विशेषज्ञता (पूर्व) आदेश: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(19 intermediate revisions by 3 users not shown)
Line 1: Line 1:
[[टोपोलॉजी]] के रूप में जानी जाने वाली गणित की शाखा में, विशेषज्ञता (या विहित) [[पूर्व आदेश]] के [[टोपोलॉजिकल स्पेस]] बिंदुओं के सेट पर  प्राकृतिक प्रीऑर्डर है। अधिकांश स्थानों के लिए जिन्हें व्यवहार में माना जाता है, अर्थात् उन सभी के लिए जो T0 स्थान | T को संतुष्ट करते हैं<sub>0</sub>[[पृथक्करण स्वयंसिद्ध]], यह पूर्व-आदेश को [[आंशिक आदेश]] भी है (विशेषज्ञता आदेश कहा जाता है)। दूसरी ओर, T1 स्पेस | T के लिए<sub>1</sub> रिक्त स्थान क्रम तुच्छ हो जाता है और कम रुचि वाला होता है।
[[टोपोलॉजी]] के रूप में जानी जाने वाली गणित की शाखा में, विशेषज्ञता (या विहित) [[पूर्व आदेश]] के [[टोपोलॉजिकल स्पेस|टोपोलॉजिकल]] अंतराल बिंदुओं के समुच्चय पर प्राकृतिक पूर्व आदेश होता है। अधिकांश स्थानों के लिए जिन्हें व्यवहार में माना जाता है, अर्थात् उन सभी के लिए जो T<sub>0</sub> [[पृथक्करण स्वयंसिद्ध]] संतुष्ट करते हैं, यह पूर्व-आदेश को [[आंशिक आदेश]] भी होता  है (विशेषज्ञता आदेश कहा जाता है)। दूसरी ओर, T<sub>1</sub> लिए रिक्त स्थान क्रम तुच्छ हो जाता है और कम रुचि वाला होता है।


विशेषज्ञता क्रम को अक्सर [[कंप्यूटर विज्ञान]] के अनुप्रयोगों में माना जाता है, जहां टी<sub>0</sub> रिक्त स्थान [[सांकेतिक शब्दार्थ]] में होते हैं। आंशिक रूप से आदेशित सेटों पर उपयुक्त टोपोलॉजी की पहचान करने के लिए विशेषज्ञता क्रम भी महत्वपूर्ण है, जैसा कि [[आदेश सिद्धांत]] में किया जाता है।
विशेषज्ञता क्रम को अधिकांशतः [[कंप्यूटर विज्ञान]] के अनुप्रयोगों में माना जाता है, जहां T<sub>0</sub> रिक्त स्थान [[सांकेतिक शब्दार्थ]] में होते हैं। आंशिक रूप से आदेशित समुच्चयो पर उपयुक्त टोपोलॉजी की पहचान करने के लिए विशेषज्ञता क्रम भी महत्वपूर्ण होता है, जैसा कि [[आदेश सिद्धांत]] में किया जाता है।


== परिभाषा और प्रेरणा ==
== परिभाषा और प्रेरणा ==


किसी भी टोपोलॉजिकल स्पेस एक्स पर विचार करें। एक्स पर 'स्पेशलाइजेशन प्रीऑर्डर' ≤ एक्स के दो बिंदुओं से संबंधित है जब दूसरे के [[क्लोजर (टोपोलॉजी)]] में स्थित है। हालाँकि, विभिन्न लेखक इस बात से असहमत हैं कि आदेश किस 'दिशा' में जाना चाहिए। क्या सहमति है{{Citation needed|reason=This seems counter-intuitive, looks like specialization and generization could be mixed up. Consider the topology on the set of words in a finite alphabet where basic open sets are sets of words with given prefixes (each word defines the basic open set consisting of all the words that have this word as a prefix).|date=June 2017}} क्या वह अगर है
किसी भी टोपोलॉजिकल अंतराल x पर विचार करें। x पर 'विशेषज्ञता पूर्व आदेश' ≤ x के दो बिंदुओं से संबंधित होता  है जब दूसरे के [[क्लोजर (टोपोलॉजी)|संवरण (टोपोलॉजी)]] में स्थित होता है। चूंकि, विभिन्न लेखक इस बात से असहमत हैं कि आदेश किस 'दिशा' में जाना चाहिए। क्या सहमति है यह है कि अगर


:x सीएल {वाई} में निहित है,
:x cl{''y''} में निहित है,


(जहाँ cl{y} [[सिंगलटन सेट]] {y} के बंद होने को दर्शाता है, यानी {y} वाले सभी [[बंद सेट]]ों का प्रतिच्छेदन (सेट सिद्धांत), हम कहते हैं कि x, y की 'विशेषज्ञता' है और वह y और x का 'सामान्यीकरण'; यह आमतौर पर y ⤳ x लिखा जाता है।
(जहाँ cl{y} [[सिंगलटन सेट|सिंगलटन]] समुच्चय {y} के बंद होने को दर्शाता है, यानी {y} वाले सभी [[बंद सेट|बंद]] समुच्चय का प्रतिच्छेदन (समुच्चय सिद्धांत), हम कहते हैं कि x, y की 'विशेषज्ञता' है और वह y और x का 'सामान्यीकरण'; यह सामान्यतः y ⤳ x लिखा जाता है।


दुर्भाग्य से, संपत्ति x y की विशेषज्ञता है जिसे वैकल्पिक रूप से विभिन्न लेखकों द्वारा x ≤ y और y ≤ x के रूप में लिखा गया है (देखें, क्रमशः, <ref>{{Citation| last = Hartshorne | first = Robin |authorlink = Robin Hartshorne| year = 1977 | title = Algebraic geometry | publisher = Springer-Verlag | publication-place = New York-Heidelberg | url = https://archive.org/details/springer_10.1007-978-1-4757-3849-0}}</ref> और <ref>{{Citation |last=Hochster |first=Melvin |authorlink = Melvin Hochster|year=1969 |title=Prime ideal structure in commutative rings |publisher=Trans. Amer. Math. Soc. |volume=142 |pages=43–60 |url=https://www.ams.org/journals/tran/1969-142-00/S0002-9947-1969-0251026-X/S0002-9947-1969-0251026-X.pdf }}</ref>).
दुर्भाग्य से, संपत्ति x y की विशेषज्ञता है जिसे वैकल्पिक रूप से विभिन्न लेखकों द्वारा x ≤ y और y ≤ x के रूप में लिखा गया है (देखें, क्रमशः, <ref>{{Citation| last = Hartshorne | first = Robin |authorlink = Robin Hartshorne| year = 1977 | title = Algebraic geometry | publisher = Springer-Verlag | publication-place = New York-Heidelberg | url = https://archive.org/details/springer_10.1007-978-1-4757-3849-0}}</ref> और <ref>{{Citation |last=Hochster |first=Melvin |authorlink = Melvin Hochster|year=1969 |title=Prime ideal structure in commutative rings |publisher=Trans. Amer. Math. Soc. |volume=142 |pages=43–60 |url=https://www.ams.org/journals/tran/1969-142-00/S0002-9947-1969-0251026-X/S0002-9947-1969-0251026-X.pdf }}</ref>).


दोनों परिभाषाओं का सहज औचित्य है: पूर्व के मामले में, हमारे पास है
दोनों परिभाषाओं का सहज औचित्य है: पूर्व के स्थितियों में, हमारे पास है


:x ≤ y [[अगर और केवल अगर]] cl{x} ⊆ cl{y}।
:x ≤ y [[अगर और केवल अगर|यदि हो तो और केवल यदि हो तो]] cl{x} ⊆ cl{y}।


हालाँकि, उस स्थिति में जहाँ हमारा [[प्रजातियाँ]] X [[क्रमविनिमेय अंगूठी]] R का [[प्रधान स्पेक्ट्रम]] स्पेक R है (जो कि [[बीजगणितीय ज्यामिति]] से संबंधित अनुप्रयोगों में प्रेरक स्थिति है), फिर ऑर्डर की हमारी दूसरी परिभाषा के तहत, हमारे पास है
चूंकि, उस स्थिति में जहाँ हमारा [[प्रजातियाँ]] X [[क्रमविनिमेय अंगूठी]] R का [[प्रधान स्पेक्ट्रम|प्रधान वर्णक्रम]] बोली R है (जो कि [[बीजगणितीय ज्यामिति]] से संबंधित अनुप्रयोगों में प्रेरक स्थिति है), फिर आदेश की हमारी दूसरी परिभाषा के तहत, हमारे पास है


:y ≤ x यदि और केवल यदि y ⊆ x वलय R की प्रधान आदर्शावली के रूप में।
:y ≤ x यदि और केवल यदि y ⊆ x वलय R की प्रधान आदर्शावली के रूप में।
Line 23: Line 23:
संगति के लिए, इस लेख के शेष भाग के लिए हम पहली परिभाषा लेंगे, कि x y की विशेषज्ञता है जिसे x ≤ y के रूप में लिखा जा सकता है। हम तब देखते हैं,
संगति के लिए, इस लेख के शेष भाग के लिए हम पहली परिभाषा लेंगे, कि x y की विशेषज्ञता है जिसे x ≤ y के रूप में लिखा जा सकता है। हम तब देखते हैं,


:x ≤ y अगर और केवल अगर x सभी बंद सेटों में निहित है जिसमें y शामिल है।
:x ≤ y यदि हो तो और केवल यदि हो तो x सभी बंद समुच्चयो में निहित है जिसमें y सम्मिलित है।
:x ≤ y यदि और केवल यदि y सभी खुले सेटों में निहित है जिसमें x शामिल है।
:x ≤ y यदि और केवल यदि y सभी खुले समुच्चयो में निहित है जिसमें x सम्मिलित है।


ये पुनर्कथन यह समझाने में मदद करते हैं कि कोई विशेषज्ञता की बात क्यों करता है: y x ​​की तुलना में अधिक सामान्य है, क्योंकि यह अधिक खुले सेटों में समाहित है। यह विशेष रूप से सहज ज्ञान युक्त है यदि कोई बंद सेट को गुणों के रूप में देखता है जो बिंदु x हो सकता है या नहीं हो सकता है। जितने अधिक बंद समुच्चय में बिंदु होता है, बिंदु के जितने अधिक गुण होते हैं, और उतना ही विशेष होता है। उपयोग जीनस और प्र[[जाति]]यों की शास्त्रीय तार्किक धारणाओं के अनुरूप है; और बीजगणितीय ज्यामिति में [[सामान्य बिंदु]]ओं के पारंपरिक उपयोग के साथ, जिसमें बंद बिंदु सबसे विशिष्ट होते हैं, जबकि स्थान का सामान्य बिंदु प्रत्येक गैर-रिक्त खुले उपसमुच्चय में निहित होता है। विचार के रूप में विशेषज्ञता [[मूल्यांकन सिद्धांत]] में भी लागू होती है।
ये पुनर्कथन यह समझाने में सहायता करते हैं कि कोई विशेषज्ञता की बात क्यों करता है: y x ​​की तुलना में अधिक सामान्य है, क्योंकि यह अधिक खुले समुच्चयो में समाहित है। यह विशेष रूप से सहज ज्ञान युक्त है यदि कोई बंद समुच्चय को गुणों के रूप में देखता है जो बिंदु x हो सकता है या नहीं हो सकता है। जितने अधिक बंद समुच्चय में बिंदु होता है, बिंदु के जितने अधिक गुण होते हैं, और उतना ही विशेष होता है। उपयोग जीनस और प्र[[जाति]]यों की मौलिक तार्किक धारणाओं के अनुरूप है; और बीजगणितीय ज्यामिति में [[सामान्य बिंदु]]ओं के पारंपरिक उपयोग के साथ, जिसमें बंद बिंदु सबसे विशिष्ट होते हैं, जबकि स्थान का सामान्य बिंदु प्रत्येक गैर-रिक्त खुले उपसमुच्चय में निहित होता है। विचार के रूप में विशेषज्ञता [[मूल्यांकन सिद्धांत]] में भी प्रयुक्त होती है।


ऊपरी तत्वों के अधिक विशिष्ट होने का अंतर्ज्ञान आमतौर पर [[डोमेन सिद्धांत]] में पाया जाता है, ऑर्डर थ्योरी की शाखा जिसमें कंप्यूटर विज्ञान में पर्याप्त अनुप्रयोग हैं।
ऊपरी तत्वों के अधिक विशिष्ट होने का अंतर्ज्ञान सामान्यतः [[डोमेन सिद्धांत|कार्यक्षेत्र सिद्धांत]] में पाया जाता है, आदेश थ्योरी की शाखा जिसमें कंप्यूटर विज्ञान में पर्याप्त अनुप्रयोग हैं।


== ऊपरी और निचले सेट ==
== ऊपरी और निचले समुच्चय ==


X को टोपोलॉजिकल स्पेस होने दें और ≤ को X पर स्पेशलाइजेशन प्रीऑर्डर होने दें। हर खुला सेट ≤ के संबंध में [[ऊपरी सेट]] है और हर बंद सेट  [[निचला सेट]] है। बातचीत आम तौर पर सच नहीं होती है। वास्तव में, टोपोलॉजिकल स्पेस  [[अलेक्जेंड्रोव-असतत स्थान]] है अगर और केवल अगर हर ऊपरी सेट भी खुला है (या समतुल्य हर निचला सेट भी बंद है)।
X को टोपोलॉजिकल अंतराल होने दें और ≤ को X पर विशेषज्ञता पूर्व आदेश होने दें। हर खुला समुच्चय ≤ के संबंध में [[ऊपरी सेट|ऊपरी]] समुच्चय है और हर बंद समुच्चय [[निचला सेट|निचला]] समुच्चय है। बातचीत सामान्यतः सच नहीं होती है। वास्तव में, टोपोलॉजिकल अंतराल [[अलेक्जेंड्रोव-असतत स्थान]] है यदि हो तो और केवल यदि हो तो हर ऊपरी समुच्चय भी खुला है (या समतुल्य हर निचला समुच्चय भी बंद है)।


मान लीजिए कि A, X का उपसमुच्चय है। A वाले सबसे छोटे ऊपरी समुच्चय को ↑A से निरूपित किया जाता है
मान लीजिए कि A, X का उपसमुच्चय है। A वाले सबसे छोटे ऊपरी समुच्चय को ↑A से निरूपित किया जाता है
और A वाले सबसे छोटे निचले सेट को ↓A दर्शाया जाता है। मामले में ए = {x}  सिंगलटन है जो नोटेशन ↑x और ↓x का उपयोग करता है। x ∈ X के लिए:


*↑x = {y ∈ X : x ≤ y} = ∩{ओपन सेट युक्त x}।
और A वाले सबसे छोटे निचले समुच्चय को ↓A दर्शाया जाता है। स्थितियों में ए = {x} सिंगलटन है जो नोटेशन ↑x और ↓x का उपयोग करता है। x ∈ X के लिए:
*↓x = {y ∈ X : y ≤ x} = ∩{बंद सेट युक्त x} = cl{x}।


निचला सेट ↓x हमेशा बंद रहता है; हालाँकि, ऊपरी सेट ↑x को खुले या बंद होने की आवश्यकता नहीं है। टोपोलॉजिकल स्पेस X के बंद बिंदु ठीक ≤ के संबंध में X के [[न्यूनतम तत्व]] हैं।
*↑x = {y ∈ X : x ≤ y} = ∩{ओपन समुच्चय युक्त x}।
*↓x = {y ∈ X : y ≤ x} = ∩{बंद समुच्चय युक्त x} = cl{x}।
 
निचला समुच्चय ↓x हमेशा बंद रहता है; चूंकि, ऊपरी समुच्चय ↑x को खुले या बंद होने की आवश्यकता नहीं है। टोपोलॉजिकल अंतराल X के बंद बिंदु ठीक ≤ के संबंध में X के [[न्यूनतम तत्व]] हैं।


== उदाहरण ==
== उदाहरण ==


* Sierpinski अंतरिक्ष {0,1} में खुले सेट {∅, {1}, {0,1}} के साथ विशेषज्ञता क्रम प्राकृतिक (0 ≤ 0, 0 ≤ 1, और 1 ≤ 1) है।
* <nowiki>सिएरपिन्स्की अंतरिक्ष {0,1} में खुले समुच्चय {∅, {1}, {0,1}} के साथ विशेषज्ञता क्रम प्राकृतिक (0 ≤ 0, 0 ≤ 1, और 1 ≤ 1) है।</nowiki>
* यदि पी, क्यू स्पेक (आर) के तत्व हैं ( कम्यूटेटिव रिंग आर की अंगूठी का स्पेक्ट्रम) तो पी क्यू अगर और केवल अगर क्यू पी (प्रमुख आदर्शों के रूप में)। इस प्रकार स्पेक (आर) के बंद बिंदु सटीक रूप से [[अधिकतम आदर्श]] हैं।
* यदि ''p'', ''q'' स्पेक (R) के तत्व हैं (क्रमविनिमेय वलय R का स्पेक्ट्रम) तो ''p'' ''q'' यदि हो तो और केवल यदि हो तो  ''q'' ''p''  (प्रमुख आदर्शों के रूप में)। इस प्रकार स्पेक (आर) के बंद बिंदु स्पष्ट रूप से [[अधिकतम आदर्श]] हैं।


== महत्वपूर्ण गुण ==
== महत्वपूर्ण गुण ==


जैसा कि नाम से पता चलता है, स्पेशलाइजेशन प्रीऑर्डर  प्रीऑर्डर है, यानी यह [[प्रतिवर्त संबंध]] और [[सकर्मक संबंध]] है।
जैसा कि नाम से पता चलता है,विशेषज्ञता पूर्व आदेश है, यानी यह [[प्रतिवर्त संबंध]] और [[सकर्मक संबंध]] है।


विशेषज्ञता पूर्व-आदेश द्वारा निर्धारित [[तुल्यता संबंध]] सिर्फ टोपोलॉजिकल रूप से अप्रभेद्य है। अर्थात्, x और y स्थैतिक रूप से अप्रभेद्य हैं यदि और केवल यदि x ≤ y और y ≤ x। इसलिए, ≤ का प्रतिसममित संबंध निश्चित रूप से T है<sub>0</sub> पृथक्करण अभिगृहीत: यदि x और y अप्रभेद्य हैं तो x = y। इस मामले में 'विशेषज्ञता आदेश' की बात करना उचित है।
विशेषज्ञता पूर्व-आदेश द्वारा निर्धारित [[तुल्यता संबंध]] सिर्फ टोपोलॉजिकल रूप से अप्रभेद्य है। अर्थात्, x और y स्थैतिक रूप से अप्रभेद्य हैं यदि और केवल यदि x ≤ y और y ≤ x। इसलिए, ≤ का प्रतिसममित संबंध निश्चित रूप से T है पृथक्करण अभिगृहीत: यदि x और y अप्रभेद्य हैं तो x = y। इस स्थितियों में 'विशेषज्ञता आदेश' की बात करना उचित है।


दूसरी ओर, स्पेशलाइजेशन प्रीऑर्डर का [[सममित संबंध]] R0 स्पेस | R के बराबर है<sub>0</sub>पृथक्करण अभिगृहीत: x ≤ y यदि और केवल यदि x और y स्थैतिक रूप से अप्रभेद्य हैं। यह इस प्रकार है कि यदि अंतर्निहित टोपोलॉजी टी है<sub>1</sub>, तो विशेषज्ञता क्रम असतत है, यानी किसी के पास x ≤ y अगर और केवल अगर x = y है। इसलिए, T के लिए विशेषज्ञता क्रम बहुत कम रुचि का है<sub>1</sub> टोपोलॉजी, विशेष रूप से सभी हॉसडॉर्फ रिक्त स्थान के लिए।
दूसरी ओर,विशेषज्ञता पूर्व आदेश का [[सममित संबंध]] R<sub>0</sub> पृथक्करण स्वयंसिद्ध के समतुल्य है: x ≤ y यदि और केवल यदि x और y स्थैतिक रूप से अप्रभेद्य हैं। यह इस प्रकार है कि यदि अंतर्निहित टोपोलॉजी T<sub>1</sub> है, तो विशेषज्ञता क्रम असतत है, यानी किसी के पास x ≤ y है और केवल अगर x = y है। इसलिए, T<sub>1</sub> टोपोलॉजी के लिए विशेष रूप से सभी हॉसडॉर्फ स्थानों के लिए विशेषज्ञता क्रम बहुत कम रुचि रखता है।


दो टोपोलॉजिकल स्पेस के बीच कोई भी [[निरंतरता (टोपोलॉजी)]] इन स्पेस के स्पेशलाइजेशन प्रीऑर्डर्स के संबंध में [[मोनोटोनिक फ़ंक्शन]] है। हालाँकि, इसका विलोम सामान्य रूप से सत्य नहीं है। [[श्रेणी सिद्धांत]] की भाषा में, हमारे पास टोपोलॉजिकल रिक्त स्थान की श्रेणी से पूर्ववर्ती सेटों की श्रेणी के लिए फ़ैक्टर है जो टोपोलॉजिकल स्पेस को अपनी विशेषज्ञता प्रीऑर्डर प्रदान करता है। इस [[ऑपरेटर]] के पास [[बायां जोड़]] है, जो [[अलेक्जेंडर टोपोलॉजी]] को पूर्वनिर्धारित सेट पर रखता है।
दो टोपोलॉजिकल अंतराल के बीच कोई भी [[निरंतरता (टोपोलॉजी)]] इन अंतराल केविशेषज्ञता पूर्व आदेश्स के संबंध में [[मोनोटोनिक फ़ंक्शन|मोनोटोनिक फलन]] है। चूंकि, इसका विलोम सामान्य रूप से सत्य नहीं है। [[श्रेणी सिद्धांत]] की भाषा में, हमारे पास टोपोलॉजिकल रिक्त स्थान की श्रेणी से पूर्ववर्ती समुच्चयो की श्रेणी के लिए फ़ैक्टर है जो टोपोलॉजिकल अंतराल को अपनी विशेषज्ञता पूर्व आदेश प्रदान करता है। इस [[ऑपरेटर]] के पास [[बायां जोड़]] है, जो [[अलेक्जेंडर टोपोलॉजी]] को पूर्वनिर्धारित समुच्चय पर रखता है।


ऐसे स्थान हैं जो T से अधिक विशिष्ट हैं<sub>0</sub> रिक्त स्थान जिसके लिए यह आदेश दिलचस्प है: [[शांत स्थान]]। विशेषज्ञता क्रम से उनका संबंध अधिक सूक्ष्म है:
ऐसे स्थान हैं जो T से अधिक विशिष्ट हैं रिक्त स्थान जिसके लिए यह आदेश रोचकहै: [[शांत स्थान]]। विशेषज्ञता क्रम से उनका संबंध अधिक सूक्ष्म है:


विशेषज्ञता क्रम ≤ के साथ किसी शांत स्थान X के लिए, हमारे पास है
विशेषज्ञता क्रम ≤ के साथ किसी शांत स्थान X के लिए, हमारे पास है
* (X, ≤) [[निर्देशित पूर्ण आंशिक आदेश]] है, अर्थात (X, ≤) के प्रत्येक [[निर्देशित सेट]] S में सर्वोच्च सुपर S है,
* (X, ≤) [[निर्देशित पूर्ण आंशिक आदेश]] है, अर्थात (X, ≤) के प्रत्येक [[निर्देशित सेट|निर्देशित]] समुच्चय S में सर्वोच्च सुपर S है,
* प्रत्येक निर्देशित उपसमुच्चय S (X, ≤) और प्रत्येक खुले समुच्चय O के लिए, यदि sup S, O में है, तो S और O में गैर-खाली चौराहा (सेट सिद्धांत) है।
* प्रत्येक निर्देशित उपसमुच्चय S (X, ≤) और प्रत्येक खुले समुच्चय O के लिए, यदि sup S, O में है, तो S और O में गैर-खाली चौराहा (समुच्चय सिद्धांत) है।


दूसरी संपत्ति का यह कहकर वर्णन किया जा सकता है कि खुले सेट निर्देशित [[अंतिम]] द्वारा पहुंच योग्य नहीं हैं। टोपोलॉजी निश्चित क्रम के संबंध में 'आदेश संगत' है ≤ यदि यह ≤ को अपने विशेषज्ञता क्रम के रूप में प्रेरित करता है और इसमें ≤ में निर्देशित सेटों के सर्वोच्च (मौजूदा) के संबंध में दुर्गमता की उपरोक्त संपत्ति है।
दूसरी संपत्ति का यह कहकर वर्णन किया जा सकता है कि खुले समुच्चय निर्देशित [[अंतिम]] द्वारा पहुंच योग्य नहीं हैं। टोपोलॉजी निश्चित क्रम के संबंध में 'आदेश संगत' है ≤ यदि यह ≤ को अपने विशेषज्ञता क्रम के रूप में प्रेरित करता है और इसमें ≤ में निर्देशित समुच्चयो के सर्वोच्च (वर्तमान) के संबंध में दुर्गमता की उपरोक्त संपत्ति है।


== ऑर्डर पर टोपोलॉजी ==
== आदेश पर टोपोलॉजी ==


विशेषज्ञता क्रम प्रत्येक टोपोलॉजी से पूर्व-आदेश प्राप्त करने के लिए उपकरण उत्पन्न करता है। बातचीत के लिए भी पूछना स्वाभाविक है: क्या हर प्रीऑर्डर को किसी टोपोलॉजी के स्पेशलाइजेशन प्रीऑर्डर के रूप में प्राप्त किया जाता है?
विशेषज्ञता क्रम प्रत्येक टोपोलॉजी से पूर्व-आदेश प्राप्त करने के लिए उपकरण उत्पन्न करता है। बातचीत के लिए भी पूछना स्वाभाविक है: क्या हर पूर्व आदेश को किसी टोपोलॉजी केविशेषज्ञता पूर्व आदेश के रूप में प्राप्त किया जाता है?


दरअसल, इस प्रश्न का उत्तर सकारात्मक है और आम तौर पर सेट एक्स पर कई टोपोलॉजी हैं जो किसी दिए गए ऑर्डर ≤ को उनके विशेषज्ञता क्रम के रूप में प्रेरित करते हैं। ऑर्डर ≤ की [[अलेक्जेंड्रॉफ टोपोलॉजी]] विशेष भूमिका निभाती है: यह बेहतरीन टोपोलॉजी है जो ≤ को प्रेरित करती है। दूसरा चरम, सबसे मोटे टोपोलॉजी जो ≤ को प्रेरित करता है, [[ऊपरी टोपोलॉजी]] है, कम से कम टोपोलॉजी जिसके भीतर सेट ↓x (एक्स में कुछ एक्स के लिए) के सभी पूरक खुले हैं।
वास्तव में, इस प्रश्न का उत्तर सकारात्मक है और सामान्यतः समुच्चय x पर कई टोपोलॉजी हैं जो किसी दिए गए आदेश ≤ को उनके विशेषज्ञता क्रम के रूप में प्रेरित करते हैं। आदेश ≤ की [[अलेक्जेंड्रॉफ टोपोलॉजी]] विशेष भूमिका निभाती है: यह बेहतरीन टोपोलॉजी है जो ≤ को प्रेरित करती है। दूसरा चरम, सबसे मोटे टोपोलॉजी जो ≤ को प्रेरित करता है, [[ऊपरी टोपोलॉजी]] है, कम से कम टोपोलॉजी जिसके भीतर समुच्चय ↓x ( x में कुछ x के लिए) के सभी पूरक खुले हैं।


इन दो चरम सीमाओं के बीच दिलचस्प टोपोलॉजी भी हैं। बेहतरीन सोबर टोपोलॉजी जो किसी दिए गए ऑर्डर ≤ के लिए उपरोक्त अर्थों में संगत है, वह [[स्कॉट टोपोलॉजी]] है। ऊपरी टोपोलॉजी हालांकि अभी भी सबसे मोटे सोबर ऑर्डर-सुसंगत टोपोलॉजी है। वास्तव में, इसके खुले सेट किसी भी सर्वोच्च के लिए भी दुर्गम हैं। इसलिए विशेषज्ञता क्रम के साथ कोई भी शांत स्थान ≤ ऊपरी टोपोलॉजी की तुलना में महीन और स्कॉट टोपोलॉजी की तुलना में मोटा है। फिर भी, ऐसा स्थान अस्तित्व में विफल हो सकता है, अर्थात, ऐसे आंशिक आदेश मौजूद हैं जिनके लिए कोई शांत क्रम-संगत टोपोलॉजी नहीं है। विशेष रूप से, स्कॉट टोपोलॉजी जरूरी शांत नहीं है।
इन दो चरम सीमाओं के बीच रोचकटोपोलॉजी भी हैं। बेहतरीन सोबर टोपोलॉजी जो किसी दिए गए आदेश ≤ के लिए उपरोक्त अर्थों में संगत है, वह [[स्कॉट टोपोलॉजी]] है। ऊपरी टोपोलॉजी चूंकि अभी भी सबसे मोटे सोबर ऑर्डर-सुसंगत टोपोलॉजी है। वास्तव में, इसके खुले समुच्चय किसी भी सर्वोच्च के लिए भी दुर्गम हैं। इसलिए विशेषज्ञता क्रम के साथ कोई भी शांत स्थान ≤ ऊपरी टोपोलॉजी की तुलना में महीन और स्कॉट टोपोलॉजी की तुलना में मोटा है। फिर भी, ऐसा स्थान अस्तित्व में विफल हो सकता है, अर्थात, ऐसे आंशिक आदेश उपस्थित हैं जिनके लिए कोई शांत क्रम-संगत टोपोलॉजी नहीं है। विशेष रूप से, स्कॉट टोपोलॉजी आवश्यक शांत नहीं है।


==संदर्भ==
==संदर्भ==
Line 80: Line 81:


{{Order theory}}
{{Order theory}}
[[Category: आदेश सिद्धांत]] [[Category: टोपोलॉजी]]


[[Category: Machine Translated Page]]
[[Category:Collapse templates]]
[[Category:Created On 16/02/2023]]
[[Category:Created On 16/02/2023]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]
[[Category:आदेश सिद्धांत]]
[[Category:टोपोलॉजी]]

Latest revision as of 10:44, 7 March 2023

टोपोलॉजी के रूप में जानी जाने वाली गणित की शाखा में, विशेषज्ञता (या विहित) पूर्व आदेश के टोपोलॉजिकल अंतराल बिंदुओं के समुच्चय पर प्राकृतिक पूर्व आदेश होता है। अधिकांश स्थानों के लिए जिन्हें व्यवहार में माना जाता है, अर्थात् उन सभी के लिए जो T0 पृथक्करण स्वयंसिद्ध संतुष्ट करते हैं, यह पूर्व-आदेश को आंशिक आदेश भी होता है (विशेषज्ञता आदेश कहा जाता है)। दूसरी ओर, T1 लिए रिक्त स्थान क्रम तुच्छ हो जाता है और कम रुचि वाला होता है।

विशेषज्ञता क्रम को अधिकांशतः कंप्यूटर विज्ञान के अनुप्रयोगों में माना जाता है, जहां T0 रिक्त स्थान सांकेतिक शब्दार्थ में होते हैं। आंशिक रूप से आदेशित समुच्चयो पर उपयुक्त टोपोलॉजी की पहचान करने के लिए विशेषज्ञता क्रम भी महत्वपूर्ण होता है, जैसा कि आदेश सिद्धांत में किया जाता है।

परिभाषा और प्रेरणा

किसी भी टोपोलॉजिकल अंतराल x पर विचार करें। x पर 'विशेषज्ञता पूर्व आदेश' ≤ x के दो बिंदुओं से संबंधित होता है जब दूसरे के संवरण (टोपोलॉजी) में स्थित होता है। चूंकि, विभिन्न लेखक इस बात से असहमत हैं कि आदेश किस 'दिशा' में जाना चाहिए। क्या सहमति है यह है कि अगर

x cl{y} में निहित है,

(जहाँ cl{y} सिंगलटन समुच्चय {y} के बंद होने को दर्शाता है, यानी {y} वाले सभी बंद समुच्चय का प्रतिच्छेदन (समुच्चय सिद्धांत), हम कहते हैं कि x, y की 'विशेषज्ञता' है और वह y और x का 'सामान्यीकरण'; यह सामान्यतः y ⤳ x लिखा जाता है।

दुर्भाग्य से, संपत्ति x y की विशेषज्ञता है जिसे वैकल्पिक रूप से विभिन्न लेखकों द्वारा x ≤ y और y ≤ x के रूप में लिखा गया है (देखें, क्रमशः, [1] और [2]).

दोनों परिभाषाओं का सहज औचित्य है: पूर्व के स्थितियों में, हमारे पास है

x ≤ y यदि हो तो और केवल यदि हो तो cl{x} ⊆ cl{y}।

चूंकि, उस स्थिति में जहाँ हमारा प्रजातियाँ X क्रमविनिमेय अंगूठी R का प्रधान वर्णक्रम बोली R है (जो कि बीजगणितीय ज्यामिति से संबंधित अनुप्रयोगों में प्रेरक स्थिति है), फिर आदेश की हमारी दूसरी परिभाषा के तहत, हमारे पास है

y ≤ x यदि और केवल यदि y ⊆ x वलय R की प्रधान आदर्शावली के रूप में।

संगति के लिए, इस लेख के शेष भाग के लिए हम पहली परिभाषा लेंगे, कि x y की विशेषज्ञता है जिसे x ≤ y के रूप में लिखा जा सकता है। हम तब देखते हैं,

x ≤ y यदि हो तो और केवल यदि हो तो x सभी बंद समुच्चयो में निहित है जिसमें y सम्मिलित है।
x ≤ y यदि और केवल यदि y सभी खुले समुच्चयो में निहित है जिसमें x सम्मिलित है।

ये पुनर्कथन यह समझाने में सहायता करते हैं कि कोई विशेषज्ञता की बात क्यों करता है: y x ​​की तुलना में अधिक सामान्य है, क्योंकि यह अधिक खुले समुच्चयो में समाहित है। यह विशेष रूप से सहज ज्ञान युक्त है यदि कोई बंद समुच्चय को गुणों के रूप में देखता है जो बिंदु x हो सकता है या नहीं हो सकता है। जितने अधिक बंद समुच्चय में बिंदु होता है, बिंदु के जितने अधिक गुण होते हैं, और उतना ही विशेष होता है। उपयोग जीनस और प्रजातियों की मौलिक तार्किक धारणाओं के अनुरूप है; और बीजगणितीय ज्यामिति में सामान्य बिंदुओं के पारंपरिक उपयोग के साथ, जिसमें बंद बिंदु सबसे विशिष्ट होते हैं, जबकि स्थान का सामान्य बिंदु प्रत्येक गैर-रिक्त खुले उपसमुच्चय में निहित होता है। विचार के रूप में विशेषज्ञता मूल्यांकन सिद्धांत में भी प्रयुक्त होती है।

ऊपरी तत्वों के अधिक विशिष्ट होने का अंतर्ज्ञान सामान्यतः कार्यक्षेत्र सिद्धांत में पाया जाता है, आदेश थ्योरी की शाखा जिसमें कंप्यूटर विज्ञान में पर्याप्त अनुप्रयोग हैं।

ऊपरी और निचले समुच्चय

X को टोपोलॉजिकल अंतराल होने दें और ≤ को X पर विशेषज्ञता पूर्व आदेश होने दें। हर खुला समुच्चय ≤ के संबंध में ऊपरी समुच्चय है और हर बंद समुच्चय निचला समुच्चय है। बातचीत सामान्यतः सच नहीं होती है। वास्तव में, टोपोलॉजिकल अंतराल अलेक्जेंड्रोव-असतत स्थान है यदि हो तो और केवल यदि हो तो हर ऊपरी समुच्चय भी खुला है (या समतुल्य हर निचला समुच्चय भी बंद है)।

मान लीजिए कि A, X का उपसमुच्चय है। A वाले सबसे छोटे ऊपरी समुच्चय को ↑A से निरूपित किया जाता है

और A वाले सबसे छोटे निचले समुच्चय को ↓A दर्शाया जाता है। स्थितियों में ए = {x} सिंगलटन है जो नोटेशन ↑x और ↓x का उपयोग करता है। x ∈ X के लिए:

  • ↑x = {y ∈ X : x ≤ y} = ∩{ओपन समुच्चय युक्त x}।
  • ↓x = {y ∈ X : y ≤ x} = ∩{बंद समुच्चय युक्त x} = cl{x}।

निचला समुच्चय ↓x हमेशा बंद रहता है; चूंकि, ऊपरी समुच्चय ↑x को खुले या बंद होने की आवश्यकता नहीं है। टोपोलॉजिकल अंतराल X के बंद बिंदु ठीक ≤ के संबंध में X के न्यूनतम तत्व हैं।

उदाहरण

  • सिएरपिन्स्की अंतरिक्ष {0,1} में खुले समुच्चय {∅, {1}, {0,1}} के साथ विशेषज्ञता क्रम प्राकृतिक (0 ≤ 0, 0 ≤ 1, और 1 ≤ 1) है।
  • यदि p, q स्पेक (R) के तत्व हैं (क्रमविनिमेय वलय R का स्पेक्ट्रम) तो pq यदि हो तो और केवल यदि हो तो qp (प्रमुख आदर्शों के रूप में)। इस प्रकार स्पेक (आर) के बंद बिंदु स्पष्ट रूप से अधिकतम आदर्श हैं।

महत्वपूर्ण गुण

जैसा कि नाम से पता चलता है,विशेषज्ञता पूर्व आदेश है, यानी यह प्रतिवर्त संबंध और सकर्मक संबंध है।

विशेषज्ञता पूर्व-आदेश द्वारा निर्धारित तुल्यता संबंध सिर्फ टोपोलॉजिकल रूप से अप्रभेद्य है। अर्थात्, x और y स्थैतिक रूप से अप्रभेद्य हैं यदि और केवल यदि x ≤ y और y ≤ x। इसलिए, ≤ का प्रतिसममित संबंध निश्चित रूप से T है पृथक्करण अभिगृहीत: यदि x और y अप्रभेद्य हैं तो x = y। इस स्थितियों में 'विशेषज्ञता आदेश' की बात करना उचित है।

दूसरी ओर,विशेषज्ञता पूर्व आदेश का सममित संबंध R0 पृथक्करण स्वयंसिद्ध के समतुल्य है: x ≤ y यदि और केवल यदि x और y स्थैतिक रूप से अप्रभेद्य हैं। यह इस प्रकार है कि यदि अंतर्निहित टोपोलॉजी T1 है, तो विशेषज्ञता क्रम असतत है, यानी किसी के पास x ≤ y है और केवल अगर x = y है। इसलिए, T1 टोपोलॉजी के लिए विशेष रूप से सभी हॉसडॉर्फ स्थानों के लिए विशेषज्ञता क्रम बहुत कम रुचि रखता है।

दो टोपोलॉजिकल अंतराल के बीच कोई भी निरंतरता (टोपोलॉजी) इन अंतराल केविशेषज्ञता पूर्व आदेश्स के संबंध में मोनोटोनिक फलन है। चूंकि, इसका विलोम सामान्य रूप से सत्य नहीं है। श्रेणी सिद्धांत की भाषा में, हमारे पास टोपोलॉजिकल रिक्त स्थान की श्रेणी से पूर्ववर्ती समुच्चयो की श्रेणी के लिए फ़ैक्टर है जो टोपोलॉजिकल अंतराल को अपनी विशेषज्ञता पूर्व आदेश प्रदान करता है। इस ऑपरेटर के पास बायां जोड़ है, जो अलेक्जेंडर टोपोलॉजी को पूर्वनिर्धारित समुच्चय पर रखता है।

ऐसे स्थान हैं जो T से अधिक विशिष्ट हैं रिक्त स्थान जिसके लिए यह आदेश रोचकहै: शांत स्थान। विशेषज्ञता क्रम से उनका संबंध अधिक सूक्ष्म है:

विशेषज्ञता क्रम ≤ के साथ किसी शांत स्थान X के लिए, हमारे पास है

  • (X, ≤) निर्देशित पूर्ण आंशिक आदेश है, अर्थात (X, ≤) के प्रत्येक निर्देशित समुच्चय S में सर्वोच्च सुपर S है,
  • प्रत्येक निर्देशित उपसमुच्चय S (X, ≤) और प्रत्येक खुले समुच्चय O के लिए, यदि sup S, O में है, तो S और O में गैर-खाली चौराहा (समुच्चय सिद्धांत) है।

दूसरी संपत्ति का यह कहकर वर्णन किया जा सकता है कि खुले समुच्चय निर्देशित अंतिम द्वारा पहुंच योग्य नहीं हैं। टोपोलॉजी निश्चित क्रम के संबंध में 'आदेश संगत' है ≤ यदि यह ≤ को अपने विशेषज्ञता क्रम के रूप में प्रेरित करता है और इसमें ≤ में निर्देशित समुच्चयो के सर्वोच्च (वर्तमान) के संबंध में दुर्गमता की उपरोक्त संपत्ति है।

आदेश पर टोपोलॉजी

विशेषज्ञता क्रम प्रत्येक टोपोलॉजी से पूर्व-आदेश प्राप्त करने के लिए उपकरण उत्पन्न करता है। बातचीत के लिए भी पूछना स्वाभाविक है: क्या हर पूर्व आदेश को किसी टोपोलॉजी केविशेषज्ञता पूर्व आदेश के रूप में प्राप्त किया जाता है?

वास्तव में, इस प्रश्न का उत्तर सकारात्मक है और सामान्यतः समुच्चय x पर कई टोपोलॉजी हैं जो किसी दिए गए आदेश ≤ को उनके विशेषज्ञता क्रम के रूप में प्रेरित करते हैं। आदेश ≤ की अलेक्जेंड्रॉफ टोपोलॉजी विशेष भूमिका निभाती है: यह बेहतरीन टोपोलॉजी है जो ≤ को प्रेरित करती है। दूसरा चरम, सबसे मोटे टोपोलॉजी जो ≤ को प्रेरित करता है, ऊपरी टोपोलॉजी है, कम से कम टोपोलॉजी जिसके भीतर समुच्चय ↓x ( x में कुछ x के लिए) के सभी पूरक खुले हैं।

इन दो चरम सीमाओं के बीच रोचकटोपोलॉजी भी हैं। बेहतरीन सोबर टोपोलॉजी जो किसी दिए गए आदेश ≤ के लिए उपरोक्त अर्थों में संगत है, वह स्कॉट टोपोलॉजी है। ऊपरी टोपोलॉजी चूंकि अभी भी सबसे मोटे सोबर ऑर्डर-सुसंगत टोपोलॉजी है। वास्तव में, इसके खुले समुच्चय किसी भी सर्वोच्च के लिए भी दुर्गम हैं। इसलिए विशेषज्ञता क्रम के साथ कोई भी शांत स्थान ≤ ऊपरी टोपोलॉजी की तुलना में महीन और स्कॉट टोपोलॉजी की तुलना में मोटा है। फिर भी, ऐसा स्थान अस्तित्व में विफल हो सकता है, अर्थात, ऐसे आंशिक आदेश उपस्थित हैं जिनके लिए कोई शांत क्रम-संगत टोपोलॉजी नहीं है। विशेष रूप से, स्कॉट टोपोलॉजी आवश्यक शांत नहीं है।

संदर्भ

  • M.M. Bonsangue, Topological Duality in Semantics, volume 8 of Electronic Notes in Theoretical Computer Science, 1998. Revised version of author's Ph.D. thesis. Available online, see especially Chapter 5, that explains the motivations from the viewpoint of denotational semantics in computer science. See also the author's homepage.
  1. Hartshorne, Robin (1977), Algebraic geometry, New York-Heidelberg: Springer-Verlag
  2. Hochster, Melvin (1969), Prime ideal structure in commutative rings (PDF), vol. 142, Trans. Amer. Math. Soc., pp. 43–60