आयतन

From Vigyanwiki
Volume
Simple Measuring Cup.jpg
A measuring cup can be used to measure volumes of liquids. This cup measures volume in units of cups, fluid ounces, and millilitres.
सामान्य प्रतीक
V
Si   इकाईcubic metre
अन्य इकाइयां
Litre, fluid ounce, gallon, quart, pint, tsp, fluid dram, in3, yd3, barrel
SI आधार इकाइयाँ मेंm3
व्यापक?yes
गहन?no
संरक्षित?yes for solids and liquids, no for gases, and plasma[lower-alpha 1]
conserved
आयामL3

आयतन त्रि-आयामी स्थान का माप (गणित) है।[1] सामान्यतः इसे SI (एसआई) व्युत्पन्न इकाइयों (जैसे घन मीटर और लीटर) या विभिन्न इम्पीरियल इकाइयों या संयुक्त राज्य की प्रथागत इकाइयों (जैसे गैलन, चौथाई गेलन, घन इंच) का उपयोग करके संख्यात्मक रूप से निर्धारित किया जाता है। लंबाई (क्यूब्ड) की परिभाषा मात्रा के साथ परस्पर संबंधित है। कंटेनर (धारक) में पदार्थ मात्रा को सामान्य रूप से धारक की क्षमता समझा जाता है अर्थात तरल पदार्थ (गैस या तरल) जिसे धारक धारण कर सकता है बल्कि इसके कि धारक स्वयं कितनी जगह विस्थापित करता है।

प्राचीन समय में समान आकार के प्राकृतिक कंटेनरों (धारक) और बाद में मानकीकृत कंटेनरों का उपयोग करके मात्रा को मापा जाता है। कुछ सरल त्रि-आयामी आकार अंकगणितीय सूत्रों का उपयोग करके सरलता से उनकी मात्रा की गणना कर सकते हैं। यदि आकार की सीमा के लिए कोई सूत्र उपस्थित है तब अधिक जटिल आकृतियों के आयतन की गणना अभिन्नकलन से की जा सकती है। शून्य, एक और द्वि-आयामी वस्तुओं का कोई आयतन नहीं होता है, चौथे और उससे उच्च आयामों में सामान्य आयतन के अनुरूप अवधारणा हाइपरवॉल्यूम है।

इतिहास

प्राचीन इतिहास

भार और माप के नियंत्रण के लिए एक प्राचीन नगरपालिका संस्थान पॉम्पी में पुरुषों के पोंडरिया से 6 माप पात्र।

प्राचीन काल में आयतन मापन की सटीकता सामान्य रूप से 10–50 mL (0.3–2 US fl oz; 0.4–2 imp fl oz) के बीच होती थी।[2]: 8  आयतन गणना का सबसे पहला प्रमाण प्राचीन मिस्र और मेसोपोटामिया से गणितीय समस्याओं के रूप में आया घनाकार, बेलन, छिन्नक और शंकु जैसे साधारण आकार के आयतन का अनुमान लगाया गया था। गणित की इन समस्याओं को मास्को गणितीय पेपिरस (सी. 1820 ई.पू.) में लिखा गया है।[3]: 403  रीसनर पपीरस में प्राचीन मिस्रवासियों ने अनाज और तरल पदार्थों के लिए आयतन की ठोस इकाइयाँ लिखी हैं साथ ही सामग्री के ब्लॉकों के लिए लंबाई, चौड़ाई, गहराई और आयतन की तालिका भी लिखी है।[2]: 116  मिस्र के लोग लंबाई की अपनी इकाइयों (हाथ, हथेली, अंक) का उपयोग मात्रा की अपनी इकाइयों को तैयार करने के लिए करते हैं, जैसे कि आयतन हाथ[2]: 117  या डिने[3]: 396  (1 हाथ × 1 हाथ × 1 हाथ), आयतन हथेली (1 हाथ × 1 हाथ × 1 हथेली), और आयतन अंक (1 हाथ × 1 हाथ × 1 अंक)।[2]: 117 

लगभग 300 ईसा पूर्व में लिखी गई यूक्लिड के तत्वों की अंतिम तीन पुस्तकों में समानांतर चतुर्भुज, शंकु, पिरामिड, बेलन और गोले के आयतन की गणना के लिए सटीक सूत्रों का विवरण देते हैं। सूत्रों को छोटे और सरल टुकड़ों में आकृतियों को विभाजित कर एकीकरण के एक आदिम रूप का उपयोग करके पूर्व गणितज्ञों द्वारा निर्धारित किया गया था।[3]: 403  एक शताब्दी बाद आर्किमिडीज (c. 287 – 212 ईसा पूर्व) कई आकृतियों के अनुमानित आयतन सूत्र का निर्माण किया जिसमें समाप्‍ति दृष्टिकोण की विधि का उपयोग किया गया जिसका अर्थ समान आकृतियों के पिछले ज्ञात सूत्रों से समाधान निकालना है। आकृतियों के साधारण एकीकरण की खोज स्वतंत्र रूप से तीसरी शताब्दी सीई (3rd Century CE) में लिउ हुई(Liu Hui), 5वीं शताब्दी (5th Century CE) सीई में जेड यूसी होंग्ज़ी, मध्य पूर्व और भारत में की गई थी।[3]: 404 

आर्किमिडीज़ ने अनियमित वस्तु के आयतन की गणना करने का एक तरीका भी तैयार किया, वस्तु पानी के नीचे डुबो कर और प्रारंभिक और अंतिम पानी की मात्रा के बीच के अंतर को माप कर, जल आयतन अंतर वस्तु का आयतन है।[3]: 404  अत्यधिक लोकप्रिय होने के बाद भी आर्किमिडीज ने अत्यधिक सटीकता के कारण इसकी मात्रा और इस प्रकार इसकी घनत्व और शुद्धता को खोजने के लिए सोने के मुकुट को नहीं डुबोया।[4] इसके स्थान पर उन्होंने हीड्रास्टाटिक संतुलन का एक साधारण रूप तैयार किया। जिसमें मुकुट और एक समान भार वाले शुद्ध सोने का एक टुकड़ा पानी के नीचे डूबे हुए तराजू के दोनों सिरों पर रखा जाता है जो आर्किमिडीज के सिद्धांत के अनुसार झुक जाएगा।[5]


इकाइयों की गणना और मानकीकरण

Pouring liquid to a marked flask
सन 1926 में, द्रव ड्राम मार्किंग के साथ अंशांकित सिलिंडर का उपयोग करके मात्रा को मापने का आरेख।

मध्य युग में मात्रा मापने के लिए कई इकाइयाँ बनाई गईं जैसे कि सेस्टर, एम्बर (इकाई), कुम्ब (इकाई) और सीवन (इकाई)। ऐसी इकाइयों की विशाल मात्रा ने ब्रिटिश राजाओं को उन्हें मानकीकृत करने के लिए प्रेरित किया जिसकी परिणति इंग्लैंड के हेनरी III (तृतीय) द्वारा सन 1258 में ब्रेड और एले कानून के आकलन में हुई। न्याय व्यवस्था ने भार, लंबाई और मात्रा को मानकीकृत किया और साथ ही पेनी, औंस, पाउंड, गैलन और बुशल को पेश किया।[2]: 73–74  सन 1618 में लंदन फार्माकोपिया (मेडिसिन कंपाउंड कैटलॉग) ने रोमन गैलन [6] या कोंगियस[7]को अपनाया। मात्रा की एक मूल इकाई के रूप में और एपोथेकरीज़ के भार की इकाइयों की रूपांतरण तालिका दी।[6] इस समय के आसपास मात्रा माप अधिक सटीक होते जा रहे हैं और 1–5 mL (0.03–0.2 US fl oz; 0.04–0.2 imp fl oz) के बीच में अनिश्चितता कम होती जा रही है [2]: 8 

17वीं शताब्दी की के प्रारंभ में बोनवेंट्योर कैवलियरी ने किसी भी वस्तु के आयतन की गणना करने के लिए आधुनिक समाकलन कैलकुलस (समाकलन गणित) के दर्शन को प्रस्तुत किया। उन्होंने कैवलियरी के सिद्धांत को तैयार किया जिसमें कहा गया था कि आकृति के पतले से पतले टुकड़े का उपयोग करने से परिणामी मात्रा अधिक से अधिक सटीक होगी। इस विचार को बाद में 17 वीं और 18 वीं शताब्दी में पियरे डी फर्मेट, जॉन वालिस, आइज़ैक बैरो, जेम्स ग्रेगरी (गणितज्ञ), आइजैक न्यूटन, गॉटफ्रीड विल्हेम लीबनिज और मारिया गेटाना अगनेसी द्वारा विस्तारित किया गया जिससे आधुनिक समाकलन गणित का निर्माण किया जो 21 वीं सदी में भी उपयोगी है।[3]: 404 


मीट्रिक और पुनर्परिभाषा

7 अप्रैल 1795 में फ्रांसीसी कानून में छह इकाइयों का उपयोग करके मीट्रिक प्रणाली को औपचारिक रूप से परिभाषित किया गया था। इनमें से तीन आयतन से संबंधित हैं: जलाऊ लकड़ी के आयतन के लिए स्टीयर (1m3) ; लीटर (1 dm3) द्रव की मात्रा के लिए; और ग्राम, द्रव्यमान के लिए - अधिकतम घनत्व पर एक घन सेंटीमीटर पानी के द्रव्यमान के रूप में परिभाषित किया गया है 4 °C (39 °F).[citation needed] तीस साल बाद सन 1824 में इम्पीरियल गैलन को 17 डिग्री सेल्सियस (62 डिग्री फारेनहाइट) पर दस पाउंड पानी अधिकृत मात्रा वाले के रूप में परिभाषित किया गया था।[3]: 394  यूनाइटेड किंगडम के बाट और माप अधिनियम 1985 तक इस परिभाषा को और अधिक परिष्कृत किया गया था जो पानी के उपयोग के बिना 1 इम्पीरियल गैलन को ठीक 4.54609 लीटर के बराबर बनाता है।[8]

सन 1960 में अंतरराष्ट्रीय मीटर नमूना से क्रिप्टन -86 परमाणुओं की नारंगी-लाल वर्णक्रमीय रेखा तक मीटर की पुनर्परिभाषा ने भौतिक वस्तुओं से मीटर, क्यूबिक मीटर और लीटर को सीमाओं से बाहर किया। यह अंतर्राष्ट्रीय प्रोटोटाइप (नमूना) मीटर में परिवर्तन के लिए मीटर और मीटर-व्युत्पन्न इकाइयों की मात्रा को लचीला बनाता है।[9] मीटर की परिभाषा को 1983 में प्रकाश की गति और सेकंड (जो कि सीज़ियम मानक से लिया गया है) का उपयोग करने के लिए परिभाषित किया गया और सन 2019 में स्पष्टता के लिए पुनर्परिभाषित किया गया था ।[10]


माप

किसी वस्तु के आयतन को सामान्य रूप से मापने का सबसे पुराना तरीका मानव शरीर का उपयोग करना है जैसे हाथ के आकार और चुटकी का उपयोग करना। जबकि मानव शरीर की विविधताएं इसे अविश्वसनीय बनाती हैं। मात्रा को मापने का एक अच्छा तरीका प्रकृति में पाए जाने वाले सुसंगत और लम्बी अवधि तक चलने वाले कंटेनरों का उपयोग करना है। इसके पश्चात जैसा कि धातु विज्ञान और कांच के उत्पादन में सुधार हुआ, आजकल कम मात्रा को सामान्य रूप से मानकीकृत मानव निर्मित कंटेनरों का उपयोग करके मापा जाता है।[3]: 393  कंटेनर के एक या एक से अधिक (गणित) अंश का उपयोग करके तरल पदार्थ या दानेदार सामग्री की छोटी मात्रा को मापने के लिए यह विधि सामान्य है। दानेदार सामग्री के लिए सपाट सतह बनाने हेतु कंटेनर को हिलाया या समतल किया जाता है। यह विधि मात्रा को मापने का सबसे सटीक तरीका नहीं है लेकिन इसका उपयोग खाना पकाने की सामग्री को मापने के लिए किया जाता है।[3]: 399  सूक्ष्म पैमाने पर तरल पदार्थ की मात्रा को मापने के लिए जीव विज्ञान और जैव रसायन में वायु विस्थापक पिपेट का उपयोग किया जाता है।[11] मापने वाले कैलिब्रेटेड कप और मापने वाले चम्मच खाना पकाने और दैनिक जीवन के अनुप्रयोगों के लिए पर्याप्त हैं, जबकि वे प्रयोगशाला के लिए पर्याप्त सटीक नहीं हैं। जहाँ तरल पदार्थ की मात्रा को अंशांकित सिलेंडरों, पिपेट और बड़ा (वॉल्यूमेट्रिक) फ्लास्क का उपयोग करके मापा जाता है। इस तरह के कैलिब्रेटेड कंटेनरों में सबसे बड़े पेट्रोलियम भंडारण टैंक होते हैं जिनमें से कुछ में 1,000,000 bbl (160,000,000 L) तरल पदार्थ को रखा जा सकता है।[3]: 399  इस पैमाने पर भी पेट्रोलियम के घनत्व और तापमान को जानकर इन टैंकों में अभी भी बहुत सटीक आयतन मापन किया जा सकता है।[3]: 403 

जलाशय जैसे बड़े आयतन के लिए कंटेनर के आयतन को आकृतियों द्वारा प्रतिरूपित किया जाता है और गणित का उपयोग करके गणना की जाती है।[3]: 403  कंप्यूटर विज्ञान में कम्प्यूटेशनल ज्यामिति के क्षेत्र में संख्यात्मक रूप से वस्तुओं की मात्रा की गणना करने का कार्य अध्ययन किया जाता है, विभिन्न प्रकार की वस्तुओं के लिए इस गणना, [[सन्निकटन कलन विधि]] या सटीक एल्गोरिदम (कलन विधि) को करने के लिए कुशल एल्गोरिदम (कलन विधि) की जांच की जाती है। उदाहरण के लिए उत्तल आयतन सन्निकटन तकनीक प्रदर्शित करती है कि ओरेकल मशीन का उपयोग करके किसी भी उत्तल पिंड के आयतन का अनुमान कैसे लगाया जाए।[citation needed]


इकाइयां

बायाँ

आयतन की इकाई का सामान्य रूप घन (बीजगणित) (x3) लंबाई की एक इकाई है। उदाहरण के लिए यदि मीटर (m) को लंबाई की इकाई के रूप में चुना जाता है तो आयतन की संगत इकाई घन मीटर (m)3 होती है।[12] इस प्रकार आयतन एक SI व्युत्पन्न इकाई है और इसका विमीय विश्लेषण L3

[13] आयतन की मीट्रिक इकाइयाँ मीट्रिक उपसर्गों का उपयोग 10 की शक्ति कड़ाई से करती हैं। आयतन की इकाइयों के लिए उपसर्गों को लागू करते समय जो कि घन लंबाई की इकाइयों में व्यक्त किए जाते हैं, घन संचालकों को उपसर्ग सहित लंबाई की इकाई पर लागू किया जाता है। घन सेंटीमीटर को घन मीटर में बदलने का एक उदाहरण है: 2.3 सेंटीमीटर3 = 2.3 (सेमी)3 = 2.3 (0.01 मीटर)3 = 0.0000023 मी3 (पांच शून्य)।: 143 मा physical quantity

(गणना) का एक महत्वपूर्ण भाग है। जिनमें से एक, एक ही तल पर रेखा (ज्यामिति) के चारों ओर एक समतल वक्र को घुमाकर परिक्रमण के ठोस के आयतन की गणना कर रहा है। वॉशर या डिस्क एकीकरण विधि का उपयोग घुमाव के अक्ष के समानांतर अक्ष द्वारा एकीकृत करते समय किया जाता है। सामान्य समीकरण को इस प्रकार लिखा जा सकता है:

जहाँ और समतल वक्र सीमाएँ हैं।: 1, 3  शेल एकीकरण विधि का उपयोग तब किया जाता है जब रोटेशन की धुरी के लंबवत धुरी द्वारा एकीकृत किया जाता है। समीकरण को इस प्रकार लिखा जा सकता है:[14]: 6  त्रि-आयामी अंतरिक्ष में एक क्षेत्र (गणित) डी का आयतन निरंतर कार्य (गणित) के ट्रिपल या आयतन अभिन्न द्वारा दिया जाता है। क्षेत्र के ऊपर। यह सामान्य रूप से इस प्रकार लिखा जाता है:


Cite error: <ref> tags exist for a group named "lower-alpha", but no corresponding <references group="lower-alpha"/> tag was found
  1. "SI Units - Volume". National Institute of Standards and Technology. April 13, 2022. Archived from the original on August 7, 2022. Retrieved August 7, 2022.
  2. Jump up to: 2.0 2.1 2.2 2.3 2.4 2.5 Imhausen, Annette (2016). Mathematics in Ancient Egypt: A Contextual History. Princeton University Press. ISBN 978-1-4008-7430-9. OCLC 934433864.
  3. Jump up to: 3.00 3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09 3.10 3.11 Treese, Steven A. (2018). History and Measurement of the Base and Derived Units. Cham, Switzerland: Springer Science+Business Media. ISBN 978-3-319-77577-7. LCCN 2018940415. OCLC 1036766223.
  4. Rorres, Chris. "The Golden Crown". Drexel University. Archived from the original on 11 March 2009. Retrieved 24 March 2009.
  5. Graf, E. H. (2004). "Just what did Archimedes say about buoyancy?". The Physics Teacher. 42 (5): 296–299. Bibcode:2004PhTea..42..296G. doi:10.1119/1.1737965. Archived from the original on 2021-04-14. Retrieved 2022-08-07.
  6. Jump up to: 6.0 6.1 "Balances, Weights and Measures" (PDF). Royal Pharmaceutical Society. 4 Feb 2020. p. 1. Archived (PDF) from the original on 20 May 2022. Retrieved 13 August 2022.
  7. Cardarelli, François (6 Dec 2012). Scientific Unit Conversion: A Practical Guide to Metrication (2nd ed.). London: Springer Science+Business Media. p. 151. ISBN 978-1-4471-0805-4. OCLC 828776235.
  8. Cook, James L. (1991). Conversion Factors. Oxford [England]: Oxford University Press. pp. xvi. ISBN 0-19-856349-3. OCLC 22861139.
  9. Marion, Jerry B. (1982). Physics For Science and Engineering. CBS College Publishing. p. 3. ISBN 978-4-8337-0098-6.
  10. "Mise en pratique for the definition of the metre in the SI" (PDF). International Bureau of Weights and Measures. Consultative Committee for Length. 20 May 2019. p. 1. Archived (PDF) from the original on 13 August 2022. Retrieved 13 August 2022.
  11. "Use of Micropipettes" (PDF). Buffalo State College. Archived from the original (PDF) on 4 August 2016. Retrieved 19 June 2016.
  12. "Area and Volume". National Institute of Standards and Technology. February 25, 2022. Archived from the original on August 7, 2022. Retrieved August 7, 2022.
  13. Lemons, Don S. (16 March 2017). A Student's Guide to Dimensional Analysis. New York: Cambridge University Press. p. 38. ISBN 978-1-107-16115-3. OCLC 959922612.
  14. Cite error: Invalid <ref> tag; no text was provided for refs named :4