हाइपरगोलिक प्रणोदक
हाइपरगोलिक प्रणोदक रॉकेट प्रणोदक संयोजन है जिसका उपयोग रॉकेट इंजन में किया जाता है, जिसके घटक एक दूसरे के संपर्क में आने पर स्वतःस्फूर्त दहन करते हैं।
दो प्रणोदक घटकों में सामान्यतः ईंधन और ऑक्सीकारक होता है। हाइपरगोलिक प्रणोदकों का मुख्य लाभ यह है कि उन्हें कमरे के तापमान पर तरल पदार्थ के रूप में संग्रहीत किया जा सकता है और जो इंजन उनके द्वारा संचालित होते हैं वे आसानी से और बार-बार प्रज्वलित होते हैं। सामान्य हाइपरगोलिक प्रणोदकों को उनकी अत्यधिक विषाक्तता और संक्षारकता के कारण नियंत्रित करना कठिन होता है।
समकालीन उपयोग में, हाइपरगोल और हाइपरगॉलिक प्रणोदक शब्द का अर्थ सामान्यतः सबसे सामान्य प्रणोदक संयोजन होता है डाइनाइट्रोजन टेट्रोक्साइड प्लस हाइड्राज़ीन।[1]
इतिहास
1935 में, हेलमथ वाल्टर ने पाया कि 80-83% के उच्च-परीक्षण पेरोक्साइड के साथ हाइड्राज़ीन हाइड्रेट हाइपरगोलिक था। वह संभवतः इस घटना की खोज करने वाले पहले व्यक्ति थे, और उन्होंने ईंधन विकसित करने का काम प्रारंभ किया। प्रो. ओटो लुत्ज़ ने सी पदार्थ के विकास में हेलमुथ वाल्टर सीमित भागीदारी की सहायता की जिसमें 30% हाइड्राज़ीन हाइड्रेट, 57% मेथनॉल और 13% पानी था, और उच्च शक्ति वाले हाइड्रोजन पेरोक्साइड के साथ अनायास प्रज्वलित हो गया।[2]: 13 बीएमडब्लू (बीएमडब्ल्यू) ने ऐसे इंजन विकसित किए हैं जो एमाइन, जाइलीडाइन और एनिलिन के विभिन्न संयोजनों के साथ नाइट्रिक एसिड के हाइपरगोलिक मिश्रण को जलाते हैं।[3]
1940 में गलसिट और नेवी अन्नापोलिस के शोधकर्ताओं द्वारा अमेरिका में दूसरी बार हाइपरगोलिक प्रणोदकों की स्वतंत्र रूप से खोज की गई थी। उन्होंने एनिलिन और लाल फ्यूमिंग नाइट्रिक एसिड (आरएफएनए) द्वारा संचालित इंजन विकसित किए।[4] रॉबर्ट गोडार्ड, प्रतिक्रिया मोटर्स, और कर्टिस-राइट ने 1940 के दशक की प्रारंभ में छोटी मिसाइलों और जेट असिस्टेड टेक-ऑफ (जाटो) के लिए एनिलिन नाइट्रिक एसिड इंजन पर काम किया। इस परियोजना के परिणामस्वरूप कई मार्टिन पीबीएम मेरिनर और सफल असिस्टेड टेक ऑफ हुए। पीबीवाई बमवर्षक, लेकिन परियोजना को ईंधन और ऑक्सीडाइज़र दोनों के विषाक्त गुणों के साथ-साथ एनिलिन के उच्च ठंडक बिंदु के कारण नापसंद किया गया था। दूसरी समस्या को अंतत: एनिलिन में थोड़ी मात्रा में फुरफ्यूरिल अल्कोहल मिला कर हल किया गया।[2]: 22–23
जर्मनी में 1930 के दशक के मध्य से द्वितीय विश्व युद्ध तक, रॉकेट प्रणोदकों को मोटे तौर पर मोनरगोल, हाइपरगोल, गैर-हाइपरगोल और हाइब्रिड प्रणोदक रॉकेट के रूप में वर्गीकृत किया गया था। अंत एर्गोल ग्रीक भाषा के एर्गन या काम का संयोजन है, और लैटिन ओलियम या तेल, बाद में अल्कोहल (बहुविकल्पी) से रासायनिक प्रत्यय -ओल से प्रभावित है।[Note 1] मोनोर्गोल्स मोनोप्रोपेलेंट थे, जबकि गैर-हाइपरगोल्स बाइप्रोपेलेंट रॉकेट थे जिन्हें बाहरी प्रज्वलन की आवश्यकता थी, और लिथेरगोल्स ठोस तरल संकर थे। हाइपरगोलिक प्रणोदक (या कम से कम हाइपरगोलिक इग्निशन) इलेक्ट्रिक या पायरोटेक्निक इग्निशन की तुलना में बहुत कम कठिन प्रारंभ के लिए प्रवण थे। हाइपरगोल शब्दावली जर्मनी के ब्रंसविक तकनीकी विश्वविद्यालय में डॉ. वोल्फगैंग नोगरथ द्वारा गढ़ी गई थी।[5]
अब तक तैनात किया गया एकमात्र रॉकेट-चालित फाइटर मैसर्सचमिट मी 163 बी कोमेट था। कोमेट में एचडब्ल्यूके 109-509,रॉकेट मोटर थी जो ईंधन के रूप में मेथनॉल हाइड्राज़ीन और ऑक्सीडाइज़र के रूप में उच्च परीक्षण पेरोक्साइड टी कपड़ा का उपभोग करती थी। हाइपरगोलिक रॉकेट मोटर में बहुत अस्थिर होने और किसी भी डिग्री की असावधानी के साथ विस्फोट करने में सक्षम होने की मूल्य पर तेजी से चढ़ाई और त्वरित-हिटिंग रणनीति का लाभ था। हिंकेल पी1077 जैसे अन्य प्रस्तावित लड़ाकू रॉकेट लड़ाकू विमान और डीएफएस 228 जैसे टोही विमान रॉकेट मोटर्स की वाल्टर 509 श्रृंखला का उपयोग करने के लिए थे, लेकिन मी163 के अतिरिक्त, केवल बचेम बा 349 नत्तेर वर्टिकल लॉन्च एक्सपेंडेबल फाइटर ही कभी उड़ान भर पाया था- सैन्य-उद्देश्य वाले विमानों के लिए इसकी प्राथमिक निरंतर थ्रस्ट प्रणाली के रूप में वाल्टर रॉकेट प्रणोदन प्रणाली के साथ परीक्षण किया गया।
सोवियत स्पुतनिक (रॉकेट) आर-7 जैसी प्रारंभिक बलिस्टिक मिसाइल जिन्होंने स्पुतनिक 1 और यू.एस. एटलस (रॉकेट परिवार) और एचजीएम-25ए टाइटन I टाइटन-1 को लॉन्च किया, मिट्टी के तेल और तरल ऑक्सीजन का उपयोग किया। चूंकि उन्हें अंतरिक्ष प्रक्षेपकों में पसंद किया जाता है, मिसाइल में तरल ऑक्सीजन जैसे क्रायोजेनिक्स को संग्रहीत करने की कठिनाइयों को समय में महीनों या वर्षों के लिए प्रक्षेपण के लिए तैयार रखना पड़ता था, जिसके कारण यू.एस. एलजीएम-25शीटाइटन और अधिकांश सोवियत आईसीबीएम में जैसे आर-36 (मिसाइल) आर-36 लेकिन टाइटन-द्वितीय साइलो में लीक और विस्फोट सहित इस तरह के संक्षारक और जहरीले पदार्थों की कठिनाइयों ने ठोस-ईंधन रॉकेट के साथ सार्वभौमिक प्रतिस्थापन का नेतृत्व किया। ठोस-ईंधन बूस्टर, पहले पश्चिमी एसएलबीएम में। पनडुब्बी-प्रक्षेपित बैलिस्टिक मिसाइल और फिर भूमि आधारित यू.एस. और सोवियत आईसीबीएमव् में।[2]: 47
अपोलो चंद्र मॉड्यूल, अपोलो कार्यक्रम में उपयोग किया गया था, जिसमें डिसेंट और एसेंट रॉकेट इंजन दोनों में हाइपरगोलिक ईंधन का उपयोग किया गया था। अपोलो कमांड और सर्विस मॉड्यूल ने सेवा प्रणोदन प्रणाली के लिए समान संयोजन का उपयोग किया। उन अंतरिक्ष यान और अंतरिक्ष शटल (अन्य के बीच) ने अपनी प्रतिक्रिया नियंत्रण प्रणाली के लिए हाइपरगोलिक प्रणोदक का उपयोग किया।
पश्चिमी अंतरिक्ष प्रक्षेपण एजेंसियों का मानना बड़े हाइपरगोलिक रॉकेट इंजनों से दूर और उच्च प्रदर्शन वाले हाइड्रोजन ऑक्सीजन इंजनों की ओर है। एरियान (रॉकेट परिवार) 1 से 4, उनके हाइपरगोलिक मल्टीस्टेज रॉकेट (और एरियान 3 और 4 पर वैकल्पिक हाइपरगोलिक बूस्टर) के साथ सेवानिवृत्त हो गए हैं और एरियान 5 के साथ बदल दिए गए हैं, जो तरल हाइड्रोजन और तरल ऑक्सीजन द्वारा ईंधन वाले पहले चरण का उपयोग करता है। टाइटन द्वितीय, तृतीय और चतुर्थ, उनके हाइपरगोलिक पहले और दूसरे चरण के साथ भी सेवानिवृत्त हो गए हैं। हाइपरगोलिक प्रणोदक अभी भी ऊपरी चरणों में व्यापक रूप से उपयोग किए जाते हैं जब कई बर्न-कोस्ट अवधि की आवश्यकता होती है, और एस्केप प्रणाली लॉन्च करने में।
विशेषताएं
लाभ
हाइपरगोलिकली-ईंधन वाले रॉकेट इंजन सामान्यतः सरल और विश्वसनीय होते हैं क्योंकि उन्हें इग्निशन प्रणाली की आवश्यकता नहीं होती है। चूंकि कुछ लॉन्च वाहनों में बड़े हाइपरगोलिक इंजन टर्बोपंप का उपयोग करते हैं, अधिकांश हाइपरगोलिक इंजन प्रेशर-फेड होते हैं। वाल्व जांचें और सुरक्षा वाल्वों की श्रृंखला के माध्यम से गैस, सामान्यतः हीलियम, दबाव में प्रणोदक टैंकों में दिया जाता है। प्रणोदक बदले में नियंत्रण वाल्व के माध्यम से दहन कक्ष में प्रवाहित होते हैं; वहां, उनका तत्काल संपर्क प्रज्वलन अप्राप्य प्रणोदकों के मिश्रण को जमा होने से रोकता है और फिर संभावित विनाशकारी कठिन प्रारंभ में प्रज्वलित करता है।
चूंकि हाइपरगोलिक रॉकेटों को इग्निशन प्रणाली की आवश्यकता नहीं होती है, वे प्रणोदक वाल्वों को खोलकर और बंद करके कितनी भी बार आग लगा सकते हैं जब तक कि प्रणोदक समाप्त नहीं हो जाते हैं और इसलिए विशिष्ट रूप से अंतरिक्ष यान के लिए उपयुक्त होते हैं और अच्छी तरह से अनुकूल होते हैं, चूंकि विशिष्ट रूप से ऐसा नहीं है, ऊपरी चरणों के रूप में डेल्टा II और एरियन 5 जैसे ऐसे अंतरिक्ष प्रक्षेपकों की संख्या, जिन्हें एक से अधिक बार बर्न करना होगा। पुन: प्रारंभ करने योग्य गैर-हाइपरगोलिक रॉकेट इंजन फिर भी उपस्थित हैं, विशेष रूप से क्रायोजेनिक (ऑक्सीजन हाइड्रोजन) आरएल-10 सेंटोआर (रॉकेट चरण) पर और जे-2 (रॉकेट इंजन) जे-2 शनिवि पर आरपी-1 फाल्कन 9 पर लोक्स मर्लिन (रॉकेट इंजन परिवार) को भी फिर से प्रारंभ किया जा सकता है।[6]
सबसे सामान्य हाइपरगोलिक ईंधन, हाइड्राज़ीन, मोनोमेथिलहाइड्राज़ीन और असममित डाइमिथाइलहाइड्राज़ीन, और ऑक्सीडाइज़र, नाइट्रोजन टेट्रोक्साइड, सभी सामान्य तापमान और दबावों पर तरल होते हैं। इसलिए उन्हें कभी-कभी संग्रहणीय तरल प्रणोदक कहा जाता है। वे कई वर्षों तक चलने वाले अंतरिक्ष यान मिशनों में उपयोग के लिए उपयुक्त हैं। तरल हाइड्रोजन और तरल ऑक्सीजन के क्रायोजेनिक्स ने अब तक अपने व्यावहारिक उपयोग को अंतरिक्ष प्रक्षेपण वाहनों तक सीमित कर दिया है जहां उन्हें केवल संक्षिप्त रूप से संग्रहीत करने की आवश्यकता होती है।[7] इंटरप्लेनेटरी स्पेस में क्रायोजेनिक प्रणोदकों के उपयोग के साथ सबसे बड़ा उद्देश्य बॉयल-ऑफ है, जो स्पेसएक्स स्स्टरशिप स्पेसक्राफ्ट जैसे बड़े शिल्प के लिए बड़े पैमाने पर अंतरिक्ष यान के स्क्वायर-क्यूब नियम पर निर्भर है, यह समस्या से कम नहीं है।
क्रायोजेनिक प्रणोदकों की तुलना में हाइपरगोलिक प्रणोदकों का अन्य लाभ उनका उच्च घनत्व है। तरल ऑक्सीजन का घनत्व 1.14 ग्राम/एमएल है, जबकि दूसरी ओर, नाइट्रिक एसिड या नाइट्रोजन टेट्रोक्साइड जैसे हाइपरगोलिक ऑक्सीडाइज़र का घनत्व क्रमशः 1.55 ग्राम/एमएल और 1.45 ग्राम/एमएल है। लिक्विड हाइड्रोजन ईंधन अत्यंत उच्च प्रदर्शन प्रदान करता है, फिर भी इसका घनत्व केवल सबसे बड़े रॉकेट चरणों में इसके उपयोग की गारंटी देता है, जबकि हाइड्राज़ीन और असममित डाइमिथाइलहाइड्राज़िन के मिश्रण का घनत्व कम से कम दस गुना अधिक होता है।[8] अंतरिक्ष जांच में इसका बहुत महत्व है, क्योंकि उच्च प्रणोदक घनत्व उनके प्रणोदक टैंक के आकार को काफी कम करने की अनुमति देता है, जो बदले में जांच को छोटे पेलोड फेयरिंग के अन्दर फिट करने की अनुमति देता है।
हानि
उनके द्रव्यमान के सापेक्ष, पारंपरिक हाइपरगोलिक प्रणोदकों में तरल हाइड्रोजन तरल ऑक्सीजन या मीथेन ईंधन तरल ऑक्सीजन जैसे क्रायोजेनिक प्रणोदक संयोजनों की तुलना में दहन की कम ऊष्मा होती है।[9] लॉन्च वाहन जो हाइपरगोलिक प्रणोदक का उपयोग करता है, इसलिए इन क्रायोजेनिक ईंधन का उपयोग करने वाले की तुलना में अधिक मात्रा में ईंधन ले जाना चाहिए।
पारंपरिक हाइपरगोलिक्स की संक्षारकता, विषाक्तता और कासीनजनकता के लिए महंगी सुरक्षा सावधानियों की आवश्यकता होती है।[10][11] असाधारण रूप से संकटमय यूडीएमएच नाइट्रिक एसिड प्रणोदक मिश्रण के साथ पर्याप्त सुरक्षा प्रक्रियाओं का पालन करने में विफलता जिसे "डेविल्स वेनम" कहा जाता है| उदाहरण के लिए, डेविल्स वेनम, इतिहास में सबसे घातक रॉकेटरी दुर्घटना, नेडेलिन विनाश का परिणाम है।[12]
हाइपरगोलिक संयोजन
सामान्य
सामान्य हाइपरगोलिक प्रणोदक संयोजनों में सम्मिलित हैं:[13]
- एरोज़ीन 50 + नाइट्रोजन टेट्रोक्साइड (NTO) - टाइटन II सहित ऐतिहासिक अमेरिकी रॉकेटों में व्यापक रूप से उपयोग किया जाता है; अपोलो चंद्र मॉड्यूल में सभी इंजन। एरोज़ीन 50% असममित डाइमिथाइलहाइड्राज़ीन और 50% स्ट्रेट हाइड्राज़ीन (एन) का मिश्रण है। (एन2एच4).[2]: 45
- मोनोमेथिलहाइड्राज़िन (एमएमएच) + नाइट्रोजन टेट्रोक्साइड (एनटीओ) - छोटे इंजन और रिएक्शन कंट्रोल थ्रस्टर: अपोलो कमांड और सर्विस मॉड्यूल रिएक्शन कंट्रोल प्रणाली,[14] स्पेस शटल ऑर्बिटल मैन्यूवरिंग प्रणाली और रिएक्शन कंट्रोल प्रणाली;[15] एरियन 5 ईपीएस;[16] स्पेसएक्स ड्रैगन अंतरिक्ष यान द्वारा उपयोग किए जाने वाले ड्रेको (रॉकेट इंजन) थ्रस्टर्स है।[17]
- ट्रायथिलबोरेन ट्राईथाइल एल्युमिनियम (टीईए-टीईबी) + तरल ऑक्सीजन - कुछ रॉकेट इंजनों की इग्निशन प्रक्रिया के समय उपयोग किया जाता है जो मर्लिन (रॉकेट इंजन परिवार) और रॉकेटडाइन एफ -1 द्वारा उपयोग किए जाने वाले तरल ऑक्सीजन का उपयोग करते हैं।
- असममित डाइमिथाइलहाइड्राज़ीन (यूडीएमएच) + नाइट्रोजन टेट्रोक्साइड (एनटीओ) - अधिकतर आरोस्कॉस्मॉस द्वारा उपयोग किया जाता है, जैसे कि प्रोटॉन (रॉकेट परिवार) में, और उनके द्वारा एरियन 1 प्रथम और द्वितीय चरण (यूएच 25 के साथ प्रतिस्थापित) के लिए फ्रांस को आपूर्ति की जाती है; विकास (रॉकेट इंजन) का उपयोग कर भारतीय अंतरिक्ष अनुसंधान संगठन के रॉकेट थे।[18]
कम सामान्य या अप्रचलित
कम सामान्य या अप्रचलित हाइपरगोलिक प्रणोदकों में सम्मिलित हैं:
- एनिलिन + नाइट्रिक एसिड (अस्थिर, विस्फोटक), डब्ल्यूएसी कॉर्पोरल में उपयोग किया जाता है[19] एनिलिन + हाइड्रोजन पेरोक्साइड (धूल के प्रति संवेदनशील, विस्फोटक)
- फरफ्यूरल अल्कोहल + रेड फ्यूमिंग नाइट्रिक एसिड (या रेड फ्यूमिंग नाइट्रिक एसिड) - कोपेनहेगन सबऑर्बिटल्स स्पेक्ट्रा इंजन[20][2]: 27
- फरफ्यूरल अल्कोहल + नाइट्रिक एसिड अनहाइड्रस नाइट्रिक एसिड (या नाइट्रिक एसिड एनहाइड्रस नाइट्रिक एसिड)[2]: 27
- हाइड्रेंजाइन + नाइट्रिक एसिड (विषाक्त लेकिन स्थिर), विश्वसनीय प्रज्वलन की कमी के कारण छोड़ दिया गया। इस संयोजन वाला कोई भी इंजन बड़े पैमाने पर उत्पादन में नहीं गया।[21]
- मिट्टी का तेल + (उच्च परीक्षण पेरोक्साइड + उत्प्रेरक) - गामा (रॉकेट इंजन), पेरोक्साइड के साथ पहले उत्प्रेरक द्वारा विघटित। शीत हाइड्रोजन पेरोक्साइड और केरोसिन हाइपरगोलिक नहीं हैं, लेकिन केंद्रित हाइड्रोजन पेरोक्साइड (जिसे उच्च-परीक्षण पेरोक्साइड या एचटीपी कहा जाता है) उत्प्रेरक पर चलने से अधिक ऑक्सीजन और भाप पैदा करता है 700 °C (1,300 °F) जो मिट्टी के तेल के साथ हाइपरगोलिक है।[22]
- टोंका (ईंधन) (टीजी-02, लगभग 50% ट्राइथाइलमाइन और 50%क्सीलिडीने सामान्यतः नाइट्रिक एसिड या इसके निर्जल नाइट्रिक ऑक्साइड डेरिवेटिव (सोवियत संघ में एके-2एक्स समूह) के साथ ऑक्सीकृत होता है। रेड फ्यूमिंग नाइट्रिक एसिड | एके-20F (80% HNO3 और 20% n2O4 प्रतिक्रिया अवरोधक के साथ)।[2]: 14–15, 116
- टी-स्टॉफ़ (स्थिर> 80% पेरोक्साइड) + सी-स्टॉफ़ (मेथनॉल, हाइड्राज़ीन, पानी, उत्प्रेरक) - मेसर्सचमिट मी163 द्वितीय विश्व युद्ध के जर्मन रॉकेट लड़ाकू विमान, इसके वाल्टर एचडब्ल्यूके 109-509 | वाल्टर 109-509ए इंजन के लिए।[2]: 13
- तारपीन + रेड फ्यूमिंग नाइट्रिक एसिड (फ्रेंच डायमेंट ए फर्स्ट-स्टेज में उड़ाया गया)[23]
- असममित डाइमिथाइलहाइड्राज़ीन + रेड फ्यूमिंग नाइट्रिक एसिड - एमजीएम52 लांस मिसाइल प्रणाली,[24] आरएम-81 एगेना और एबल(रॉकेट स्टेज) ऊपरी चरण, इसेव-निर्मित युद्धाभ्यास इंजन है।[25]
प्रस्तावित, अप्रभावित रहना
- क्लोरीन ट्राइफ्लोराइड (ClF3) + सभी ज्ञात ईंधन - संक्षेप में सभी मानक ईंधनों के साथ अपनी उच्च अतिपरजीविता को देखते हुए ऑक्सीडाइज़र के रूप में माना जाता है, लेकिन अंततः पदार्थ को सुरक्षित रूप से देख रेख करने में कठिनाई के कारण 70 के दशक में छोड़ दिया गया। क्लोरीन ट्राइफ्लोराइड को जलने वाले स्थान पर नाइट्रोजन या नोबल गैस भरकर ही बुझाया जा सकता है। पदार्थ कंक्रीट और बजरी को जलाने के लिए जाना जाता है।[2]: 74 क्लोरीन पेंटाफ्लोराइड (ClF5) समान खतरे प्रस्तुत करता है, लेकिन सीआईएफ की तुलना में उच्च विशिष्ट आवेग प्रदान करता है3.
- पेंटबोराने(9) (9) और डाइबोरेन + नाइट्रोजन टेट्रोक्साइड - पेंटाबोरेन (9), माना हुआ जिप ईंधन, का अध्ययन सोवियत रॉकेट वैज्ञानिक वैलेन्टिन ग्लूशकोवी द्वारा किया गया था। आरडी-270 एम रॉकेट इंजन में नाइट्रोजन टेट्रोक्साइड के संयोजन में उपयोग के लिए पी. ग्लुशको प्रणोदक के इस संयोजन से प्रदर्शन में उल्लेखनीय वृद्धि हुई होगी, लेकिन अंततः विषाक्तता संबंधी चिंताओं के कारण इसे छोड़ दिया गया था।[26]
- टेट्रामिथाइलएथिलीनडायमाइन + रेड फ्यूमिंग नाइट्रिक एसिड - हाइड्राज़ीन और इसके डेरिवेटिव के लिए स्पष्ट रूप से कम जहरीला विकल्प होता है।
संबंधित तकनीक
पायरोफोरिक पदार्थ, जो हवा की उपस्थिति में अनायास प्रज्वलित होते हैं, कभी-कभी रॉकेट ईंधन के रूप में या अन्य ईंधन को प्रज्वलित करने के लिए भी उपयोग किए जाते हैं। उदाहरण के लिए,एसआर-71 ब्लैकबर्ड और शनि पर एफ-1 (रॉकेट इंजन) एफ-1 इंजन में इंजन प्रारंभ करने के लिए ट्राइथाइलबोरेन और ट्राइथाइल एल्युमिनियम (जो दोनों अलग-अलग और इससे भी ज्यादा एक साथ पाइरोफोरिक हैं) का मिश्रण उपयोग किया गया था। वी रॉकेट है और इसका उपयोग स्पेसएक्स फाल्कन 9 रॉकेट पर मर्लिन (रॉकेट इंजन परिवार) इंजन में किया जाता है।
टिप्पणियाँ
- ↑ "-ergol", Oxford English Dictionary
संदर्भ
- Citations
- ↑ Melof, Brian M.; Grubelich, Mark C. (2000-11-15). "Investigation of Hypergolic Fuels with Hydrogen Peroxide". 3rd International Hydrogen Peroxide Propulsion Conference (in English). OSTI 767866.
- ↑ 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 Clark, John D. (1972). Ignition! An Informal History of Liquid Rocket Propellants (PDF). Rutgers University Press. ISBN 978-0-8135-0725-5. Archived (PDF) from the original on 10 July 2022.
- ↑ Lutz, O. (1957). "BMW Developments". In Benecke, T.H.; Quick, A.W.; Schulz, W. (eds.). History of German Guided Missiles Development (Guided Missiles Seminar. 1956. Munich). Advisory Group for Aerospace Research and Development-AG-20. Appelhans. p. 420.
- ↑ Sutton, G.P. (2006). History of Liquid Propellant Rocket Engines. Library of flight. American Institute of Aeronautics and Astronautics. ISBN 978-1-56347-649-5.
- ↑ Botho, Stüwe (1998), Peenemünde West: Die Erprobungsstelle der Luftwaffe für geheime Fernlenkwaffen und deren Entwicklungsgeschichte [Peenemünde West: The Luftwaffe's test center for secret guided missiles and the history of their development] (in Deutsch), Peene Münde West: Weltbildverlag, p. 220, ISBN 9783828902947
- ↑ "स्पेसएक्स". स्पेसएक्स (in English). Retrieved 2021-12-29.
- ↑ "Fuel Propellants - Storable, and Hypergolic vs. Ignitable by Mike Schooley". Archived from the original on 24 July 2021.
- ↑ "PROPERTIES OF ROCKET PROPELLANTS". braeunig.us. Archived from the original on 26 May 2022.
- ↑ Linstrom, Peter (2021). NIST Chemistry WebBook. NIST Standard Reference Database Number 69. NIST Office of Data and Informatics. doi:10.18434/T4D303.
- ↑ A Summary of NASA and USAF Hypergolic Propellant Related Spills and Fires at the Internet Archive
- ↑ "Toxic Propellant Hazards" on YouTube
- ↑ The Nedelin Catastrophe, Part 1, 28 October 2014, archived from the original on 15 November 2014
- ↑ "ROCKET PROPELLANTS". braeunig.us.
- ↑ Apollo 11 Mission Report - Performance of the Command and Service Module Reaction Control System (PDF). NASA - Lyndon B. Johnson Space Center. December 1971. pp. 4, 8. Archived from the original (PDF) on 12 July 2022.
- ↑ T.A., Heppenheimer (2002). Development of the Shuttle, 1972–1981 - Volume 2.. Smithsonian Institution Press. ISBN 1-58834-009-0.
- ↑ "Space Launch Report: Ariane 5 Data Sheet".
- ↑ "SpaceX Updates". SpaceX. 2007-12-10. Archived from the original on January 4, 2011. Retrieved 2010-02-03.
- ↑ "ISRO tests Vikas engine". The Hindu. 2014-03-23. Archived from the original on 2014-03-23. Retrieved 2019-07-29.
- ↑ "WAC Corporal Sounding Rocket". Archived from the original on 7 January 2022.
- ↑ "Project SPECTRA - Experimental evaluation of a Liquid storable propellant" (PDF). Archived from the original (PDF) on 4 November 2013.
- ↑ "Nitric acid/Hydrazine". Astronautix.com. Retrieved January 13, 2023.
- ↑ "High Test Peroxide" (pdf). Retrieved July 11, 2014.
- ↑ "European space-rocket liquid-propellant engines". Archived from the original on 23 July 2021.
- ↑ "P8E-9". Archived from the original on 12 May 2022.
- ↑ "Nitric Acid/UDMH". Archived from the original on 1 July 2022.
- ↑ Astronautix: RD-270 Archived 2009-04-30 at the Wayback Machine.
- Bibliogआरaphy
- Clark, John (1972). Ignition! An Informal History of Liquid Rocket Propellants (PDF). New Brunswick, New Jersey: Rutgers University Press. ISBN 0-8135-0725-1. Archived (PDF) from the original on 10 July 2022.
- Modern Engineering for Design of Liquid-Propellant Rocket Engines, Huzel & Huang, pub. AIAA, 1992. ISBN 1-56347-013-6.
- History of Liquid Propellant Rocket Engines, G. Sutton, pub. AIAA 2005. ISBN 1-56347-649-5.