जेकोबियन आव्यूह और निर्धारक

From Vigyanwiki
(Redirected from जेकोबियन मैट्रिक्स और निर्धारक)

सदिश कलन में, अनेक चरों के सदिश-मूल्यवान फलन का जेकोबियन आव्यूह (/əˈkbiən/,[1][2][3] /ɪ-, jɪ-/) इसके सभी प्रथम-क्रम आंशिक अवकलन का आव्यूह है। जब यह आव्यूह वर्गाकार आव्यूह होता है, अर्थात, जब फलन निविष्ट के रूप में चर की समान संख्या लेता है जैसे इसके निर्गत के सदिश घटकों की संख्या होती है, तो इसके निर्धारक को जैकबियन निर्धारक कहा जाता है। दोनों आव्यूह और (यदि लागू हो) निर्धारक को प्रायः साहित्य में जैकबियन के रूप में संदर्भित किया जाता है।[4]

मान लीजिए f : RnRm एक ऐसा फलन है जिसके प्रत्येक प्रथम कोटि के आंशिक अवकलन Rn पर विद्यमान हैं। यह फलन निविष्ट के रूप में एक बिंदु xRn लेता है और निर्गत के रूप में सदिश f(x) ∈ Rm उत्पन्न करता है। तब f के जैकोबियन आव्यूह को एक m×n आव्यूह के रूप में परिभाषित किया जाता है, जिसे J द्वारा निरूपित किया जाता है, जिसकी (i,j)वीं प्रविष्टि है, या स्पष्ट रूप से

है, जहां अवयव के प्रवणता का स्थानान्तरण (पंक्ति सदिश) है।

जेकोबियन आव्यूह, जिसकी प्रविष्टियाँ निम्नलिखित x के फलन हैं ,उनको विभिन्न तरीकों से निरूपित किया जाता है, सामान्य अंकन सम्मिलित में[citation needed] Df, Jf, , और सम्मिलित हैं। कुछ लेखक जैकोबियन को ऊपर दिए गए रूप के स्थानान्तरण के रूप में परिभाषित करते हैं।

जेकोबियन आव्यूह प्रत्येक बिंदु पर f के अंतर का प्रतिनिधित्व करता है जहां f अवकलनीय है। विस्तार से, यदि h एक स्तंभ आव्यूह, द्वारा प्रदर्शित विस्थापन सदिश है, तो आव्यूह उत्पाद J(x) ⋅ h एक अन्य विस्थापन सदिश है, जो कि x के पड़ोस में f के परिवर्तन का सबसे अच्छा रैखिक सन्निकटन है, यदि f(x) x पर अवकलनीय है।[lower-alpha 1] इसका मतलब यह है कि वह फलन जो y को f(x) + J(x) ⋅ (yx) से मानचित्रित करता है, x के करीब y बिंदुओं के लिए f(y) का सबसे अच्छा रैखिक सन्निकटन है। इस रेखीय फलन को x पर f के अवकलन या अवकल के रूप में जाना जाता है।

जब m = n, जेकोबियन आव्यूह वर्गाकार होता है, तो इसलिए इसका निर्धारक x का एक सुपरिभाषित फलन होता है, जिसे f का जैकबियन निर्धारक कहा जाता है। यह f के स्थानीय व्यवहार के बारे में महत्वपूर्ण जानकारी रखता है। विशेष रूप से फलन f में एक बिंदु x के पड़ोस में एक अलग-अलग प्रतिलोम फलन होता है यदि और केवल जैकबियन निर्धारक x पर गैर-शून्य है (सार्वभौमिक व्युत्क्रमणीय की संबंधित समस्या के लिए जैकोबियन अनुमान देखें)। जेकोबियन निर्धारक कई पूर्णांको में चर बदलते समय भी प्रकट होता है (कई चर के लिए प्रतिस्थापन नियम देखें)।

जब m = 1, अर्थात जब f : RnR एक अदिश मूल्यवान फलन है, तो जैकोबियन आव्यूह पंक्ति सदिश तक कम हो जाता है, f के सभी प्रथम-क्रम आंशिक अवकलन का यह पंक्ति सदिश f की प्रवणता का स्थानान्तरण है, अर्थात । आगे विशेष रूप से, जब m = n = 1, वह है जब f : RR एकल चर का एक अदिश-मूल्यवान फलन हो, तो जैकोबियन आव्यूह में एक ही प्रविष्टि होती है, यह प्रविष्टि फलन f का अवकलन है।

इन अवधारणाओं का नाम गणितज्ञ कार्ल गुस्ताव जैकब जैकोबी (1804-1851) के नाम पर रखा गया है।

जैकबियन आव्यूह

कई चरो में सदिश-मूल्यवान फलन का जेकोबियन कई चरो में अदिश मूल्यवान फलन की प्रवणता को सामान्यीकृत करता है, जो बदले में एकल चर के अदिश-मूल्यवान फलन के अवकलन का सामान्यीकरण करता है। दूसरे शब्दों में, कई चरो में एक अदिश-मूल्यवान फलन का जैकोबियन आव्यूह इसकी प्रवणता (का स्थानान्तरण) है और एक चर के अदिश-मूल्यवान फलन की प्रवणता इसका अवकलन है।

प्रत्येक बिंदु पर जहां एक फलन अवकलनीय है, इसके जैकबियन आव्यूह को "खिंचाव", "घूर्णन" या "रूपांतरण" की मात्रा का वर्णन करने के बारे में भी सोचा जा सकता है जो फलन उस बिंदु के पास स्थानीय रूप से लागू होता है। उदाहरण के लिए, यदि (x′, y′) = f(x, y) का उपयोग किसी छवि को सुचारू रूप से बदलने के लिए किया जाता है, तो जैकोबियन आव्यूह Jf(x, y), वर्णन करता है कि कैसे (x, y) के पड़ोस में छवि रूपांतरित है।

यदि एक बिंदु पर एक फलन अवकलनीय है, तो इसका अंतर जैकबियन आव्यूह द्वारा निर्देशांक में दिया जाता है। हालाँकि किसी फलन को उसके जैकोबियन आव्यूह को परिभाषित करने के लिए अअवकलनीय होने की आवश्यकता नहीं है, क्योंकि केवल इसके पहले-क्रम के आंशिक अवकलन मौजूद होने की आवश्यकता है।

यदि f , Rn के किसी बिंदु p पर अवकलनीय है , तो इसके अवकल को Jf(p) द्वारा निरूपित किया जाता है। इस मामले में, Jf(p) द्वारा दर्शाया गया रैखिक परिवर्तन बिंदु p के पास f का इस अर्थ में सबसे अच्छा रैखिक सन्निकटन है ,

जहाँ o(‖xp‖) एक संख्या है जो x और p के बीच की दूरी की तुलना में बहुत तेजी से शून्य तक पहुँचती है, जब x ,p तक पहुंचता है। यह सन्निकटन डिग्री एक के अपने टेलर बहुपद ,अर्थात्

द्वारा एकल चर के एक अदिश फलन के सन्निकटन के लिए विशिष्ट है।

इस अर्थ में, जैकबियन को कई चरों के सदिश-मूल्यवान फलन के "प्रथम-क्रम अवकलन" के रूप में माना जा सकता है। विशेष रूप से, इसका मतलब यह है कि कई चरों के अदिश-मूल्यवान फलन की प्रवणता भी इसके"प्रथम-क्रम अवकलन" के रूप में मानी जा सकती है।

संगत अवकलनीय फलन f : RnRm और g : RmRk श्रृंखला नियम को संतुष्ट करते हैं, अर्थात् Rn में x के लिए

कई चरों के अदिश फलन की प्रवणता के जैकबियन का एक विशेष नाम, हेसियन आव्यूह है , जो एक अर्थ में प्रश्न में फलन का दूसरा अवकलन है।

जैकबियन निर्धारक

एक अरेखीय मानचित्र एक विकृत समांतर चतुर्भुज (दाएं, लाल रंग में) को एक छोटा वर्ग (बाएं, लाल रंग में) भेजता है। एक बिंदु पर जेकोबियन उस बिंदु के पास विकृत समानांतर चतुर्भुज का सबसे अच्छा रैखिक सन्निकटन देता है (दाएं, पारभासी सफेद रंग में), और जेकोबियन निर्धारक मूल वर्ग के सन्निकट समांतर चतुर्भुज के क्षेत्रफल का अनुपात देता है।

यदि m = n, तो f , Rn से स्वयं में एक फलन है और जैकोबियन आव्यूह एक वर्ग आव्यूह है। इसके बाद हम इसका निर्धारक बना सकते हैं, जिसे जैकबियन निर्धारक के रूप में जाना जाता है। जैकबियन निर्धारक को कभी-कभी केवल "जैकोबियन" के रूप में जाना जाता है।

किसी दिए गए बिंदु पर जेकोबियन निर्धारक उस बिंदु के निकट f के व्यवहार के बारे में महत्वपूर्ण जानकारी देता है। उदाहरण के लिए, निरंतर अवकलनीय फलन f एक बिंदु pRn के निकट व्युत्क्रमणीय होता है यदि p पर जैकबियन निर्धारक गैर-शून्य है। यह व्युत्क्रम फलन प्रमेय है। इसके अलावा, यदि p पर जैकोबियन निर्धारक सकारात्मक है, तो f p के पास अभिविन्यास को संरक्षित करता है, यदि यह ऋणात्मक है, तो f अभिविन्यास को व्युत्क्रमणीय कर देता है। p पर जेकोबियन निर्धारक का निरपेक्ष मान हमें वह कारक देता है जिसके द्वारा f p के निकट आयतन का विस्तार या संकुचन करता है ,यही कारण है कि यह सामान्य प्रतिस्थापन नियम में होता है।

जैकोबियन निर्धारक का उपयोग तब किया जाता है जब अपने प्रक्षेत्र के भीतर किसी क्षेत्र पर किसी फलन के एकाधिक अभिन्न का मूल्यांकन करते समय चरों में परिवर्तन किया जाता है। निर्देशांक के परिवर्तन के लिए समायोजित करने के लिए जैकबियन निर्धारक का परिमाण अभिन्न के भीतर गुणक कारक के रूप में उत्पन्न होता है। ऐसा इसलिए है क्योंकि nआयामी dV अवयव सामान्य रूप से नई समन्वय प्रणाली में एक समानांतर चतुर्भुज है, और एक समानांतर चतुर्भुज का n आयतन इसके किनारे वाले सदिश का निर्धारक है।

एक संतुलन बिंदु के निकट व्यवहार का अनुमान लगाकर विभेदक समीकरणों की प्रणालियों के लिए संतुलन की स्थिरता का निर्धारण करने के लिए जैकबियन का भी उपयोग किया जा सकता है। इसके अनुप्रयोगों में डिजीज प्रतिरूपण में डिजीज मुक्त संतुलन की स्थिरता का निर्धारण करना सम्मिलित है।[5]

व्युत्क्रम

व्युत्क्रम फलन प्रमेय के अनुसार, व्युत्क्रम फलन के जैकोबियन आव्यूह का व्युत्क्रमणीय आव्यूह व्युत्क्रम फलन का जकोबियन आव्यूह होता है। अर्थात, यदि फलन f : RnRn का जैकोबियन संतत है और Rn में बिंदु p पर एकवचन नहीं है, तो p और

के कुछ पड़ोस तक सीमित होने पर f व्युत्क्रमणीय होता है। दूसरे शब्दों में, यदि एक बिंदु पर जेकोबियन निर्धारक शून्य नहीं है, तो इस बिंदु के पास फलन स्थानीय रूप से व्युत्क्रमणीय है, अर्थात इस बिंदु का एक पड़ोसी है जिसमें फलन व्युत्क्रमणीय होता है।

(अप्रमाणित) जेकोबियन अनुमान एक बहुपद फलन के मामले में वैश्विक व्युत्क्रम से संबंधित है, जो कि n चर में n बहुपदों द्वारा परिभाषित एक फलन है। यह दावा करता है कि, यदि जेकोबियन निर्धारक एक गैर-शून्य स्थिरांक है (या, समतुल्य रूप से, कि इसमें कोई जटिल शून्य नहीं है), तो फलन व्युत्क्रमणीय है और इसका व्युत्क्रम एक बहुपद फलन है।

महत्वपूर्ण बिंदु

यदि f : RnRm एक अवकलनीय फलन है, तो f का एक महत्वपूर्ण बिंदु एक बिंदु है जहां जेकोबियन आव्यूह का कोटि अधिकतम नहीं है। इसका मतलब यह है कि महत्वपूर्ण बिंदु पर कोटि कुछ पड़ोसी बिंदु पर कोटि से कम है। दूसरे शब्दों में, k को f की छवि में निहित खुली गेंदों का अधिकतम आयाम होना चाहिए, तो एक बिंदु महत्वपूर्ण है यदि f के कोटि k के सभी अवयस्क शून्य हैं।

एसे मामले में जहां m = n = k, एक बिंदु महत्वपूर्ण है यदि जेकोबियन निर्धारक शून्य है।

उदाहरण

उदाहरण 1

फलन f : R2R2 पर विचार करें, जिसमें (x, y) ↦ (f1(x, y), f2(x, y)),

द्वारा दिया गया है।

फिर हमारे पास

और

हैं और f जैकोबियन आव्यूह

है और जैकोबियन निर्धारक

है।

उदाहरण 2, ध्रुवीय-कार्तीय रूपांतरण

ध्रुवीय निर्देशांक (r, φ) से कार्तीय निर्देशांक (x, y) में रूपांतरण फलन F: R+ × [0, 2π) → R2 द्वारा घटकों के साथ दिया जाता है,

जेकोबियन निर्धारक r के बराबर है। इसका उपयोग दो समन्वय प्रणालियों के बीच पूर्णांको को बदलने के लिए किया जा सकता है,

उदाहरण 3, गोलीय-कार्तीय रूपांतरण

गोलाकार निर्देशांक (ρ, φ, θ)[6] से कार्तीय निर्देशांक (x, y, z) में रूपांतरण फलन F: R+ × [0, π) × [0, 2π) → R3 द्वारा घटकों के साथ दिया जाता है,

इस निर्देशांक परिवर्तन के लिए यह जेकोबियन आव्यूह है

निर्धारक ρ2 sin φ है। चूँकि dV = dx dy dz एक आयताकार विभेदक आयतन अवयव के लिए आयतन है (क्योंकि एक आयताकार आयत का आयतन इसके पक्षों का गुणनफल है), हम dV = ρ2 sin φ की व्याख्या गोलाकार अंतर आयतन अवयव के आयतन के रूप में कर सकते हैं। आयताकार विभेदक आयतन अवयव के आयतन के विपरीत, यह विभेदक आयतन अवयव का आयतन स्थिर नहीं है, और निर्देशांक (ρ और φ) के साथ बदलता रहता है। इसका उपयोग दो समन्वय प्रणालियों के बीच पूर्णांको को बदलने के लिए किया जा सकता है,

उदाहरण 4

फलन F : R3R4 का घटक

के साथ जैकोबियन आव्यूह

है।

इस उदाहरण से पता चलता है कि जेकोबियन आव्यूह को वर्ग आव्यूह होने की आवश्यकता नहीं है।

उदाहरण 5

फलन F : R3R3 का अवयव

के साथ जेकोबियन निर्धारक

है।

इससे हम देखते हैं कि F उन बिंदुओं के पास अभिविन्यास को प्रतिलोम कर देता है जहां x1 और x2 एक ही चिन्ह है, फलन स्थानीय रूप से हर जगह व्युत्क्रमणीय होता है सिवाय निकट बिंदुओं के जहां x1 = 0 या x2 = 0। सहज रूप से, अगर कोई बिंदु (1, 2, 3) के चारों ओर एक छोटी वस्तु से शुरू करता है और उस वस्तु पर F लागू करता है, तो उसे परिणामी वस्तु लगभग 40 × 1 × 2 = 80 गुना मूल एक के आयतन के साथ मिलेगी, जिसमें अभिविन्यास उत्क्रमित हो जाएगा।

अन्य उपयोग

प्रतिगमन और न्यूनतम वर्ग अन्वायोजन

जेकोबियन सांख्यिकीय प्रतिगमन और वक्र अन्वायोजन में एक रैखिक अभिकल्प आव्यूह के रूप में कार्य करता है, जिसके लिए गैर रेखीय न्यूनतम वर्ग देखें।

गतिकीय प्रणाली

विधि की एक गतिकीय प्रणाली पर विचार करें, जहां विकास प्राचल (समय ) के संबंध में (घटक-वार) का अवकलन है, और अवकलनीय है। यदि , तो एक स्थिर बिंदु है (जिसे स्थिर अवस्था भी कहा जाता है)। हार्टमैन-ग्रोबमैन प्रमेय के अनुसार, एक स्थिर बिंदु के निकट प्रणाली का व्यवहार के आइगेनवैल्यू से संबंधित है, जो स्थिर बिंदु पर का जैकोबियन है।[7] विशेष रूप से, यदि आइगेनवैल्यू ​​​​में सभी वास्तविक भाग हैं जो नकारात्मक हैं, तो प्रणाली स्थिर बिंदु के पास स्थिर है, यदि किसी आइगेनवैल्यू का वास्तविक भाग सकारात्मक होता है, तो बिंदु अस्थिर होता है। यदि आइगेनमानों ​​​​का सबसे बड़ा वास्तविक भाग शून्य है, तो जेकोबियन आव्यूह स्थिरता के मूल्यांकन की अनुमति नहीं देता है।[8]

न्यूटन की विधि

युग्मित अरेखीय समीकरणों की एक वर्ग प्रणाली को न्यूटन की विधि द्वारा पुनरावृत्त रूप से हल किया जा सकता है। यह विधि समीकरणों की प्रणाली के जैकोबियन आव्यूह का उपयोग करती है।

यह भी देखें

टिप्पणियाँ

  1. Differentiability at x implies, but is not implied by, the existence of all first-order partial derivatives at x, and hence is a stronger condition.


संदर्भ

  1. "जैकबियन - ऑक्सफोर्ड डिक्शनरी द्वारा अंग्रेजी में जैकोबियन की परिभाषा". Oxford Dictionaries - English. Archived from the original on 1 December 2017. Retrieved 2 May 2018.
  2. "jacobian की परिभाषा". Dictionary.com. Archived from the original on 1 December 2017. Retrieved 2 May 2018.
  3. Team, Forvo. "याकूब उच्चारण: याकूब में हिन्दी का उच्चारण कैसे करें". forvo.com. Retrieved 2 May 2018.
  4. W., Weisstein, Eric. "याकूब". mathworld.wolfram.com. Archived from the original on 3 November 2017. Retrieved 2 May 2018.{{cite web}}: CS1 maint: multiple names: authors list (link)
  5. Smith? RJ (2015). "जैकबियन की खुशियाँ". Chalkdust. 2: 10–17.
  6. Joel Hass, Christopher Heil, and Maurice Weir. Thomas' Calculus Early Transcendentals, 14e. Pearson, 2018, p. 959.
  7. Arrowsmith, D. K.; Place, C. M. (1992). "The Linearization Theorem". डायनेमिक सिस्टम: डिफरेंशियल इक्वेशन, मैप्स और अराजक व्यवहार. London: Chapman & Hall. pp. 77–81. ISBN 0-412-39080-9.
  8. Hirsch, Morris; Smale, Stephen (1974). विभेदक समीकरण, गतिशील प्रणाली और रैखिक बीजगणित. ISBN 0-12-349550-4.

आगे की पढाई

बाहरी कड़ियाँ