ज़र्मेलो सेट सिद्धांत: Difference between revisions
No edit summary |
|||
(9 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|System of mathematical set theory}} | {{Short description|System of mathematical set theory}} | ||
ज़र्मेलो सेट थ्योरी (कभी-कभी | ज़र्मेलो सेट थ्योरी (कभी-कभी '''Z''' - द्वारा निरूपित), जैसा कि 1908 में [[अर्नेस्ट ज़र्मेलो|अर्न्स्ट ज़र्मेलो]] द्वारा एक सेमिनल पेपर में निर्धारित किया गया था, आधुनिक ज़र्मेलो-फ्रेंकेल सेट थ्योरी (जेडएफ) और इसके एक्सटेंशन, जैसे वॉन न्यूमैन- का पूर्वज है। बर्नेज़-गोडेल सेट सिद्धांत (एनबीजी)। इसमें अपने वंशजों से कुछ अंतर होते हैं, जिन्हें हमेशा समझा नहीं जाता है, और प्रायः गलत उद्धृत किया जाता है। यह लेख मूल पाठ (अंग्रेजी में अनुवादित) और मूल अंकन के साथ मूल स्वयंसिद्धों को निर्धारित करता है। | ||
== जर्मेलो के सिद्धांत सेट थ्योरी == | == जर्मेलो के सिद्धांत सेट थ्योरी == | ||
ज़र्मेलो सेट सिद्धांत के सिद्धांतों को वस्तुओं के लिए कहा गया है, जिनमें से कुछ (लेकिन जरूरी नहीं कि सभी) सेट हैं, और शेष वस्तुएं यूरेलेमेंट्स हैं और सेट नहीं हैं। ज़र्मेलो की भाषा में अंतर्निहित रूप से एक सदस्यता संबंध ∈, एक समानता संबंध = (यदि यह अंतर्निहित तर्क में | ज़र्मेलो सेट सिद्धांत के सिद्धांतों को वस्तुओं के लिए कहा गया है, जिनमें से कुछ (लेकिन जरूरी नहीं कि सभी) सेट हैं, और शेष वस्तुएं यूरेलेमेंट्स हैं और सेट नहीं हैं। ज़र्मेलो की भाषा में अंतर्निहित रूप से एक सदस्यता संबंध ∈, एक समानता संबंध = (यदि यह अंतर्निहित तर्क में सम्मिलित नहीं है), और एक एकल विधेय यह कहते हुए सम्मिलित है कि क्या कोई वस्तु एक सेट है। समुच्चय सिद्धांत के बाद के संस्करणों में प्रायः यह माना जाता है कि सभी वस्तुएँ समुच्चय हैं इसलिए कोई यूरेलेमेंट नहीं हैं और एकात्मक विधेय की कोई आवश्यकता नहीं है। | ||
# सिद्ध प्रमाण I - विस्तार का सिद्धांत ((स्वयंसिद्ध डेर बेस्टिम्मथित)) यदि सेट M का प्रत्येक | # सिद्ध प्रमाण I - विस्तार का सिद्धांत ((स्वयंसिद्ध डेर बेस्टिम्मथित)) यदि सेट M का प्रत्येक अवयव भी N का एक अवयव है और इसके विपरीत ... तो M <math>\equiv</math> N। संक्षेप में, प्रत्येक सेट अपने अवयवों द्वारा निर्धारित किया जाता है। | ||
# सिद्ध प्रमाण II - प्रारंभिक समुच्चयों का अभिगृहीत (स्वयंसिद्ध डेर एलीमेंटर्मेंजेन) एक समुच्चय, शून्य समुच्चय, ∅, मौजूद है जिसमें कोई भी | # सिद्ध प्रमाण II - प्रारंभिक समुच्चयों का अभिगृहीत (स्वयंसिद्ध डेर एलीमेंटर्मेंजेन) एक समुच्चय, शून्य समुच्चय, ∅, मौजूद है जिसमें कोई भी अवयव नहीं है। यदि a डोमेन का कोई ऑब्जेक्ट है, तो एक सेट {a} मौजूद है जिसमें a और केवल a एक अवयव के रूप में है। यदि a और b डोमेन की कोई दो वस्तुएं हैं, तो हमेशा एक सेट {''a'', ''b''} मौजूद होता है जिसमें अवयव a और b होते हैं लेकिन कोई ऑब्जेक्ट एक्स उन दोनों से अलग नहीं होता है। युग्मन का अभिगृहीत देखें। | ||
# सिद्ध प्रमाण III - पृथक्करण का अभिगृहीत (स्वयंसिद्ध डेर ऑसोनडेरंग) जब भी समुच्चय M के सभी | # सिद्ध प्रमाण III - पृथक्करण का अभिगृहीत (स्वयंसिद्ध डेर ऑसोनडेरंग) जब भी समुच्चय M के सभी अवयवों के लिए प्रस्तावात्मक फलन –(x) परिभाषित होता है, M में एक उपसमुच्चय M' होता है जिसमें अवयवों के रूप में M के ठीक वे अवयव होते हैं जिनके लिए –(x) सत्य है। | ||
# सिद्ध प्रमाण IV - पावर सेट का स्वयंसिद्ध (स्वयंसिद्ध डर पोटेन्ज़मेंज) प्रत्येक समुच्चय T के लिए एक समुच्चय T', T का शक्ति समुच्चय होता है, जिसमें | # सिद्ध प्रमाण IV - पावर सेट का स्वयंसिद्ध (स्वयंसिद्ध डर पोटेन्ज़मेंज) प्रत्येक समुच्चय T के लिए एक समुच्चय T', T का शक्ति समुच्चय होता है, जिसमें अवयवों के रूप में T के सभी उपसमुच्चय होते हैं। | ||
# सिद्ध प्रमाण V - संघ का स्वयंसिद्ध(स्वयंसिद्ध डेर वेरेइनिगंग) प्रत्येक सेट T के लिए एक सेट ∪T, T का संघ है, जिसमें | # सिद्ध प्रमाण V - संघ का स्वयंसिद्ध(स्वयंसिद्ध डेर वेरेइनिगंग) प्रत्येक सेट T के लिए एक सेट ∪T, T का संघ है, जिसमें अवयवों के रूप में T के अवयवों के सभी अवयव सम्मिलित हैं। | ||
# सिद्ध प्रमाण VI - विकल्प का स्वयंसिद्ध (स्वयंसिद्ध डेर औस्वाल) यदि T एक ऐसा समुच्चय है जिसके सभी अवयव ऐसे समुच्चय हैं जो ∅ से भिन्न हैं और पारस्परिक रूप से असंयुक्त हैं, तो इसके संघ ∪T में कम से कम एक उपसमुच्चय ''S''<sub>1</sub> | # सिद्ध प्रमाण VI - विकल्प का स्वयंसिद्ध (स्वयंसिद्ध डेर औस्वाल) यदि T एक ऐसा समुच्चय है जिसके सभी अवयव ऐसे समुच्चय हैं जो ∅ से भिन्न हैं और पारस्परिक रूप से असंयुक्त हैं, तो इसके संघ ∪T में कम से कम एक उपसमुच्चय ''S''<sub>1</sub> सम्मिलित है T के प्रत्येक अवयव के साथ एक और केवल एक अवयव समान है। | ||
# स्वयंसिद्ध VII - अनंत का स्वयंसिद्ध (स्वयंसिद्ध डेस उनेंडलिचेन) डोमेन में कम से कम एक सेट Z मौजूद होता है जिसमें एक | # स्वयंसिद्ध VII - अनंत का स्वयंसिद्ध (स्वयंसिद्ध डेस उनेंडलिचेन) डोमेन में कम से कम एक सेट Z मौजूद होता है जिसमें एक अवयव के रूप में शून्य सेट होता है और यह इस तरह गठित होता है कि इसके प्रत्येक अवयव के लिए फॉर्म {a} के एक और अवयव से मेल खाता है। दूसरे शब्दों में, इसके प्रत्येक अवयव के साथ इसमें अवयव के रूप में संबंधित सेट {a} भी सम्मिलित है। | ||
== मानक सेट सिद्धांत के साथ संबंध == | == मानक सेट सिद्धांत के साथ संबंध == | ||
सबसे व्यापक रूप से | सबसे व्यापक रूप से उपयोग किया जाने वाला और स्वीकृत सेट सिद्धांत ZFC के रूप में जाना जाता है, जिसमें ज़र्मेलो-फ्रेंकेल सेट सिद्धांत सम्मिलित है जिसमें पसंद का स्वयंसिद्ध (एसी) सम्मिलित है। लिंक दिखाते हैं कि ज़र्मेलो के सिद्धांत के स्वयंसिद्ध जहाँ मेल खाते हैं। "प्राथमिक सेट" के लिए कोई सटीक मिलान नहीं है। (यह बाद में दिखाया गया था कि सिंगलटन सेट को उस चीज़ से प्राप्त किया जा सकता है जिसे अब "जोड़ियों का अभिगृहीत" कहा जाता है। यदि a उपलब्ध है, a और a उपलब्ध है, तो इस प्रकार {a,a} मौजूद है, और इसलिए विस्तार {a,a} = {a} द्वारा।) खाली समुच्चय अभिगृहीत पहले से ही अनन्तता के अभिगृहीत द्वारा मान लिया गया है, और अब इसे इसके भाग के रूप में सम्मिलित किया गया है। | ||
ज़र्मेलो सेट सिद्धांत में प्रतिस्थापन | ज़र्मेलो सेट सिद्धांत में प्रतिस्थापन और नियमितता के सिद्धांतों को सम्मिलित नहीं किया गया है। प्रतिस्थापन की स्वयंसिद्ध पहली बार 1922 में [[अब्राहम फ्रेंकेल]] और [[थोराल्फ़ स्कोलेम]] द्वारा प्रकाशित किया गया था, जिन्होंने स्वतंत्र रूप से पता लगाया था कि ज़र्मेलो के स्वयंसिद्ध सेट {Z<sub>0</sub>, Z<sub>1</sub>, Z<sub>2</sub>, ...} के अस्तित्व को साबित नहीं कर सकते हैं जहाँ Z<sub>0</sub> [[प्राकृतिक संख्या]] का समूह है और Z<sub>n+1</sub> Z<sub>n</sub> का पावर सेट है। उन दोनों ने महसूस किया कि इसे सिद्ध करने के लिए प्रतिस्थापन के स्वयंसिद्ध की आवश्यकता है। अगले वर्ष, [[जॉन वॉन न्यूमैन]] ने बताया कि नियमितता के स्वयंसिद्ध सिद्धांत को उनके सिद्धांत के निर्माण के लिए आवश्यक है। 1925 में वॉन न्यूमैन द्वारा नियमितता का स्वयंसिद्ध कथन किया गया था।{{sfn|Ferreirós|2007|pp=369, 371}} | ||
आधुनिक जेडएफसी प्रणाली में, पृथक्करण के स्वयंसिद्ध में संदर्भित प्रस्तावनात्मक कार्य की व्याख्या किसी भी संपत्ति के रूप में की जाती है, जिसे पहले-क्रम वाले अच्छी तरह से बनाए गए सूत्र द्वारा मापदंडों के साथ परिभाषित किया जाता है, इसलिए पृथक्करण स्वयंसिद्ध को एक स्वयंसिद्ध स्कीमा द्वारा प्रतिस्थापित किया जाता है। प्रथम क्रम सूत्र की धारणा 1908 में ज्ञात नहीं थी जब ज़र्मेलो ने अपनी स्वयंसिद्ध प्रणाली प्रकाशित की, और बाद में उन्होंने इस व्याख्या को बहुत अधिक प्रतिबंधात्मक होने के रूप में खारिज कर दिया। ज़र्मेलो सेट सिद्धांत को सामान्यतः पहले क्रम के सिद्धांत के रूप में लिया जाता है, जिसमें पृथक्करण स्वयंसिद्ध को प्रत्येक प्रथम-क्रम सूत्र के लिए [[स्वयंसिद्ध योजना]] के साथ स्वयंसिद्ध योजना द्वारा प्रतिस्थापित किया जाता है। इसे दूसरे क्रम के तर्क में एक सिद्धांत के रूप में भी माना जा सकता है, जहाँ अब पृथक्करण स्वयंसिद्ध केवल एक स्वयंसिद्ध है। ज़र्मेलो सेट सिद्धांत की दूसरी क्रम की व्याख्या शायद ज़र्मेलो की अपनी अवधारणा के करीब है, और पहले क्रम की व्याख्या से अधिक मजबूत है। | |||
सामान्य वॉन न्यूमैन ब्रह्मांड में ''V''<sub>α</sub> जेडएफसी सेट थ्योरी (ऑर्डिनल्स α के लिए), सेट में से कोई एक V<sub>α</sub> α के लिए पहले अनंत क्रमसूचक ω (जैसे V<sub>ω·2</sub>) ज़र्मेलो सेट थ्योरी का एक मॉडल बनाता है। तो ज़र्मेलो सेट थ्योरी की संगति जेडएफसी सेट थ्योरी का एक प्रमेय है। जैसा <math>V_{\omega\cdot 2}</math> ज़र्मेलो के सिद्धांतों को मॉडल करता है जबकि इसमें सम्मिलित नहीं है <math>\aleph_\omega</math> और बड़े अनंत कार्डिनल्स, गोडेल की पूर्णता प्रमेय द्वारा ज़र्मेलो के स्वयंसिद्ध इन कार्डिनल्स के अस्तित्व को साबित नहीं करते हैं। (कार्डिनल्स को ज़र्मेलो सेट थ्योरी में अलग तरह से परिभाषित किया जाना है, क्योंकि कार्डिनल्स और ऑर्डिनल्स की सामान्य परिभाषा बहुत अच्छी तरह से काम नहीं करती है: सामान्य परिभाषा के साथ ऑर्डिनल ω2 के अस्तित्व को साबित करना भी संभव नहीं है।) | |||
ज़र्मेलो ने यूरेलेमेंट्स के अस्तित्व की अनुमति दी जो सेट नहीं हैं और इसमें कोई | अनंत का स्वयंसिद्ध अब सामान्यतः पहली अनंत वॉन न्यूमैन क्रमिक संख्या के अस्तित्व पर जोर देने के लिए संशोधित किया गया है <math>\omega</math>; मूल ज़र्मेलो स्वयंसिद्ध इस सेट के अस्तित्व को साबित नहीं कर सकते हैं, और न ही संशोधित ज़र्मेलो स्वयंसिद्ध ज़र्मेलो के अनन्तता के स्वयंसिद्ध को सिद्ध कर सकते हैं। ज़र्मेलो के स्वयंसिद्ध (मूल या संशोधित) के अस्तित्व को साबित नहीं कर सकते <math>V_{\omega}</math> एक सेट के रूप में और न ही अनंत सूचकांक वाले सेटों के संचयी पदानुक्रम के किसी रैंक के रूप में। | ||
ज़र्मेलो ने यूरेलेमेंट्स के अस्तित्व की अनुमति दी जो सेट नहीं हैं और इसमें कोई अवयव नहीं है; इन्हें अब सामान्यतः सेट सिद्धांतों से हटा दिया जाता है। | |||
== मैक लेन सेट थ्योरी == | == मैक लेन सेट थ्योरी == | ||
मैक लेन सेट सिद्धांत, द्वारा पेश किया गया | मैक लेन सेट सिद्धांत, मैक लेन (1986) द्वारा पेश किया गया, ज़र्मेलो सेट सिद्धांत है जिसमें पृथक्करण का स्वयंसिद्ध पहले क्रम के सूत्रों तक सीमित है जिसमें प्रत्येक परिमाणक परिबद्ध है। मैक लेन सेट सिद्धांत एक [[प्राकृतिक संख्या वस्तु]] के साथ [[टोपोस सिद्धांत]] की ताकत के समान है, या प्रिन्सिपिया मैथेमेटिका में सिस्टम के समान है। यह लगभग सभी सामान्य गणित को पूरा करने के लिए पर्याप्त रूप से मजबूत है जो सीधे सेट सिद्धांत या तर्क से जुड़ा नहीं है। | ||
मैक लेन सेट सिद्धांत एक [[प्राकृतिक संख्या वस्तु]] के साथ [[टोपोस सिद्धांत]] की ताकत के समान है, या | |||
== ज़र्मेलो के पेपर का उद्देश्य == | == ज़र्मेलो के पेपर का उद्देश्य == | ||
Line 34: | Line 34: | ||
उनका कहना है कि वह दिखाना चाहते हैं कि कैसे [[जॉर्ज कैंटर]] और [[रिचर्ड डेडेकिंड]] के मूल सिद्धांत को कुछ परिभाषाओं और सात सिद्धांतों या सूक्तियों तक सीमित किया जा सकता है। वह कहता है कि वह सिद्ध नहीं कर पाया है कि अभिगृहीत सुसंगत हैं। | उनका कहना है कि वह दिखाना चाहते हैं कि कैसे [[जॉर्ज कैंटर]] और [[रिचर्ड डेडेकिंड]] के मूल सिद्धांत को कुछ परिभाषाओं और सात सिद्धांतों या सूक्तियों तक सीमित किया जा सकता है। वह कहता है कि वह सिद्ध नहीं कर पाया है कि अभिगृहीत सुसंगत हैं। | ||
उनकी निरंतरता के लिए | उनकी निरंतरता के लिए गैर-रचनात्मक तर्क इस प्रकार है। क्रमांक 0, 1, 2, ...,ω, ω+1, ω+2,..., ω·2 में से किसी एक के लिए ''V''<sub>α</sub> को परिभाषित करें: | ||
* | *V<sub>0</sub> खाली सेट है। | ||
* α के लिए β+1 | * α के लिए β+1 के रूप का उत्तराधिकारी, ''V''<sub>α</sub> को V<sub>β</sub> के सभी उपसमुच्चयों के संग्रह के रूप में परिभाषित किया गया है। | ||
* α के लिए एक सीमा ( | *α के लिए एक सीमा (उदाहरण के लिए ω, ω·2) तो V<sub>α</sub> को β<α के लिए V<sub>β</sub> के मिलन के रूप में परिभाषित किया गया है। | ||
तब ज़र्मेलो सेट सिद्धांत के स्वयंसिद्ध सुसंगत हैं क्योंकि वे मॉडल V | तब ज़र्मेलो सेट सिद्धांत के स्वयंसिद्ध सुसंगत हैं क्योंकि वे मॉडल V<sub>ω·2</sub> में सत्य हैं। जबकि एक गैर-रचनावादी इसे एक वैध तर्क के रूप में मान सकता है, एक रचनावादी शायद नहीं: जबकि V<sub>ω</sub> तक सेट के निर्माण में कोई समस्या नहीं है, V<sub>ω+1</sub> का निर्माण कम स्पष्ट है क्योंकि कोई भी प्रत्येक उपसमुच्चय को रचनात्मक रूप से परिभाषित नहीं कर सकता है V<sub>ω</sub> का है। इस तर्क को ज़र्मेलो सेट सिद्धांत के अनंत के एक नए स्वयंसिद्ध के अतिरिक्त के साथ एक वैध प्रमाण में बदल दिया जा सकता है, केवल यह कि V<sub>ω·2</sub> है। यह संभवतः एक रचनावादी के लिए आश्वस्त नहीं है, लेकिन यह दर्शाता है कि ज़र्मेलो सेट सिद्धांत की निरंतरता को एक ऐसे सिद्धांत के साथ सिद्ध किया जा सकता है जो ज़र्मेलो सिद्धांत से बहुत अलग नहीं है, केवल थोड़ा अधिक शक्तिशाली है। | ||
== | == पृथक्करण स्वयंसिद्ध == | ||
ज़र्मेलो की टिप्पणी है कि उनकी प्रणाली का स्वयंसिद्ध III एंटीइनोमीज़ को खत्म करने के लिए जिम्मेदार है। यह कैंटर की मूल परिभाषा से इस प्रकार भिन्न है। | ज़र्मेलो की टिप्पणी है कि उनकी प्रणाली का स्वयंसिद्ध III एंटीइनोमीज़ को खत्म करने के लिए जिम्मेदार है। यह कैंटर की मूल परिभाषा से इस प्रकार भिन्न है। | ||
समुच्चय को स्वतंत्र रूप से किसी भी मनमाना तार्किक रूप से निश्चित धारणा द्वारा परिभाषित नहीं किया जा सकता है। उनका निर्माण पहले से निर्मित सेटों से किसी तरह से किया जाना चाहिए। उदाहरण के लिए, उन्हें पावरसेट लेकर बनाया जा सकता है, या उन्हें पहले से दिए गए सेट के सबसेट के रूप में अलग किया जा सकता है। यह, वह कहता है, विरोधाभासी विचारों को समाप्त करता है जैसे सभी सेटों का सेट या सभी क्रमिक संख्याओं का | समुच्चय को स्वतंत्र रूप से किसी भी मनमाना तार्किक रूप से निश्चित धारणा द्वारा परिभाषित नहीं किया जा सकता है। उनका निर्माण पहले से निर्मित सेटों से किसी तरह से किया जाना चाहिए। उदाहरण के लिए, उन्हें पावरसेट लेकर बनाया जा सकता है, या उन्हें पहले से दिए गए सेट के सबसेट के रूप में अलग किया जा सकता है। यह, वह कहता है, विरोधाभासी विचारों को समाप्त करता है जैसे सभी सेटों का सेट या सभी क्रमिक संख्याओं का सेट है। | ||
वह इस प्रमेय के माध्यम से [[रसेल विरोधाभास]] का निपटान करता है: हर सेट <math>M</math> कम से कम एक उपसमुच्चय रखता है <math>M_0</math> | वह इस प्रमेय के माध्यम से [[रसेल विरोधाभास]] का निपटान करता है: हर सेट <math>M</math> कम से कम एक उपसमुच्चय रखता है <math>M_0</math> का अवयव नहीं है <math>M</math>". मान लेते हैं <math>M_0</math> का उपसमुच्चय हो <math>M</math> जिसके लिए, स्वयंसिद्ध III द्वारा, धारणा द्वारा अलग किया गया है <math>x \notin x</math>. तब <math>M_0</math> में नहीं हो सकता <math>M</math>. के लिए | ||
# अगर <math>M_0</math> में है <math>M_0</math>, तब <math>M_0</math> | # अगर <math>M_0</math> में है <math>M_0</math>, तब <math>M_0</math> अवयव x है जिसके लिए x, x में है (अर्थात <math>M_0</math> स्वयं), जो की परिभाषा के विपरीत होगा <math>M_0</math>. | ||
# अगर <math>M_0</math> इसमें नहीं है <math>M_0</math>, और मान रहा है <math>M_0</math> | # अगर <math>M_0</math> इसमें नहीं है <math>M_0</math>, और मान रहा है <math>M_0</math>, <math>M</math> का अवयव है, तो <math>M_0</math> <math>M</math> का एक अवयव है जो परिभाषा को संतुष्ट करता है <math>x \notin x</math>, और इसी में है <math>M_0</math> जो विरोधाभास है। | ||
इसलिए, धारणा है कि <math>M_0</math> में है <math>M</math> गलत है, प्रमेय साबित कर रहा है। इसलिए सार्वभौमिक डोमेन | इसलिए, धारणा है कि <math>M_0</math> में है <math>M</math> गलत है, प्रमेय साबित कर रहा है। इसलिए सार्वभौमिक डोमेन B की सभी वस्तुएं और एक ही सेट के अवयव नहीं हो सकती हैं। जहां तक हमारा संबंध है, यह रसेल विरोध को समाप्त करता है। | ||
इसने डोमेन बी की समस्या को छोड़ दिया जो कुछ को संदर्भित करता प्रतीत होता है। इससे एक [[उचित वर्ग]] का विचार उत्पन्न हुआ। | इसने डोमेन बी की समस्या को छोड़ दिया जो कुछ को संदर्भित करता प्रतीत होता है। इससे एक [[उचित वर्ग]] का विचार उत्पन्न हुआ। | ||
Line 56: | Line 56: | ||
== कैंटर का प्रमेय == | == कैंटर का प्रमेय == | ||
ज़र्मेलो का पेपर कैंटर के प्रमेय नाम का उल्लेख करने वाला पहला हो सकता है। | ज़र्मेलो का पेपर कैंटर के प्रमेय नाम का उल्लेख करने वाला पहला हो सकता है। | ||
ज़र्मेलो | कैंटोर प्रमेय: यदि M यादृच्छिक समुच्चय है, तो हमेशा ''M'' < P(''M'') [M का पावर सेट]। हर सेट अपने सबसेट के सेट की तुलना में कम कार्डिनैलिटी का है। | ||
ज़र्मेलो फ़ंक्शन φ: M → P(M) पर विचार करके इसे साबित करता है। अभिगृहीत III द्वारा यह निम्नलिखित समुच्चय M' को परिभाषित करता है: | |||
: | : ''M' '' = {''m'': ''m'' ∉ φ(''m'')}. | ||
लेकिन | लेकिन M का कोई भी अवयव m' M' के अनुरूप नहीं हो सकता है, यानी कि φ(''m'<nowiki/>'' ) = ''M''' अन्यथा हम एक विरोधाभास बना सकते हैं: | ||
:1) यदि m' | :1) यदि m', M' में है, तो परिभाषा के अनुसार m' ∉ φ(m' ) = M' , जो कि विरोधाभास का पहला भाग है। | ||
:2) | :2) यदि m', M' में नहीं है, लेकिन M में है, तो परिभाषा के अनुसार m' ∉ M' = φ(m' ) जो परिभाषा के अनुसार दर्शाता है कि m' M' में है, जो कि विरोधाभास का दूसरा भाग है। | ||
अत: विरोधाभास के कारण m' का अस्तित्व नहीं है। ज़र्मेलो द्वारा रसेल के विरोधाभास को जिस तरह से निपटाया गया है, इस प्रमाण की निकटता को उसके साथ नोट करना चाइये। | |||
== यह भी देखें == | == यह भी देखें == | ||
Line 75: | Line 76: | ||
== संदर्भ == | == संदर्भ == | ||
{{Reflist}} | {{Reflist}} | ||
=== उद्धृत कार्य === | === उद्धृत कार्य === | ||
* {{citation |last=Ferreirós|first=José|year=2007|title=Labyrinth of Thought: A History of Set Theory and Its Role in Mathematical Thought|publisher=Birkhäuser|isbn=978-3-7643-8349-7}}. | * {{citation |last=Ferreirós|first=José|year=2007|title=Labyrinth of Thought: A History of Set Theory and Its Role in Mathematical Thought|publisher=Birkhäuser|isbn=978-3-7643-8349-7}}. | ||
Line 89: | Line 86: | ||
श्रेणी:सेट थ्योरी की प्रणालियाँ | श्रेणी:सेट थ्योरी की प्रणालियाँ | ||
[[Category:Collapse templates]] | |||
[[Category: | |||
[[Category:Created On 13/02/2023]] | [[Category:Created On 13/02/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Translated in Hindi]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Wikipedia metatemplates]] |
Latest revision as of 10:31, 12 March 2023
ज़र्मेलो सेट थ्योरी (कभी-कभी Z - द्वारा निरूपित), जैसा कि 1908 में अर्न्स्ट ज़र्मेलो द्वारा एक सेमिनल पेपर में निर्धारित किया गया था, आधुनिक ज़र्मेलो-फ्रेंकेल सेट थ्योरी (जेडएफ) और इसके एक्सटेंशन, जैसे वॉन न्यूमैन- का पूर्वज है। बर्नेज़-गोडेल सेट सिद्धांत (एनबीजी)। इसमें अपने वंशजों से कुछ अंतर होते हैं, जिन्हें हमेशा समझा नहीं जाता है, और प्रायः गलत उद्धृत किया जाता है। यह लेख मूल पाठ (अंग्रेजी में अनुवादित) और मूल अंकन के साथ मूल स्वयंसिद्धों को निर्धारित करता है।
जर्मेलो के सिद्धांत सेट थ्योरी
ज़र्मेलो सेट सिद्धांत के सिद्धांतों को वस्तुओं के लिए कहा गया है, जिनमें से कुछ (लेकिन जरूरी नहीं कि सभी) सेट हैं, और शेष वस्तुएं यूरेलेमेंट्स हैं और सेट नहीं हैं। ज़र्मेलो की भाषा में अंतर्निहित रूप से एक सदस्यता संबंध ∈, एक समानता संबंध = (यदि यह अंतर्निहित तर्क में सम्मिलित नहीं है), और एक एकल विधेय यह कहते हुए सम्मिलित है कि क्या कोई वस्तु एक सेट है। समुच्चय सिद्धांत के बाद के संस्करणों में प्रायः यह माना जाता है कि सभी वस्तुएँ समुच्चय हैं इसलिए कोई यूरेलेमेंट नहीं हैं और एकात्मक विधेय की कोई आवश्यकता नहीं है।
- सिद्ध प्रमाण I - विस्तार का सिद्धांत ((स्वयंसिद्ध डेर बेस्टिम्मथित)) यदि सेट M का प्रत्येक अवयव भी N का एक अवयव है और इसके विपरीत ... तो M N। संक्षेप में, प्रत्येक सेट अपने अवयवों द्वारा निर्धारित किया जाता है।
- सिद्ध प्रमाण II - प्रारंभिक समुच्चयों का अभिगृहीत (स्वयंसिद्ध डेर एलीमेंटर्मेंजेन) एक समुच्चय, शून्य समुच्चय, ∅, मौजूद है जिसमें कोई भी अवयव नहीं है। यदि a डोमेन का कोई ऑब्जेक्ट है, तो एक सेट {a} मौजूद है जिसमें a और केवल a एक अवयव के रूप में है। यदि a और b डोमेन की कोई दो वस्तुएं हैं, तो हमेशा एक सेट {a, b} मौजूद होता है जिसमें अवयव a और b होते हैं लेकिन कोई ऑब्जेक्ट एक्स उन दोनों से अलग नहीं होता है। युग्मन का अभिगृहीत देखें।
- सिद्ध प्रमाण III - पृथक्करण का अभिगृहीत (स्वयंसिद्ध डेर ऑसोनडेरंग) जब भी समुच्चय M के सभी अवयवों के लिए प्रस्तावात्मक फलन –(x) परिभाषित होता है, M में एक उपसमुच्चय M' होता है जिसमें अवयवों के रूप में M के ठीक वे अवयव होते हैं जिनके लिए –(x) सत्य है।
- सिद्ध प्रमाण IV - पावर सेट का स्वयंसिद्ध (स्वयंसिद्ध डर पोटेन्ज़मेंज) प्रत्येक समुच्चय T के लिए एक समुच्चय T', T का शक्ति समुच्चय होता है, जिसमें अवयवों के रूप में T के सभी उपसमुच्चय होते हैं।
- सिद्ध प्रमाण V - संघ का स्वयंसिद्ध(स्वयंसिद्ध डेर वेरेइनिगंग) प्रत्येक सेट T के लिए एक सेट ∪T, T का संघ है, जिसमें अवयवों के रूप में T के अवयवों के सभी अवयव सम्मिलित हैं।
- सिद्ध प्रमाण VI - विकल्प का स्वयंसिद्ध (स्वयंसिद्ध डेर औस्वाल) यदि T एक ऐसा समुच्चय है जिसके सभी अवयव ऐसे समुच्चय हैं जो ∅ से भिन्न हैं और पारस्परिक रूप से असंयुक्त हैं, तो इसके संघ ∪T में कम से कम एक उपसमुच्चय S1 सम्मिलित है T के प्रत्येक अवयव के साथ एक और केवल एक अवयव समान है।
- स्वयंसिद्ध VII - अनंत का स्वयंसिद्ध (स्वयंसिद्ध डेस उनेंडलिचेन) डोमेन में कम से कम एक सेट Z मौजूद होता है जिसमें एक अवयव के रूप में शून्य सेट होता है और यह इस तरह गठित होता है कि इसके प्रत्येक अवयव के लिए फॉर्म {a} के एक और अवयव से मेल खाता है। दूसरे शब्दों में, इसके प्रत्येक अवयव के साथ इसमें अवयव के रूप में संबंधित सेट {a} भी सम्मिलित है।
मानक सेट सिद्धांत के साथ संबंध
सबसे व्यापक रूप से उपयोग किया जाने वाला और स्वीकृत सेट सिद्धांत ZFC के रूप में जाना जाता है, जिसमें ज़र्मेलो-फ्रेंकेल सेट सिद्धांत सम्मिलित है जिसमें पसंद का स्वयंसिद्ध (एसी) सम्मिलित है। लिंक दिखाते हैं कि ज़र्मेलो के सिद्धांत के स्वयंसिद्ध जहाँ मेल खाते हैं। "प्राथमिक सेट" के लिए कोई सटीक मिलान नहीं है। (यह बाद में दिखाया गया था कि सिंगलटन सेट को उस चीज़ से प्राप्त किया जा सकता है जिसे अब "जोड़ियों का अभिगृहीत" कहा जाता है। यदि a उपलब्ध है, a और a उपलब्ध है, तो इस प्रकार {a,a} मौजूद है, और इसलिए विस्तार {a,a} = {a} द्वारा।) खाली समुच्चय अभिगृहीत पहले से ही अनन्तता के अभिगृहीत द्वारा मान लिया गया है, और अब इसे इसके भाग के रूप में सम्मिलित किया गया है।
ज़र्मेलो सेट सिद्धांत में प्रतिस्थापन और नियमितता के सिद्धांतों को सम्मिलित नहीं किया गया है। प्रतिस्थापन की स्वयंसिद्ध पहली बार 1922 में अब्राहम फ्रेंकेल और थोराल्फ़ स्कोलेम द्वारा प्रकाशित किया गया था, जिन्होंने स्वतंत्र रूप से पता लगाया था कि ज़र्मेलो के स्वयंसिद्ध सेट {Z0, Z1, Z2, ...} के अस्तित्व को साबित नहीं कर सकते हैं जहाँ Z0 प्राकृतिक संख्या का समूह है और Zn+1 Zn का पावर सेट है। उन दोनों ने महसूस किया कि इसे सिद्ध करने के लिए प्रतिस्थापन के स्वयंसिद्ध की आवश्यकता है। अगले वर्ष, जॉन वॉन न्यूमैन ने बताया कि नियमितता के स्वयंसिद्ध सिद्धांत को उनके सिद्धांत के निर्माण के लिए आवश्यक है। 1925 में वॉन न्यूमैन द्वारा नियमितता का स्वयंसिद्ध कथन किया गया था।[1]
आधुनिक जेडएफसी प्रणाली में, पृथक्करण के स्वयंसिद्ध में संदर्भित प्रस्तावनात्मक कार्य की व्याख्या किसी भी संपत्ति के रूप में की जाती है, जिसे पहले-क्रम वाले अच्छी तरह से बनाए गए सूत्र द्वारा मापदंडों के साथ परिभाषित किया जाता है, इसलिए पृथक्करण स्वयंसिद्ध को एक स्वयंसिद्ध स्कीमा द्वारा प्रतिस्थापित किया जाता है। प्रथम क्रम सूत्र की धारणा 1908 में ज्ञात नहीं थी जब ज़र्मेलो ने अपनी स्वयंसिद्ध प्रणाली प्रकाशित की, और बाद में उन्होंने इस व्याख्या को बहुत अधिक प्रतिबंधात्मक होने के रूप में खारिज कर दिया। ज़र्मेलो सेट सिद्धांत को सामान्यतः पहले क्रम के सिद्धांत के रूप में लिया जाता है, जिसमें पृथक्करण स्वयंसिद्ध को प्रत्येक प्रथम-क्रम सूत्र के लिए स्वयंसिद्ध योजना के साथ स्वयंसिद्ध योजना द्वारा प्रतिस्थापित किया जाता है। इसे दूसरे क्रम के तर्क में एक सिद्धांत के रूप में भी माना जा सकता है, जहाँ अब पृथक्करण स्वयंसिद्ध केवल एक स्वयंसिद्ध है। ज़र्मेलो सेट सिद्धांत की दूसरी क्रम की व्याख्या शायद ज़र्मेलो की अपनी अवधारणा के करीब है, और पहले क्रम की व्याख्या से अधिक मजबूत है।
सामान्य वॉन न्यूमैन ब्रह्मांड में Vα जेडएफसी सेट थ्योरी (ऑर्डिनल्स α के लिए), सेट में से कोई एक Vα α के लिए पहले अनंत क्रमसूचक ω (जैसे Vω·2) ज़र्मेलो सेट थ्योरी का एक मॉडल बनाता है। तो ज़र्मेलो सेट थ्योरी की संगति जेडएफसी सेट थ्योरी का एक प्रमेय है। जैसा ज़र्मेलो के सिद्धांतों को मॉडल करता है जबकि इसमें सम्मिलित नहीं है और बड़े अनंत कार्डिनल्स, गोडेल की पूर्णता प्रमेय द्वारा ज़र्मेलो के स्वयंसिद्ध इन कार्डिनल्स के अस्तित्व को साबित नहीं करते हैं। (कार्डिनल्स को ज़र्मेलो सेट थ्योरी में अलग तरह से परिभाषित किया जाना है, क्योंकि कार्डिनल्स और ऑर्डिनल्स की सामान्य परिभाषा बहुत अच्छी तरह से काम नहीं करती है: सामान्य परिभाषा के साथ ऑर्डिनल ω2 के अस्तित्व को साबित करना भी संभव नहीं है।)
अनंत का स्वयंसिद्ध अब सामान्यतः पहली अनंत वॉन न्यूमैन क्रमिक संख्या के अस्तित्व पर जोर देने के लिए संशोधित किया गया है ; मूल ज़र्मेलो स्वयंसिद्ध इस सेट के अस्तित्व को साबित नहीं कर सकते हैं, और न ही संशोधित ज़र्मेलो स्वयंसिद्ध ज़र्मेलो के अनन्तता के स्वयंसिद्ध को सिद्ध कर सकते हैं। ज़र्मेलो के स्वयंसिद्ध (मूल या संशोधित) के अस्तित्व को साबित नहीं कर सकते एक सेट के रूप में और न ही अनंत सूचकांक वाले सेटों के संचयी पदानुक्रम के किसी रैंक के रूप में।
ज़र्मेलो ने यूरेलेमेंट्स के अस्तित्व की अनुमति दी जो सेट नहीं हैं और इसमें कोई अवयव नहीं है; इन्हें अब सामान्यतः सेट सिद्धांतों से हटा दिया जाता है।
मैक लेन सेट थ्योरी
मैक लेन सेट सिद्धांत, मैक लेन (1986) द्वारा पेश किया गया, ज़र्मेलो सेट सिद्धांत है जिसमें पृथक्करण का स्वयंसिद्ध पहले क्रम के सूत्रों तक सीमित है जिसमें प्रत्येक परिमाणक परिबद्ध है। मैक लेन सेट सिद्धांत एक प्राकृतिक संख्या वस्तु के साथ टोपोस सिद्धांत की ताकत के समान है, या प्रिन्सिपिया मैथेमेटिका में सिस्टम के समान है। यह लगभग सभी सामान्य गणित को पूरा करने के लिए पर्याप्त रूप से मजबूत है जो सीधे सेट सिद्धांत या तर्क से जुड़ा नहीं है।
ज़र्मेलो के पेपर का उद्देश्य
प्रस्तावना में कहा गया है कि सेट थ्योरी के अनुशासन के अस्तित्व को कुछ विरोधाभासों या विरोधाभासों से खतरा प्रतीत होता है, जो इसके सिद्धांतों से प्राप्त हो सकते हैं - सिद्धांत आवश्यक रूप से हमारी सोच को नियंत्रित करते हैं, ऐसा लगता है - और जिसका कोई पूरी तरह से संतोषजनक समाधान अभी तक नहीं मिला है मिला । ज़र्मेलो निश्चित रूप से रसेल के विरोधाभास का जिक्र कर रहा है।
उनका कहना है कि वह दिखाना चाहते हैं कि कैसे जॉर्ज कैंटर और रिचर्ड डेडेकिंड के मूल सिद्धांत को कुछ परिभाषाओं और सात सिद्धांतों या सूक्तियों तक सीमित किया जा सकता है। वह कहता है कि वह सिद्ध नहीं कर पाया है कि अभिगृहीत सुसंगत हैं।
उनकी निरंतरता के लिए गैर-रचनात्मक तर्क इस प्रकार है। क्रमांक 0, 1, 2, ...,ω, ω+1, ω+2,..., ω·2 में से किसी एक के लिए Vα को परिभाषित करें:
- V0 खाली सेट है।
- α के लिए β+1 के रूप का उत्तराधिकारी, Vα को Vβ के सभी उपसमुच्चयों के संग्रह के रूप में परिभाषित किया गया है।
- α के लिए एक सीमा (उदाहरण के लिए ω, ω·2) तो Vα को β<α के लिए Vβ के मिलन के रूप में परिभाषित किया गया है।
तब ज़र्मेलो सेट सिद्धांत के स्वयंसिद्ध सुसंगत हैं क्योंकि वे मॉडल Vω·2 में सत्य हैं। जबकि एक गैर-रचनावादी इसे एक वैध तर्क के रूप में मान सकता है, एक रचनावादी शायद नहीं: जबकि Vω तक सेट के निर्माण में कोई समस्या नहीं है, Vω+1 का निर्माण कम स्पष्ट है क्योंकि कोई भी प्रत्येक उपसमुच्चय को रचनात्मक रूप से परिभाषित नहीं कर सकता है Vω का है। इस तर्क को ज़र्मेलो सेट सिद्धांत के अनंत के एक नए स्वयंसिद्ध के अतिरिक्त के साथ एक वैध प्रमाण में बदल दिया जा सकता है, केवल यह कि Vω·2 है। यह संभवतः एक रचनावादी के लिए आश्वस्त नहीं है, लेकिन यह दर्शाता है कि ज़र्मेलो सेट सिद्धांत की निरंतरता को एक ऐसे सिद्धांत के साथ सिद्ध किया जा सकता है जो ज़र्मेलो सिद्धांत से बहुत अलग नहीं है, केवल थोड़ा अधिक शक्तिशाली है।
पृथक्करण स्वयंसिद्ध
ज़र्मेलो की टिप्पणी है कि उनकी प्रणाली का स्वयंसिद्ध III एंटीइनोमीज़ को खत्म करने के लिए जिम्मेदार है। यह कैंटर की मूल परिभाषा से इस प्रकार भिन्न है।
समुच्चय को स्वतंत्र रूप से किसी भी मनमाना तार्किक रूप से निश्चित धारणा द्वारा परिभाषित नहीं किया जा सकता है। उनका निर्माण पहले से निर्मित सेटों से किसी तरह से किया जाना चाहिए। उदाहरण के लिए, उन्हें पावरसेट लेकर बनाया जा सकता है, या उन्हें पहले से दिए गए सेट के सबसेट के रूप में अलग किया जा सकता है। यह, वह कहता है, विरोधाभासी विचारों को समाप्त करता है जैसे सभी सेटों का सेट या सभी क्रमिक संख्याओं का सेट है।
वह इस प्रमेय के माध्यम से रसेल विरोधाभास का निपटान करता है: हर सेट कम से कम एक उपसमुच्चय रखता है का अवयव नहीं है ". मान लेते हैं का उपसमुच्चय हो जिसके लिए, स्वयंसिद्ध III द्वारा, धारणा द्वारा अलग किया गया है . तब में नहीं हो सकता . के लिए
- अगर में है , तब अवयव x है जिसके लिए x, x में है (अर्थात स्वयं), जो की परिभाषा के विपरीत होगा .
- अगर इसमें नहीं है , और मान रहा है , का अवयव है, तो का एक अवयव है जो परिभाषा को संतुष्ट करता है , और इसी में है जो विरोधाभास है।
इसलिए, धारणा है कि में है गलत है, प्रमेय साबित कर रहा है। इसलिए सार्वभौमिक डोमेन B की सभी वस्तुएं और एक ही सेट के अवयव नहीं हो सकती हैं। जहां तक हमारा संबंध है, यह रसेल विरोध को समाप्त करता है।
इसने डोमेन बी की समस्या को छोड़ दिया जो कुछ को संदर्भित करता प्रतीत होता है। इससे एक उचित वर्ग का विचार उत्पन्न हुआ।
कैंटर का प्रमेय
ज़र्मेलो का पेपर कैंटर के प्रमेय नाम का उल्लेख करने वाला पहला हो सकता है।
कैंटोर प्रमेय: यदि M यादृच्छिक समुच्चय है, तो हमेशा M < P(M) [M का पावर सेट]। हर सेट अपने सबसेट के सेट की तुलना में कम कार्डिनैलिटी का है।
ज़र्मेलो फ़ंक्शन φ: M → P(M) पर विचार करके इसे साबित करता है। अभिगृहीत III द्वारा यह निम्नलिखित समुच्चय M' को परिभाषित करता है:
- M' = {m: m ∉ φ(m)}.
लेकिन M का कोई भी अवयव m' M' के अनुरूप नहीं हो सकता है, यानी कि φ(m' ) = M' अन्यथा हम एक विरोधाभास बना सकते हैं:
- 1) यदि m', M' में है, तो परिभाषा के अनुसार m' ∉ φ(m' ) = M' , जो कि विरोधाभास का पहला भाग है।
- 2) यदि m', M' में नहीं है, लेकिन M में है, तो परिभाषा के अनुसार m' ∉ M' = φ(m' ) जो परिभाषा के अनुसार दर्शाता है कि m' M' में है, जो कि विरोधाभास का दूसरा भाग है।
अत: विरोधाभास के कारण m' का अस्तित्व नहीं है। ज़र्मेलो द्वारा रसेल के विरोधाभास को जिस तरह से निपटाया गया है, इस प्रमाण की निकटता को उसके साथ नोट करना चाइये।
यह भी देखें
संदर्भ
- ↑ Ferreirós 2007, pp. 369, 371.
उद्धृत कार्य
- Ferreirós, José (2007), Labyrinth of Thought: A History of Set Theory and Its Role in Mathematical Thought, Birkhäuser, ISBN 978-3-7643-8349-7.
सामान्य संदर्भ
- Mac Lane, Saunders (1986), Mathematics, form and function, New York: Springer-Verlag, doi:10.1007/978-1-4612-4872-9, ISBN 0-387-96217-4, MR 0816347.
- Zermelo, Ernst (1908), "Untersuchungen über die Grundlagen der Mengenlehre I", Mathematische Annalen, 65 (2): 261–281, doi:10.1007/bf01449999, S2CID 120085563. अंग्रेजी अनुवाद: Heijenoort, Jean van (1967), "Investigations in the foundations of set theory", From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931, Source Books in the History of the Sciences, Harvard Univ. Press, pp. 199–215, ISBN 978-0-674-32449-7.
श्रेणी:सेट थ्योरी की प्रणालियाँ