यूक्लिडियन अंतरिक्ष-समय की विभिन्न शक्तियों पर परिभाषित कार्यों का सेट वाइटमैन सिद्धांतों को संतुष्ट करने वाले क्यूएफटी के सहसंबंध कार्यों के सेट की विश्लेषणात्मक निरंतरता के क्रम में संतुष्ट होना चाहिए।
हाग-कस्तलर अभिगृहीत
हैग-कास्टलर अभिगृहीत बीजगणित के जालों के संदर्भ में अभिगृहीत क्यूएफटी को अभिगृहीत करते हैं।
यूक्लिडियन सीएफटी अभिगृहीत
ये अभिगृहीत (उदाहरण देखें।[1]) का उपयोग अनुरूप बूटस्ट्रैप दृष्टिकोण में अनुरूप क्षेत्र सिद्धांत के लिए किया जाता है . उन्हें यूक्लिडियन बूटस्ट्रैप अभिगृहीत भी कहा जाता है।
- ↑ Kravchuk, Petr; Qiao, Jiaxin; Rychkov, Slava (2021-04-05). "Distributions in CFT II. Minkowski Space". arXiv:2104.02090v1.