चर परिवर्तन: Difference between revisions

From Vigyanwiki
(Created page with "{{For|the concept in partial differential equations|Change of variables (PDE)}} {{More citations needed|date=June 2019}} {{Calculus|Differential}} गणित में, च...")
 
No edit summary
 
(31 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{For|the concept in partial differential equations|Change of variables (PDE)}}
गणित में [[चरों]] का परिवर्तन एक मूलभूत तकनीक है जिसका उपयोग समस्याओं को सरल बनाने के लिए किया जाता है जिसमें मूल [[चर (गणित)|चर]] को अन्य चर में बदल दिया जाता है इसका उद्देश्य यह है कि जब नए चरों को किसी अचर शब्दों में व्यक्त किया जाता है तो समस्या सरल हो सकती है तथा यह बेहतर समझी जाने वाली समस्या के बराबर मानी जाती है।
{{More citations needed|date=June 2019}}
{{Calculus|Differential}}
गणित में, चरों का परिवर्तन एक बुनियादी तकनीक है जिसका उपयोग समस्याओं को सरल बनाने के लिए किया जाता है जिसमें मूल [[चर (गणित)]] को अन्य चरों के फलन (गणित) से बदल दिया जाता है। आशय यह है कि जब नए चरों में व्यक्त किया जाता है, तो समस्या सरल हो सकती है, या बेहतर समझी जाने वाली समस्या के बराबर हो सकती है।


चरों का परिवर्तन एक संक्रिया है जो [[प्रतिस्थापन (बीजगणित)]] से संबंधित है। हालाँकि ये अलग-अलग ऑपरेशन हैं, जैसा कि व्युत्पन्न ([[श्रृंखला नियम]]) या [[अभिन्न]] ([[प्रतिस्थापन द्वारा एकीकरण]]) पर विचार करते समय देखा जा सकता है।
चरों का परिवर्तन एक संक्रिया है जो [[प्रतिस्थापन (बीजगणित)|प्रतिस्थापन]] से संबंधित है जबकि ये अलग-अलग संक्रिया पर कार्य करती है तथा एक जैसा भेदभाव [[श्रृंखला नियम]] या एकीकरण तथा [[प्रतिस्थापन द्वारा एकीकरण]] पर विचार करते समय देखा गया है।


उपयोगी चर परिवर्तन का एक बहुत ही सरल उदाहरण छठी डिग्री बहुपद की जड़ों को खोजने की समस्या में देखा जा सकता है:
उपयोगी चर परिवर्तन का एक बहुत ही सरल उदाहरण है यह छठी डिग्री पर बहुपद की जड़ों को खोजने की समस्या में सहायता करता है जैसे-


:<math>x^6 - 9 x^3 + 8 = 0.</math>
:<math>x^6 - 9 x^3 + 8 = 0.</math>
रेडिकल के संदर्भ में छठी-डिग्री बहुपद समीकरणों को हल करना आम तौर पर असंभव है (एबेल-रफिनी प्रमेय देखें)। हालाँकि, यह विशेष समीकरण लिखा जा सकता है
रेडिकल के संदर्भ में छठी-डिग्री बहुपद समीकरणों को हल करना असंभव है [[एबेल-रफिनी प्रमेय]] जबकि यह विशेष समीकरण है  
:<math>(x^3)^2-9(x^3)+8=0</math>
:<math>(x^3)^2-9(x^3)+8=0</math>
(यह [[बहुपद अपघटन]] का एक साधारण मामला है)। इस प्रकार एक नए चर को परिभाषित करके समीकरण को सरल बनाया जा सकता है <math>u = x^3</math>. द्वारा x को प्रतिस्थापित करना <math>\sqrt[3]{u}</math> बहुपद में देता है
:
:यह [[बहुपद अपघटन]] की एक साधारण स्थित है। '''जो एक नए चर को परिभाषित करके समीकरण को सरल बना सकती''' है तथा एक्स को प्रतिस्थापित करके <math>\sqrt[3]{u}</math> बहुपद में बदल दिया जाता है।


:<math>u^2 - 9 u + 8 = 0 ,</math>
:<math>u^2 - 9 u + 8 = 0 ,</math>
जो दो समाधानों के साथ सिर्फ एक [[द्विघात समीकरण]] है:
दो निराकरणों के साथ एक [[द्विघात समीकरण|दिघात समीकरण]] इस प्रकार है।
:<math>u = 1 \quad \text{and} \quad u = 8.</math>
:<math>u = 1 \quad \text{and} \quad u = 8.</math>
मूल चर के संदर्भ में समाधान x को प्रतिस्थापित करके प्राप्त किया जाता है<sup>3</sup> बैक इन फॉर यू, जो देता है
मूल चर के संदर्भ में एक्स को प्रतिस्थापित करके प्राप्त किया जाता है।
:<math>x^3 = 1 \quad \text{and} \quad x^3 = 8.</math>
:<math>x^3 = 1 \quad \text{and} \quad x^3 = 8.</math>
फिर, यह मानते हुए कि कोई केवल [[वास्तविक संख्या]] समाधानों में रुचि रखता है, मूल समीकरण के समाधान हैं
:जबकि वास्तविक समस्या निराकरण पर बल देती है तथा
[[वास्तविक संख्या]] निराकरण में रुचि रखता है जिसका मूल समीकरण यह है।
:<math>x = (1)^{1/3} = 1 \quad \text{and} \quad x = (8)^{1/3} = 2.</math>
:<math>x = (1)^{1/3} = 1 \quad \text{and} \quad x = (8)^{1/3} = 2.</math>




== सरल उदाहरण ==
== सरल उदाहरण ==
समीकरणों की प्रणाली पर विचार करें
समीकरणों की प्रणाली पर विचार करें जो इस प्रकार है
:<math>xy+x+y=71</math>
:<math>xy+x+y=71</math>
:<math>x^2y+xy^2=880</math>
:<math>x^2y+xy^2=880</math>
कहाँ <math>x</math> और <math>y</math> के साथ धनात्मक पूर्णांक हैं <math>x>y</math>. (स्रोत: 1991 [[अमेरिकी आमंत्रण गणित परीक्षा]])
जहां एक्स और वाई धनात्मक पूर्णांक है


इसे सामान्य रूप से हल करना बहुत कठिन नहीं है, लेकिन यह थोड़ा कठिन हो सकता है। हालाँकि, हम दूसरे समीकरण को फिर से लिख सकते हैं <math>xy(x+y)=880</math>. प्रतिस्थापन बनाना <math>s=x+y</math> और <math>t=xy</math> सिस्टम को कम कर देता है <math>s+t=71, st=880</math>. इसका समाधान देता है <math>(s,t)=(16,55)</math> और <math>(s,t)=(55,16)</math>. पहले क्रमित युग्म का बैक-प्रतिस्थापन हमें देता है <math>x+y=16, xy=55, x>y</math>, जो समाधान देता है <math>(x,y)=(11,5).</math> दूसरी ऑर्डर की गई जोड़ी को बैक-प्रतिस्थापन करना हमें देता है <math>x+y=55, xy=16, x>y</math>, जिसका कोई समाधान नहीं है। इसलिए सिस्टम को हल करने वाला समाधान है <math>(x,y)=(11,5)</math>.
स्रोत 1991 में [[अमेरिकी आमंत्रण गणित परीक्षा|अमेरिकी साधारण गणित परीक्षा]]


== औपचारिक परिचय ==
इसे सामान्य रूप से हल करना बहुत कठिन नहीं है जबकि हम दूसरे समीकरण को इस प्रकार लिखते हैं <math>xy(x+y)=880</math> जो <math>s=x+y</math> और <math>t=xy</math> प्रणाली को कम कर देता है तथा <math>s+t=71, st=880</math> इसका समाधान करते हैं <math>(s,t)=(16,55)</math> और <math>(s,t)=(55,16)</math> पहले क्रमित युग्म का पिछला-प्रतिस्थापन हमें यह बताता है कि<math>x+y=16, xy=55, x>y</math>, <math>(x,y)=(11,5).</math>तथा दूसरी ओर हमें पिछला-प्रतिस्थापन यह होता है <math>x+y=55, xy=16, x>y</math>, जिसका कोई निराकरण नहीं होता है इसलिए प्रणाली को हल करने वाला निराकरण इस प्रकार  <math>(x,y)=(11,5)</math> है।
होने देना <math>A</math>, <math>B</math> चिकनी कई गुना हो और चलो <math>\Phi: A \rightarrow B</math> एक हो <math>C^r</math>-उनके बीच भिन्नता, वह है: <math>\Phi</math> एक है <math>r</math> बार निरंतर अवकलनीय, विशेषण मानचित्र से <math>A</math> को <math>B</math> साथ <math>r</math> बार लगातार अवकलनीय प्रतिलोम से <math>B</math> को <math>A</math>. यहाँ <math>r</math> कोई भी प्राकृतिक संख्या (या शून्य) हो सकती है, <math>\infty</math> (चिकनी समारोह) या <math>\omega</math> ([[विश्लेषणात्मक कार्य]])।


नक्शा <math>\Phi</math> एक नियमित समन्वय परिवर्तन या नियमित चर प्रतिस्थापन कहा जाता है, जहां नियमित रूप से संदर्भित होता है <math>C^r</math>-की <math>\Phi</math>. आमतौर पर कोई लिखेगा <math>x = \Phi(y)</math> चर के प्रतिस्थापन को इंगित करने के लिए <math>x</math> चर द्वारा <math>y</math> के मान को प्रतिस्थापित करके <math>\Phi</math> में <math>y</math> की हर घटना के लिए <math>x</math>.
== अधिकृत परिचय ==
ए बी का कई गुना है थीटा ए बी के बीच भिन्नता है तथा थीटा एक  निरंतर अवकलनीय विशेषण तथा मानचित्र से ए को बी के साथ निरन्तर अवकलनीय प्रतिलोम में बदलता है ए या बी तथा आर भी प्राकृतिक संख्या होती है सिग्मा या ओमेगा [[विश्लेषणात्मक कार्य]] है।
 
थीटा एक नियमित समन्वय या नियमित चर प्रतिस्थापन होता है जहां इसे नियमित रूप से हल किया जाता है तथा <math>C^r</math> को थीटा लिख सकते हैं। <math>x = \Phi(y)</math> चर के प्रतिस्थापन को इंगित करने के लिए एक्स चर वाई के मान को प्रतिस्थापित करके थीटा को वाई की हर घटना के लिए एक्स मानना होगा।


== अन्य उदाहरण ==
== अन्य उदाहरण ==


=== समन्वय परिवर्तन ===
=== समन्वय परिवर्तन ===
ध्रुवीय निर्देशांक पर स्विच करने पर कुछ प्रणालियों को अधिक आसानी से हल किया जा सकता है। उदाहरण के लिए समीकरण पर विचार करें
ध्रुवीय निर्देशांक को बदलने पर कुछ प्रणालियों को अधिक आसानी से हल किया जा सकता है। उदाहरणार्थ
:<math>U(x, y) := (x^2 + y^2) \sqrt{ 1 - \frac{x^2}{x^2 + y^2} } = 0.</math>
:<math>U(x, y) := (x^2 + y^2) \sqrt{ 1 - \frac{x^2}{x^2 + y^2} } = 0.</math>  
यह किसी शारीरिक समस्या के लिए संभावित ऊर्जा फलन हो सकता है। यदि किसी को तुरंत समाधान नहीं दिखता है, तो वह प्रतिस्थापन का प्रयास कर सकता है
यह किसी समस्या के संभावित ऊर्जा का फलन है जिससे वह प्रतिस्थापन का प्रयास कर सकता है।


:<math>\displaystyle (x, y) = \Phi(r, \theta)</math> द्वारा दिए गए <math>\displaystyle \Phi(r,\theta) = (r \cos(\theta), r \sin(\theta)).</math>
:यह वैज्ञानिकों द्वारा दिए गए समीकरण हैं <math>\displaystyle (x, y) = \Phi(r, \theta)</math>   <math>\displaystyle \Phi(r,\theta) = (r \cos(\theta), r \sin(\theta)).</math>
ध्यान दें कि अगर <math>\theta</math> ए के बाहर चलता है <math>2\pi</math>-लंबाई अंतराल, उदाहरण के लिए, <math>[0, 2\pi]</math>, वो नक्शा <math>\Phi</math> अब विशेषण नहीं है। इसलिए, <math>\Phi</math> तक सीमित होना चाहिए, उदाहरण के लिए <math>(0, \infty] \times [0, 2\pi)</math>. नोटिस कैसे <math>r = 0</math> के लिए बहिष्कृत है <math>\Phi</math> मूल में विशेषण नहीं है (<math>\theta</math> कोई भी मान ले सकता है, बिंदु (0, 0)) पर मैप किया जाएगा। फिर, द्वारा निर्धारित नई [[अभिव्यक्ति (गणित)]] द्वारा मूल चर की सभी घटनाओं को प्रतिस्थापित करना <math>\Phi</math> और पहचान का उपयोग करना <math>\sin^2 x + \cos^2 x = 1</math>, हम पाते हैं
<math>\theta</math>


:<math>V(r, \theta) = r^2 \sqrt{ 1 - \frac{r^2 \cos^2 \theta}{r^2} } = r^2 \sqrt{1 - \cos^2 \theta} = r^2\left|\sin\theta\right|. </math>
=== भेदभाव ===
अब समाधान आसानी से मिल सकते हैं: <math>\sin(\theta) = 0</math>, इसलिए <math>\theta = 0</math> या <math>\theta = \pi</math>. का विलोम लगाना <math>\Phi</math> दिखाता है कि यह बराबर है <math>y = 0</math> जबकि <math>x \not= 0</math>. वास्तव में, हम देखते हैं कि के लिए <math>y = 0</math> उत्पत्ति को छोड़कर फ़ंक्शन गायब हो जाता है।
{{Main|श्रृंखला नियम}}
जटिल विभेदीकरण को आसान बनाने के लिए श्रृंखला के नियम का उपयोग किया जाता है उदाहरण व्युत्पन्न की गणना करने की समस्या पर विचार करें-


ध्यान दें, क्या हमने अनुमति दी थी <math>r = 0</math>, मूल भी एक समाधान होता, हालांकि यह मूल समस्या का समाधान नहीं है। यहाँ की वस्तुनिष्ठता <math>\Phi</math> अत्यंत महत्वपूर्ण है। समारोह हमेशा सकारात्मक होता है (के लिए <math>x,y\in\reals</math>), इसलिए निरपेक्ष मान।
:<math>\frac{d}{dx}\sin(x^2).</math>
<math>y = \sin u</math>, <math>u = x^2.</math>  


=== भेद ===
:<math>
{{Main|Chain rule}}
  </math>
जटिल विभेदीकरण को आसान बनाने के लिए श्रृंखला नियम का उपयोग किया जाता है। उदाहरण के लिए, व्युत्पन्न की गणना करने की समस्या पर विचार करें


:<math>\frac{d}{dx}\sin(x^2).</math>
'''<big>समाकलन</big>'''
होने देना <math>y = \sin u</math> साथ <math>u = x^2.</math> तब:


:<math>\begin{align}
{{Main|प्रतिस्थापन द्वारा एकीकरण}}
\frac{d}{dx}\sin(x^2) &= \frac{dy}{dx} \\[6pt]
                      &= \frac{dy}{du} \frac{du}{dx} && \text{This part is the chain rule.} \\[6pt]
                      &= \left( \frac d {du} \sin u \right) \left( \frac{d}{dx} x^2 \right) \\[6pt]
                      &= (\cos u) (2x) \\
                      &= \left (\cos(x^2) \right) (2x) \\
                      &= 2x\cos(x^2)
\end{align}</math>


जटिल समाकलों को अधिकतर चरों में बदलकर मूल्यांकन किया जा सकता है तथा यह [[प्रतिस्थापन नियम]] द्वारा समाकलन सक्षम है और यह श्रृंखला नियम के अनुरूप है [[जेकोबियन मैट्रिक्स और निर्धारक|जेकोबियन मैट्रिक्स]] द्वारा दिए गए चर के परिवर्तन का उपयोग करके अलग- अलग चर को सरल बनाकर कठिन इंटीग्रल को भी हल किया जा सकता है।<ref>{{cite book |first=Wilfred |last=Kaplan |author-link=Wilfred Kaplan |chapter=Change of Variables in Integrals |title=Advanced Calculus |location=Reading |publisher=Addison-Wesley |edition=Second |year=1973 |pages=269–275 }}</ref> जेकोबियन निर्धारक द्वारा दिए गए चर के संगत परिवर्तन का प्रयोग ध्रुवीय बेलनाकार और गोलाकार समन्वय प्रणाली का आधार है।


=== एकीकरण ===
=== विभेदक समीकरणमीकरण ===
{{Main|Integration by substitution}}
विभेदीकरण और एकीकरण परिवर्तनशील प्रारंभिक कलन में पढ़े जाते हैं और चरणों को कभी भी पूरा कर सकते हैं।
कठिन समाकलों का अक्सर चरों को बदलकर मूल्यांकन किया जा सकता है; यह [[प्रतिस्थापन नियम]] द्वारा सक्षम है और उपरोक्त श्रृंखला नियम के उपयोग के अनुरूप है। संबंधित [[जेकोबियन मैट्रिक्स और निर्धारक]] द्वारा दिए गए चर के परिवर्तन का उपयोग करके अभिन्न अंग को सरल बनाकर कठिन इंटीग्रल को भी हल किया जा सकता है।<ref>{{cite book |first=Wilfred |last=Kaplan |author-link=Wilfred Kaplan |chapter=Change of Variables in Integrals |title=Advanced Calculus |location=Reading |publisher=Addison-Wesley |edition=Second |year=1973 |pages=269–275 }}</ref> जेकोबियन निर्धारक और इसके द्वारा दिए गए चर के संगत परिवर्तन का उपयोग ध्रुवीय, बेलनाकार और गोलाकार समन्वय प्रणाली जैसे समन्वय प्रणालियों का आधार है।


=== विभेदक समीकरण ===
इसमें चर परिवर्तनों का व्यापक उपयोग स्पष्ट होता है जहां श्रृंखला नियम का उपयोग करके स्वतंत्र चर को बदला जा सकता है और आश्रित चर को भी बदल दिया जाता है जिसके परिणामस्वरूप कुछ परिवर्तन किया जाता है तथा परिवर्तन ऐसे किया जाता है जैसे कि [[बिंदु परिवर्तन]] और [[संपर्क परिवर्तन]] बहुत कठिन हों तथा वे हल न हो रहे हों जो स्वतंत्रता की अनुमति मॉंगता हो।
विभेदीकरण और एकीकरण के लिए परिवर्तनशील परिवर्तन प्रारंभिक कलन में पढ़ाए जाते हैं और चरणों को शायद ही कभी पूरा किया जाता है।


अंतर समीकरणों पर विचार करते समय चर परिवर्तनों का बहुत व्यापक उपयोग स्पष्ट है, जहां श्रृंखला नियम का उपयोग करके स्वतंत्र चर को बदला जा सकता है या आश्रित चर को बदल दिया जाता है जिसके परिणामस्वरूप कुछ भेदभाव किया जाता है। विदेशी परिवर्तन, जैसे कि [[बिंदु परिवर्तन]] और [[संपर्क परिवर्तन]] में आश्रित और स्वतंत्र चर का मिलन, बहुत जटिल हो सकता है लेकिन अधिक स्वतंत्रता की अनुमति देता है।
परिवर्तन को एक सामान्य रूप से एक समस्या में प्रतिस्थापित किया जाता है और समस्या को सरल बनाने के तरीके पैरामीटर द्वारा चुने जाते हैं।


बहुत बार, परिवर्तन के लिए एक सामान्य रूप को एक समस्या में प्रतिस्थापित किया जाता है और समस्या को सरल बनाने के तरीके के साथ चुने गए पैरामीटर।
=== स्केन करना और भेजना ===
 
सबसे सरल परिवर्तन सत्यापन योग स्कैन करके भेजना होता है जो उन्हें नए सत्यापन के साथ बदल देता है तथा जो निरंतर मात्रा में फैले और स्थानांतरित होते हैं और भौतिक मापदंडों की समस्याओं से बाहर निकलने के लिए व्यावहारिक अनुप्रयोगों में यह बहुत साधारण होते हैं इसलिए  व्यूत्पन्न परिवर्तन केवल परिणाम देता है जो इस प्रकार है-
=== स्केलिंग और शिफ्टिंग ===
संभवतः सबसे सरल परिवर्तन वेरिएबल्स की स्केलिंग और शिफ्टिंग है, जो उन्हें नए वेरिएबल्स के साथ बदल रहा है जो निरंतर मात्रा में फैले और स्थानांतरित होते हैं। भौतिक मापदंडों को समस्याओं से बाहर निकालने के लिए व्यावहारिक अनुप्रयोगों में यह बहुत आम है। एन के लिए<sup>वां </sup> ऑर्डर डेरिवेटिव, परिवर्तन केवल परिणाम देता है


:<math>\frac{d^n y}{d x^n} = \frac{y_\text{scale}}{x_\text{scale}^n} \frac{d^n \hat y}{d \hat x^n}</math>
:<math>\frac{d^n y}{d x^n} = \frac{y_\text{scale}}{x_\text{scale}^n} \frac{d^n \hat y}{d \hat x^n}</math>
कहाँ पे
तब


:<math>x = \hat x x_\text{scale} + x_\text{shift}</math>
:<math>x = \hat x x_\text{scale} + x_\text{shift}</math>
:<math>y = \hat y y_\text{scale} + y_\text{shift}.</math>
:<math>y = \hat y y_\text{scale} + y_\text{shift}.</math>
यह श्रृंखला नियम और विभेदीकरण की रैखिकता के माध्यम से आसानी से दिखाया जा सकता है। भौतिक मापदंडों को समस्याओं से बाहर निकालने के लिए व्यावहारिक अनुप्रयोगों में यह परिवर्तन बहुत आम है, उदाहरण के लिए, सीमा मान समस्या
यह श्रृंखला नियम और विभेदीकरण की रैखिकता के माध्यम से आसानी से दिखाई जा सकती है जबकि भौतिक मापदंडों की समस्याओं से बाहर निकलने के लिए व्यावहारिक अनुप्रयोगों में यह परिवर्तन हुआ उदाहरण  


:<math>\mu \frac{d^2 u}{d y^2} = \frac{d p}{d x} \quad ; \quad u(0) = u(L) = 0</math>
:<math>\mu \frac{d^2 u}{d y^2} = \frac{d p}{d x} \quad ; \quad u(0) = u(L) = 0</math>
दूरी δ द्वारा अलग की गई सपाट ठोस दीवारों के बीच समानांतर द्रव प्रवाह का वर्णन करता है; μ चिपचिपापन है और <math>d p/d x</math> [[दाब प्रवणता]], दोनों स्थिरांक। चरों को स्केल करके समस्या बन जाती है
दूरी सिग्मा द्वारा अलग की गई सपाट ठोस दीवारों के बीच समानांतर द्रव प्रवाह का वर्णन म्यू करता है और <math>d p/d x</math> [[दाब प्रवणता]] तथा दोनों स्थिरांक चरों को स्केल करके समस्या सरल करता है।


:<math>\frac{d^2 \hat u}{d \hat y^2} = 1 \quad ; \quad \hat u(0) = \hat u(1) = 0</math>
:<math>\frac{d^2 \hat u}{d \hat y^2} = 1 \quad ; \quad \hat u(0) = \hat u(1) = 0</math>
कहाँ
जब


:<math>y = \hat y L \qquad \text{and} \qquad u = \hat u \frac{L^2}{\mu} \frac{d p}{d x}.</math>
:<math>y = \hat y L \qquad \text{and} \qquad u = \hat u \frac{L^2}{\mu} \frac{d p}{d x}.</math>
स्केलिंग कई कारणों से उपयोगी है। यह मापदंडों की संख्या को कम करके और समस्या को सरल बनाकर विश्लेषण को सरल बनाता है। उचित स्केलिंग वेरिएबल्स को सामान्य कर सकती है, जो उन्हें 0 से 1 जैसी एक समझदार इकाई रहित श्रेणी बनाती है। अंत में, यदि कोई समस्या संख्यात्मक समाधान को अनिवार्य करती है, तो कम पैरामीटर, संगणनाओं की संख्या कम होती है।
स्केलिंग कई कारणों से उपयोगी है जबकि यह मापदंडों की संख्या को कम करके और समस्या को सरल बनाकर विश्लेषण को सरल बनाता है जो उचित स्केलिंग सत्यापन योग को सामान्य करती है जो शून्य से एक इकाई रहित श्रेणी बनाती है अंत में यदि कोई समस्या संख्यात्मक निराकरण को अनिवार्य करती है तो पैरामीटर की संख्या कम होती है।


=== संवेग बनाम वेग ===
=== संवेग बनाम वेग ===
समीकरणों की एक प्रणाली पर विचार करें
समीकरणों की एक प्रणाली पर विचार करें-
: <math>
:
\begin{align}
किसी दिए गए चर को <math>H(x, v)</math> प्रतिस्थापन द्वारा समाप्त किया जा सकता है <math>\Phi(p) = 1/m \cdot p</math> स्पष्ट रूप से यह एक विशेषण मानचित्र आर को आर प्रतिस्थापन के तहत वी = थीटा प्रणाली कहा जाता है।
m \dot v & = - \frac{ \partial H }{ \partial x } \\[5pt]
m \dot x & = \frac{ \partial H }{ \partial v }
\end{align}
</math>
किसी दिए गए समारोह के लिए <math>H(x, v)</math>.
(तुच्छ) प्रतिस्थापन द्वारा द्रव्यमान को समाप्त किया जा सकता है <math>\Phi(p) = 1/m \cdot p</math>.
स्पष्ट रूप से यह एक विशेषण मानचित्र है <math>\mathbb{R}</math> को <math>\mathbb{R}</math>. प्रतिस्थापन के तहत <math>v = \Phi(p)</math> सिस्टम बन जाता है


: <math>
: <math>
Line 117: Line 101:




=== लग्रंगियन यांत्रिकी ===
=== लग्रंजियन यांत्रिकी ===
{{Main|Lagrangian mechanics}}
{{Main|लंग्रजियन यांत्रिकी }}
एक बल क्षेत्र दिया <math>\varphi(t, x, v)</math>, [[आइजैक न्यूटन]] की [[गति के समीकरण]] हैं
<math>\varphi(t, x, v)</math> [[आइजैक न्यूटन]] की [[गति के समीकरण]] यह हैं -
:<math>m \ddot x = \varphi(t, x, v).</math>
:<math>m \ddot x = \varphi(t, x, v).</math>
लाग्रेंज ने जांच की कि कैसे गति के ये समीकरण चर के मनमाने प्रतिस्थापन के तहत बदलते हैं <math>x = \Psi(t, y)</math>, <math>v = \frac{\partial \Psi(t, y)}{\partial t} + \frac{\partial\Psi(t, y)}{\partial y} \cdot w.</math>
लंग्रजियन ने कहा कि गति के ये समीकरण चर को अपने ढ़ंग से बदलते हैं <math>x = \Psi(t, y)</math>, <math>v = \frac{\partial \Psi(t, y)}{\partial t} + \frac{\partial\Psi(t, y)}{\partial y} \cdot w.</math>उन्होंने पाया कि समीकरण  
उन्होंने पाया कि समीकरण
:<math> \frac{ \partial{L} }{ \partial y} = \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial{L}}{\partial{w}} </math>
:<math> \frac{ \partial{L} }{ \partial y} = \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial{L}}{\partial{w}} </math>
समारोह के लिए न्यूटन के समीकरणों के बराबर हैं <math>L = T - V</math>,
न्यूटन के समीकरणों के बराबर टी स्थितिज ऊर्जा वी गतिज ऊर्जा है।
जहाँ T गतिज है, और V स्थितिज ऊर्जा है।


वास्तव में, जब प्रतिस्थापन को अच्छी तरह से चुना जाता है (उदाहरण के लिए सिस्टम की समरूपता और बाधाओं का शोषण) कार्टेशियन निर्देशांक में न्यूटन के समीकरणों की तुलना में इन समीकरणों को हल करना बहुत आसान है।
जब प्रतिस्थापन को चुना जाता है तो प्रणाली की समरूपता और बाधाओं के कार्टेशियन अनुनाद में न्यूटन के समीकरणों को हल करना बहुत आसान है।


== यह भी देखें ==
== यह भी देखें ==
*चरों का परिवर्तन (पीडीई)
*चरों का परिवर्तन।
*संभाव्यता घनत्व समारोह# यादृच्छिक चर का कार्य और संभावना घनत्व समारोह में चर का परिवर्तन
*संभाव्यता घनत्व समारोह यादृच्छिक चर का कार्य और संभावना घनत्व समारोह में चर का परिवर्तन।
* [[समानता की प्रतिस्थापन संपत्ति]]
* [[समानता की प्रतिस्थापन संपत्ति|समानता की जगह।]]  
* [[सार्वभौमिक तात्कालिकता]]
* [[सार्वभौमिक तात्कालिकता|वैश्विक तेजता।]]


==संदर्भ==
==संदर्भ==
{{Reflist}}
{{Reflist}}
[[Category: प्राथमिक बीजगणित]] [[Category: गणितीय भौतिकी]]


[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Created On 03/02/2023]]
[[Category:Created On 03/02/2023]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:गणितीय भौतिकी]]
[[Category:प्राथमिक बीजगणित]]

Latest revision as of 09:46, 10 March 2023

गणित में चरों का परिवर्तन एक मूलभूत तकनीक है जिसका उपयोग समस्याओं को सरल बनाने के लिए किया जाता है जिसमें मूल चर को अन्य चर में बदल दिया जाता है इसका उद्देश्य यह है कि जब नए चरों को किसी अचर शब्दों में व्यक्त किया जाता है तो समस्या सरल हो सकती है तथा यह बेहतर समझी जाने वाली समस्या के बराबर मानी जाती है।

चरों का परिवर्तन एक संक्रिया है जो प्रतिस्थापन से संबंधित है जबकि ये अलग-अलग संक्रिया पर कार्य करती है तथा एक जैसा भेदभाव श्रृंखला नियम या एकीकरण तथा प्रतिस्थापन द्वारा एकीकरण पर विचार करते समय देखा गया है।

उपयोगी चर परिवर्तन का एक बहुत ही सरल उदाहरण है यह छठी डिग्री पर बहुपद की जड़ों को खोजने की समस्या में सहायता करता है जैसे-

रेडिकल के संदर्भ में छठी-डिग्री बहुपद समीकरणों को हल करना असंभव है एबेल-रफिनी प्रमेय जबकि यह विशेष समीकरण है

यह बहुपद अपघटन की एक साधारण स्थित है। जो एक नए चर को परिभाषित करके समीकरण को सरल बना सकती है तथा एक्स को प्रतिस्थापित करके बहुपद में बदल दिया जाता है।

दो निराकरणों के साथ एक दिघात समीकरण इस प्रकार है।

मूल चर के संदर्भ में एक्स को प्रतिस्थापित करके प्राप्त किया जाता है।

जबकि वास्तविक समस्या निराकरण पर बल देती है तथा

वास्तविक संख्या निराकरण में रुचि रखता है जिसका मूल समीकरण यह है।


सरल उदाहरण

समीकरणों की प्रणाली पर विचार करें जो इस प्रकार है

जहां एक्स और वाई धनात्मक पूर्णांक है

स्रोत 1991 में अमेरिकी साधारण गणित परीक्षा

इसे सामान्य रूप से हल करना बहुत कठिन नहीं है जबकि हम दूसरे समीकरण को इस प्रकार लिखते हैं जो और प्रणाली को कम कर देता है तथा इसका समाधान करते हैं और पहले क्रमित युग्म का पिछला-प्रतिस्थापन हमें यह बताता है कि, तथा दूसरी ओर हमें पिछला-प्रतिस्थापन यह होता है , जिसका कोई निराकरण नहीं होता है इसलिए प्रणाली को हल करने वाला निराकरण इस प्रकार है।

अधिकृत परिचय

ए बी का कई गुना है थीटा ए बी के बीच भिन्नता है तथा थीटा एक निरंतर अवकलनीय विशेषण तथा मानचित्र से ए को बी के साथ निरन्तर अवकलनीय प्रतिलोम में बदलता है ए या बी तथा आर भी प्राकृतिक संख्या होती है सिग्मा या ओमेगा विश्लेषणात्मक कार्य है।

थीटा एक नियमित समन्वय या नियमित चर प्रतिस्थापन होता है जहां इसे नियमित रूप से हल किया जाता है तथा को थीटा लिख सकते हैं। चर के प्रतिस्थापन को इंगित करने के लिए एक्स चर वाई के मान को प्रतिस्थापित करके थीटा को वाई की हर घटना के लिए एक्स मानना होगा।

अन्य उदाहरण

समन्वय परिवर्तन

ध्रुवीय निर्देशांक को बदलने पर कुछ प्रणालियों को अधिक आसानी से हल किया जा सकता है। उदाहरणार्थ

यह किसी समस्या के संभावित ऊर्जा का फलन है जिससे वह प्रतिस्थापन का प्रयास कर सकता है।

यह वैज्ञानिकों द्वारा दिए गए समीकरण हैं

भेदभाव

जटिल विभेदीकरण को आसान बनाने के लिए श्रृंखला के नियम का उपयोग किया जाता है उदाहरण व्युत्पन्न की गणना करने की समस्या पर विचार करें-

,

समाकलन

जटिल समाकलों को अधिकतर चरों में बदलकर मूल्यांकन किया जा सकता है तथा यह प्रतिस्थापन नियम द्वारा समाकलन सक्षम है और यह श्रृंखला नियम के अनुरूप है जेकोबियन मैट्रिक्स द्वारा दिए गए चर के परिवर्तन का उपयोग करके अलग- अलग चर को सरल बनाकर कठिन इंटीग्रल को भी हल किया जा सकता है।[1] जेकोबियन निर्धारक द्वारा दिए गए चर के संगत परिवर्तन का प्रयोग ध्रुवीय बेलनाकार और गोलाकार समन्वय प्रणाली का आधार है।

विभेदक समीकरणमीकरण

विभेदीकरण और एकीकरण परिवर्तनशील प्रारंभिक कलन में पढ़े जाते हैं और चरणों को कभी भी पूरा कर सकते हैं।

इसमें चर परिवर्तनों का व्यापक उपयोग स्पष्ट होता है जहां श्रृंखला नियम का उपयोग करके स्वतंत्र चर को बदला जा सकता है और आश्रित चर को भी बदल दिया जाता है जिसके परिणामस्वरूप कुछ परिवर्तन किया जाता है तथा परिवर्तन ऐसे किया जाता है जैसे कि बिंदु परिवर्तन और संपर्क परिवर्तन बहुत कठिन हों तथा वे हल न हो रहे हों जो स्वतंत्रता की अनुमति मॉंगता हो।

परिवर्तन को एक सामान्य रूप से एक समस्या में प्रतिस्थापित किया जाता है और समस्या को सरल बनाने के तरीके पैरामीटर द्वारा चुने जाते हैं।

स्केन करना और भेजना

सबसे सरल परिवर्तन सत्यापन योग स्कैन करके भेजना होता है जो उन्हें नए सत्यापन के साथ बदल देता है तथा जो निरंतर मात्रा में फैले और स्थानांतरित होते हैं और भौतिक मापदंडों की समस्याओं से बाहर निकलने के लिए व्यावहारिक अनुप्रयोगों में यह बहुत साधारण होते हैं इसलिए व्यूत्पन्न परिवर्तन केवल परिणाम देता है जो इस प्रकार है-

तब

यह श्रृंखला नियम और विभेदीकरण की रैखिकता के माध्यम से आसानी से दिखाई जा सकती है जबकि भौतिक मापदंडों की समस्याओं से बाहर निकलने के लिए व्यावहारिक अनुप्रयोगों में यह परिवर्तन हुआ उदाहरण

दूरी सिग्मा द्वारा अलग की गई सपाट ठोस दीवारों के बीच समानांतर द्रव प्रवाह का वर्णन म्यू करता है और दाब प्रवणता तथा दोनों स्थिरांक चरों को स्केल करके समस्या सरल करता है।

जब

स्केलिंग कई कारणों से उपयोगी है जबकि यह मापदंडों की संख्या को कम करके और समस्या को सरल बनाकर विश्लेषण को सरल बनाता है जो उचित स्केलिंग सत्यापन योग को सामान्य करती है जो शून्य से एक इकाई रहित श्रेणी बनाती है अंत में यदि कोई समस्या संख्यात्मक निराकरण को अनिवार्य करती है तो पैरामीटर की संख्या कम होती है।

संवेग बनाम वेग

समीकरणों की एक प्रणाली पर विचार करें-

किसी दिए गए चर को प्रतिस्थापन द्वारा समाप्त किया जा सकता है स्पष्ट रूप से यह एक विशेषण मानचित्र आर को आर प्रतिस्थापन के तहत वी = थीटा प्रणाली कहा जाता है।


लग्रंजियन यांत्रिकी

आइजैक न्यूटन की गति के समीकरण यह हैं -

लंग्रजियन ने कहा कि गति के ये समीकरण चर को अपने ढ़ंग से बदलते हैं , उन्होंने पाया कि समीकरण

न्यूटन के समीकरणों के बराबर टी स्थितिज ऊर्जा वी गतिज ऊर्जा है।

जब प्रतिस्थापन को चुना जाता है तो प्रणाली की समरूपता और बाधाओं के कार्टेशियन अनुनाद में न्यूटन के समीकरणों को हल करना बहुत आसान है।

यह भी देखें

संदर्भ

  1. Kaplan, Wilfred (1973). "Change of Variables in Integrals". Advanced Calculus (Second ed.). Reading: Addison-Wesley. pp. 269–275.