रिंगिंग कलाकृतियां: Difference between revisions
No edit summary |
No edit summary |
||
Line 77: | Line 77: | ||
समाधान समस्या के मापदंडों पर निर्भर करते हैं: यदि कारण लो-पास फ़िल्टर है, तो कोई भिन्न फ़िल्टर डिज़ाइन चयन किया जा सकता है, जो दुर्गत आवृत्ति डोमेन प्रदर्शन की कीमत पर कलाकृतियों को अल्प करता है। दूसरी ओर, यदि कारण बैंड-सीमित सिग्नल है, जैसा कि जेपीईजी में है, तो कोई बस फिल्टर को प्रतिस्थापित नहीं कर सकता है, और रिंगिंग आर्टिफैक्ट्स को ठीक करना कठिन साबित हो सकता है - वे [[जेपीईजी 2000]] और अनेक ऑडियो संपीड़न कोडेक्स (रूप में) में उपस्थित हैं प्री-इको का), जैसा कि उदाहरणों में चर्चा की गई है। | समाधान समस्या के मापदंडों पर निर्भर करते हैं: यदि कारण लो-पास फ़िल्टर है, तो कोई भिन्न फ़िल्टर डिज़ाइन चयन किया जा सकता है, जो दुर्गत आवृत्ति डोमेन प्रदर्शन की कीमत पर कलाकृतियों को अल्प करता है। दूसरी ओर, यदि कारण बैंड-सीमित सिग्नल है, जैसा कि जेपीईजी में है, तो कोई बस फिल्टर को प्रतिस्थापित नहीं कर सकता है, और रिंगिंग आर्टिफैक्ट्स को ठीक करना कठिन साबित हो सकता है - वे [[जेपीईजी 2000]] और अनेक ऑडियो संपीड़न कोडेक्स (रूप में) में उपस्थित हैं प्री-इको का), जैसा कि उदाहरणों में चर्चा की गई है। | ||
=== लो- | === लो-पास फिल्टर === | ||
[[File:DisNormal01.svg|thumb|[[गाऊसी समारोह|गाऊसी फलन]] अन्य-नकारात्मक और अन्य-ऑसिलेटिंग है, इसलिए कोई ओवरशूट या रिंगिंग नहीं होता है।]]यदि | [[File:DisNormal01.svg|thumb|[[गाऊसी समारोह|गाऊसी फलन]] अन्य-नकारात्मक और अन्य-ऑसिलेटिंग है, इसलिए कोई ओवरशूट या रिंगिंग नहीं होता है।]]यदि ब्रिक-वॉल लो-पास फ़िल्टर का उपयोग है, तो आवृत्ति डोमेन प्रदर्शन की कीमत पर फ़िल्टर को उस फ़िल्टर से परिवर्तित किया जा सकता है जो समय डोमेन कलाकृतियों को अल्प करता है। इसका विश्लेषण समय डोमेन या आवृत्ति डोमेन परिप्रेक्ष्य से किया जा सकता है। | ||
समय डोमेन में, कारण आवेग प्रतिक्रिया है जो नकारात्मक मान मानते हुए दोलन करता है। इसे फिल्टर का उपयोग करके हल किया जा सकता है जिसकी आवेग प्रतिक्रिया अन्य -नकारात्मक है और दोलन नहीं करती है, किन्तु वांछित लक्षण साझा करती है। उदाहरण के लिए, अल्प -निकटफ़िल्टर के लिए, गॉसियन फ़िल्टर अन्य -नकारात्मक और अन्य -ऑसिलेटरी है, इसलिए कोई रिंगिंग नहीं होती है। चूँकि , यह लो- | समय डोमेन में, कारण आवेग प्रतिक्रिया है जो नकारात्मक मान मानते हुए दोलन करता है। इसे फिल्टर का उपयोग करके हल किया जा सकता है जिसकी आवेग प्रतिक्रिया अन्य -नकारात्मक है और दोलन नहीं करती है, किन्तु वांछित लक्षण साझा करती है। उदाहरण के लिए, अल्प -निकटफ़िल्टर के लिए, गॉसियन फ़िल्टर अन्य -नकारात्मक और अन्य -ऑसिलेटरी है, इसलिए कोई रिंगिंग नहीं होती है। चूँकि , यह लो-पासफिल्टर जितना अच्छा नहीं है: यह पासबैंड में लुढ़क जाता है, और [[ बंद करो बैंड |बंद करो बैंड]] में लीक हो जाता है: छवि के संदर्भ में, [[ गाऊसी फिल्टर |गाऊसी फिल्टर]] सिग्नल को धुंधला कर देता है, जो पासबैंड में वांछित उच्च आवृत्ति संकेतों के क्षीणन को दर्शाता है। . | ||
एक सामान्य समाधान sinc फ़िल्टर पर [[खिड़की समारोह]] का उपयोग करना है, जो नकारात्मक लोबों को काटता है या अल्प करता है: ये क्रमशः ओवरशूट और रिंगिंग को समाप्त और अल्प करते हैं। ध्यान दें कि कुछ नहीं जबकिसभी पालियों को छोटा करने से उस बिंदु से परे रिंगिंग समाप्त हो जाती है, किन्तु रिंगिंग के आयाम को अल्प नहीं करता है जो छोटा नहीं होता है (क्योंकि यह लोब के आकार से निर्धारित होता है), और ओवरशूट के परिमाण को बढ़ाता है यदि अंतिम नॉन-कट लोब ऋणात्मक है, क्योंकि ओवरशूट का परिमाण पूंछ का अभिन्न अंग है, जो अब सकारात्मक लोबों द्वारा रद्द नहीं किया जाता है। | एक सामान्य समाधान sinc फ़िल्टर पर [[खिड़की समारोह]] का उपयोग करना है, जो नकारात्मक लोबों को काटता है या अल्प करता है: ये क्रमशः ओवरशूट और रिंगिंग को समाप्त और अल्प करते हैं। ध्यान दें कि कुछ नहीं जबकिसभी पालियों को छोटा करने से उस बिंदु से परे रिंगिंग समाप्त हो जाती है, किन्तु रिंगिंग के आयाम को अल्प नहीं करता है जो छोटा नहीं होता है (क्योंकि यह लोब के आकार से निर्धारित होता है), और ओवरशूट के परिमाण को बढ़ाता है यदि अंतिम नॉन-कट लोब ऋणात्मक है, क्योंकि ओवरशूट का परिमाण पूंछ का अभिन्न अंग है, जो अब सकारात्मक लोबों द्वारा रद्द नहीं किया जाता है। |
Revision as of 11:11, 9 March 2023
सिग्नल प्रोसेसिंग में, विशेष रूप से डिजिटल इमेज प्रोसेसिंग में, रिंगिंग आर्टिफैक्ट्स ऐसे आर्टिफैक्ट्स हैं जो सिग्नल में तीव्र संक्रमण के निकट कृत्रिम सिग्नल के रूप में दिखाई देते हैं। दृष्टिगत रूप से, वे किनारों के निकट बैंड या "भूत" के रूप में दिखाई देते हैं; श्रव्य रूप से, वे क्षणिक (ध्वनिकी) के निकट "इकोस" के रूप में दिखाई देते हैं, विशेष रूप से टक्कर उपकरणों से ध्वनियाँ; सबसे अधिक ध्यान देने योग्य प्री-इकोस हैं। "रिंगिंग" शब्द इसलिए है क्योंकि आउटपुट सिग्नल इनपुट में तीव्र संक्रमण के निकट लुप्त होती दर पर दोलन करता है, जैसे घंटी बजने के पश्चात, अन्य कलाकृतियों के जैसे, फिल्टर डिजाइन में उनका न्यूनीकरण मानदंड है।
परिचय
रिंगिंग कलाकृतियों का मुख्य कारण सिग्नल के बैंडलिमिटेड होने (विशेष रूप से, उच्च आवृत्तियों नहीं होने) या लो-पास फिल्टर के माध्यम से पारित होने के कारण होता है; यह आवृत्ति डोमेन विवरण है।
समय क्षेत्र के संदर्भ में, इस प्रकार की रिंगिंग का कारण sinc फलन में तरंगें हैं,[1] जो आदर्श लो-पास फिल्टर का आवेग प्रतिक्रिया (समय डोमेन प्रतिनिधित्व) है। गणितीय रूप से, इसे गिब्स परिघटना कहा जाता है।
कोई ओवरशूट (और अंडरशूट) को भिन्न कर सकता है, जो तब होता है जब ट्रांज़िशन को बढ़ाया जाता है- आउटपुट इनपुट से अधिक होता है- रिंगिंग से, जहां ओवरशूट के पश्चात, सिग्नल ओवरकरेक्ट हो जाता है और अब लक्ष्य मान से नीचे है; ये घटनाएँ प्रायः एक साथ घटित होती हैं, और इस प्रकार प्रायः मिश्रित होती हैं और संयुक्त रूप से रिंगिंग कहलाती हैं।
रिंगिंग शब्द का प्रयोग प्रायः समय डोमेन में तरंगों के लिए किया जाता है, चूँकि इसे कभी-कभी आवृत्ति डोमेन प्रभावों के लिए भी प्रयोग किया जाता है:[2]
आयताकार फलन द्वारा समय डोमेन में फ़िल्टर को विंडो करने से आवृत्ति डोमेन में उसी कारण से रिपल्स का कारण बनता है जैसे ब्रिक-वॉल लो-पास फ़िल्टर (आवृत्ति डोमेन में आयताकार फलन ) समय डोमेन में रिपल्स का कारण बनता है, प्रत्येक स्थिति में फूरियर रूपांतरण आयताकार फलन का sinc फलन है।
अन्य आवृत्ति डोमेन प्रभावों के कारण संबंधित कलाकृतियाँ हैं, और असंबंधित कारणों से समान कलाकृतियाँ हैं।
कारण
विवरण
परिभाषा के अनुसार, रिंगिंग तब होती है जब अन्य-ऑसिलेटिंग इनपुट ऑसिलेटिंग आउटपुट देता है: औपचारिक रूप से, जब इनपुट सिग्नल जो अंतराल पर मोनोटोनिक फलन होता है, आउटपुट प्रतिक्रिया होती है जो मोनोटोनिक नहीं होती है। यह सबसे जटिल रूप से तब होता है जब आवेग प्रतिक्रिया या फ़िल्टर की चरण प्रतिक्रिया में दोलन होते हैं- अल्प औपचारिक रूप से, यदि स्पाइक इनपुट के लिए, क्रमशः कदम इनपुट (तीव्र संक्रमण), आउटपुट में टक्कर होती है। रिंगिंग सामान्यतः स्टेप रिंगिंग को संदर्भित करता है, और यही फोकस होगा।
रिंगिंग ओवरशूट और अंडरशूट से निकटता से संबंधित है, जो तब होता है जब आउटपुट अधिकतम (क्रमशः, न्यूनतम से अल्प ) इनपुट मान से अधिक मान लेता है: एक के बिना दूसरा हो सकता है, किन्तु महत्वपूर्ण स्थितियों में, जैसे कि लो-पास फिल्टर में पूर्व ओवरशूट होता है, पुनः प्रतिक्रिया स्थिर-अवस्था स्तर से नीचे वापस आती है, जिससे प्रथम रिंग बनती है, और फिर स्थिर-अवस्था स्तर के ऊपर और नीचे दोलन करती है। इस प्रकार ओवरशूट घटना का प्रथम चरण है, जबकि रिंगिंग दूसरा और अंत का चरण है। इस घनिष्ठ संबंध के कारण, प्रारंभिक ओवरशूट और अंत के रिंगों दोनों को संदर्भित करते हुए रिंगिंग के साथ, प्रावधानों को प्रायः भ्रमित किया जाता है।
यदि किसी के निकट रैखिक समय अपरिवर्तनीय (एलटीआई) फ़िल्टर है, तो कोई आवेग प्रतिक्रिया (समय डोमेन दृश्य) के संदर्भ में फ़िल्टर और रिंगिंग को समझ सकता है, या इसके फूरियर रूपांतरण, आवृत्ति प्रतिक्रिया (आवृत्ति डोमेन दृश्य) के संदर्भ में होता है। रिंगिंग समय डोमेन आर्टिफैक्ट है, और फ़िल्टर डिज़ाइन में वांछित आवृत्ति डोमेन विशेषताओं के साथ व्यापार किया जाता है: वांछित आवृत्ति प्रतिक्रिया रिंगिंग का कारण बन सकती है, जबकि रिंगिंग को अल्प करने या समाप्त करने से आवृत्ति प्रतिक्रिया की दुर्गति हो सकती है।
sinc फ़िल्टर
केंद्रीय उदाहरण, और प्रायः "रिंगिंग आर्टिफैक्ट्स" का तात्पर्य आदर्श (ब्रिक-वॉल) लो-पास फ़िल्टर, sinc फ़िल्टर है। इसमें ऑसिलेटरी इंपल्स रिस्पॉन्स फलन है, जैसा कि ऊपर दिखाया गया है, और स्टेप रिस्पॉन्स- इसका इंटीग्रल, साइन इंटीग्रल- इस प्रकार दोलनों की विशेषता भी है, जैसा कि दाईं ओर दिखाया गया है।
ये रिंगिंग आर्टिफैक्ट्स अपूर्ण कार्यान्वयन या विंडोइंग के परिणाम नहीं हैं: वांछित आवृत्ति प्रतिक्रिया रखने के समय आदर्श लो-पास फ़िल्टर, आवश्यक रूप से समय डोमेन में रिंगिंग आर्टिफैक्ट्स का कारण बनता है।
समय डोमेन
आवेग प्रतिक्रिया के संदर्भ में, इन कलाकृतियों और फलन के व्यवहार के मध्य पत्राचार इस प्रकार है:
- आवेग अंडरशूट नकारात्मक मान वाले आवेग प्रतिक्रिया के समान है,
- आवेग रिंगिंग (बिंदु के निकट रिंगिंग) दोलनों वाली आवेग प्रतिक्रिया के समान है, जो नकारात्मक और सकारात्मक मूल्यों के मध्य वैकल्पिक आवेग प्रतिक्रिया के व्युत्पन्न के समान है,
- और आवेग ओवरशूट की कोई धारणा नहीं है, क्योंकि इकाई आवेग को अनंत ऊंचाई (और इंटीग्रल 1- डिराक डेल्टा फलन) माना जाता है, और इस प्रकार ओवरशूट नहीं किया जा सकता है।
कदम प्रतिक्रिया की ओर मुड़ते हुए,
कदम प्रतिक्रिया आवेग प्रतिक्रिया का अभिन्न अंग है; औपचारिक रूप से, समय पर कदम प्रतिक्रिया आवेग प्रतिक्रिया का मूल्य अभिन्न है। इस प्रकार कदम प्रतिक्रिया के मूल्यों को आवेग प्रतिक्रिया के टेल के अभिन्न अंग के रूप में समझा जा सकता है।
मान लें कि आवेग प्रतिक्रिया का समग्र अभिन्न 1 है, इसलिए यह आउटपुट के समान निरंतर इनपुट भेजता है- अन्यथा फ़िल्टर में लाभ होता है, और लाभ से स्केलिंग 1 का अभिन्न अंग देता है।
- स्टेप अंडरशूट टेल इंटीग्रल नकारात्मक होने के समान है, इस स्थिति में अंडरशूट का परिमाण टेल इंटीग्रल का मान है।
- स्टेप ओवरशूट टेल इंटीग्रल के समान है जो 1 से अधिक है, इस स्थिति में ओवरशूट का परिमाण वह राशि है जिसके द्वारा टेल इंटीग्रल 1 से अधिक है- या दूसरी दिशा में टेल का मान, क्योंकि इनका योग 1 होता है।
- स्टेप रिंगिंग बढ़ते और घटते- डेरिवेटिव के मध्य बारी-बारी से टेल इंटीग्रल के समान है, यह सकारात्मक और नकारात्मक मूल्यों के मध्य वैकल्पिक आवेग प्रतिक्रिया के समान है।[3] क्षेत्र जहां आवेग प्रतिक्रिया x-अक्ष (औपचारिक रूप से, शून्य के मध्य के क्षेत्रों) के नीचे या ऊपर होती है, उन्हें 'लोब्स' कहा जाता है और दोलन (शिखर से गर्त तक) का परिमाण संबंधित लोब के अभिन्न अंग के समान होता है।
आवेग प्रतिक्रिया में अनेक नकारात्मक लोब हो सकते हैं, और इस प्रकार अनेक दोलन, प्रत्येक रिंगउत्पन्न करते हैं, चूँकि ये व्यावहारिक फिल्टर के लिए क्षय होते हैं, और इस प्रकार सामान्यतः केवल कुछ रिंग्स ही दिखाई देती हैं, जिनमें से प्रथम सामान्यतः सबसे अधिक स्पष्ट होती है।
ध्यान दें कि यदि आवेग प्रतिक्रिया में छोटे नकारात्मक लोब और बड़े सकारात्मक लोब हैं, तो यह रिंगिंग प्रदर्शित करेगा किन्तु अंडरशूट या ओवरशूट नहीं: टेल इंटीग्रल सदैव 0 और 1 के मध्य होगा, किन्तु प्रत्येक नकारात्मक लोब पर नीचे आ जाएगा। चूँकि, sinc फ़िल्टर में, लोब एकान्तिक रूप से परिमाण में घटते हैं और साइन में वैकल्पिक होते हैं, जैसा कि वैकल्पिक हार्मोनिक श्रृंखला में होता है, और इस प्रकार टेल इंटीग्रल्स साइन में भी वैकल्पिक होते हैं, इसलिए यह ओवरशूट के साथ-साथ रिंगिंग भी प्रदर्शित करता है।
इसके विपरीत, यदि आवेग प्रतिक्रिया सदैव अन्य-नकारात्मक होती है, तो इसमें कोई नकारात्मक लोब नहीं होता है- फलन संभाव्यता वितरण है- तो चरण प्रतिक्रिया न तो बजती है और न ही ओवरशूट या अंडरशूट प्रदर्शित करेगी- यह 0 से 1 तक बढ़ने वाला मोनोटोनिक फलन होगा, जैसे संचयी वितरण समारोह में होता है। इस प्रकार समय डोमेन परिप्रेक्ष्य से मूल समाधान अन्य-नकारात्मक आवेग प्रतिक्रिया वाले फ़िल्टर का उपयोग करना है।
आवृत्ति डोमेन
आवृत्ति डोमेन परिप्रेक्ष्य यह है कि रिंगिंग आवृत्ति डोमेन में आयताकार पासबैंड में तीव्र कट-ऑफ़ के कारण होती है, और इस प्रकार चिकनी रोल-ऑफ़ से अल्प हो जाती है, जैसा कि नीचे चर्चा की गई है।[1][4]
समाधान
समाधान समस्या के मापदंडों पर निर्भर करते हैं: यदि कारण लो-पास फ़िल्टर है, तो कोई भिन्न फ़िल्टर डिज़ाइन चयन किया जा सकता है, जो दुर्गत आवृत्ति डोमेन प्रदर्शन की कीमत पर कलाकृतियों को अल्प करता है। दूसरी ओर, यदि कारण बैंड-सीमित सिग्नल है, जैसा कि जेपीईजी में है, तो कोई बस फिल्टर को प्रतिस्थापित नहीं कर सकता है, और रिंगिंग आर्टिफैक्ट्स को ठीक करना कठिन साबित हो सकता है - वे जेपीईजी 2000 और अनेक ऑडियो संपीड़न कोडेक्स (रूप में) में उपस्थित हैं प्री-इको का), जैसा कि उदाहरणों में चर्चा की गई है।
लो-पास फिल्टर
यदि ब्रिक-वॉल लो-पास फ़िल्टर का उपयोग है, तो आवृत्ति डोमेन प्रदर्शन की कीमत पर फ़िल्टर को उस फ़िल्टर से परिवर्तित किया जा सकता है जो समय डोमेन कलाकृतियों को अल्प करता है। इसका विश्लेषण समय डोमेन या आवृत्ति डोमेन परिप्रेक्ष्य से किया जा सकता है।
समय डोमेन में, कारण आवेग प्रतिक्रिया है जो नकारात्मक मान मानते हुए दोलन करता है। इसे फिल्टर का उपयोग करके हल किया जा सकता है जिसकी आवेग प्रतिक्रिया अन्य -नकारात्मक है और दोलन नहीं करती है, किन्तु वांछित लक्षण साझा करती है। उदाहरण के लिए, अल्प -निकटफ़िल्टर के लिए, गॉसियन फ़िल्टर अन्य -नकारात्मक और अन्य -ऑसिलेटरी है, इसलिए कोई रिंगिंग नहीं होती है। चूँकि , यह लो-पासफिल्टर जितना अच्छा नहीं है: यह पासबैंड में लुढ़क जाता है, और बंद करो बैंड में लीक हो जाता है: छवि के संदर्भ में, गाऊसी फिल्टर सिग्नल को धुंधला कर देता है, जो पासबैंड में वांछित उच्च आवृत्ति संकेतों के क्षीणन को दर्शाता है। .
एक सामान्य समाधान sinc फ़िल्टर पर खिड़की समारोह का उपयोग करना है, जो नकारात्मक लोबों को काटता है या अल्प करता है: ये क्रमशः ओवरशूट और रिंगिंग को समाप्त और अल्प करते हैं। ध्यान दें कि कुछ नहीं जबकिसभी पालियों को छोटा करने से उस बिंदु से परे रिंगिंग समाप्त हो जाती है, किन्तु रिंगिंग के आयाम को अल्प नहीं करता है जो छोटा नहीं होता है (क्योंकि यह लोब के आकार से निर्धारित होता है), और ओवरशूट के परिमाण को बढ़ाता है यदि अंतिम नॉन-कट लोब ऋणात्मक है, क्योंकि ओवरशूट का परिमाण पूंछ का अभिन्न अंग है, जो अब सकारात्मक लोबों द्वारा रद्द नहीं किया जाता है।
इसके अतिरिक्त, व्यावहारिक कार्यान्वयन में व्यक्ति अल्प से अल्प sinc को काटता है, अन्यथा किसी को आउटपुट के प्रत्येक बिंदु की गणना करने के लिए असीम रूप से अनेक डेटा बिंदुओं (या बल्कि, सिग्नल के सभी बिंदुओं) का उपयोग करना चाहिए - ट्रंकेशन आयताकार विंडो से मेल खाता है, और फ़िल्टर को व्यावहारिक रूप से लागू करने योग्य बनाता है। , किन्तु आवृत्ति प्रतिक्रिया अब सही नहीं है।[5]
वास्तव में, यदि कोई ब्रिक की दीवार अल्प -निकटफिल्टर (समय डोमेन में आयताकार, आवृत्ति डोमेन में आयताकार) लेता है और इसे काटता है (समय डोमेन में आयताकार फलन के साथ गुणा करता है), यह आवृत्ति डोमेन को sinc (फूरियर रूपांतरण) के साथ जोड़ता है आयताकार फलन ) और आवृत्ति डोमेन में रिंगिंग का कारण बनता है,[2]जिसे रिपल (इलेक्ट्रिकल) # फ्रीक्वेंसी-डोमेन रिपल कहा जाता है। प्रतीकों में, स्टॉपबैंड में बजने वाली फ्रीक्वेंसी को साइड लॉब्स भी कहा जाता है। पासबैंड में फ्लैट प्रतिक्रिया वांछनीय है, इसलिए फ़ंक्शंस वाली विंडो जिसके फूरियर ट्रांसफ़ॉर्म में अल्प दोलन होते हैं, इसलिए आवृत्तिडोमेन व्यवहार बेहतर होता है।
समय डोमेन में गुणन आवृत्तिडोमेन में कनवल्शन से मेल खाता है, इसलिए विंडो फलन द्वारा फ़िल्टर को गुणा करना विंडो के फूरियर ट्रांसफ़ॉर्म द्वारा मूल फ़िल्टर के फूरियर ट्रांसफ़ॉर्म को समझाने के अनुरूप होता है, जिसका स्मूथिंग प्रभाव होता है - इस प्रकार समय में विंडोिंग डोमेन आवृत्तिडोमेन में स्मूथिंग के अनुरूप है, और ओवरशूट और रिंगिंग को अल्प या समाप्त करता है।[6]
आवृत्तिडोमेन में, कारण की व्याख्या तीव्र(ब्रिक -दीवार) कट-ऑफ के कारण की जा सकती है, और चिकनी रोल-ऑफ़ के साथ फ़िल्टर का उपयोग करके रिंगिंग को अल्प किया जा सकता है।[1]यह गॉसियन फिल्टर के लिए मामला है, जिसका परिमाण बोडे प्लॉट नीचे की ओर खुलने वाला परबोला (द्विघात रोल-ऑफ) है, क्योंकि इसका फूरियर रूपांतरण फिर से गॉसियन है, इसलिए (पैमाने तक) - लॉगरिदम लेने से पैदावार होती है
External image | |
---|---|
Butterworth filter impulse response and frequency response graphs[7] |
इलेक्ट्रॉनिक फिल्टर में, आवृत्तिडोमेन रिस्पॉन्स और टाइम डोमेन रिंगिंग आर्टिफ़ैक्ट्स के मध्य ट्रेड-ऑफ को बटरवर्थ फिल्टर द्वारा अच्छी तरह से चित्रित किया गया है: बटरवर्थ फ़िल्टर की आवृत्तिरिस्पॉन्स लॉग स्केल पर रैखिक रूप से नीचे की ओर झुकती है, जिसमें फ़र्स्ट-ऑर्डर फ़िल्टर का स्लोप होता है -6 डेसिबल प्रति सप्तक, दूसरे क्रम का फ़िल्टर -12 dB प्रति सप्तक, और nवें क्रम का फ़िल्टर जिसका ढलान है डीबी प्रति सप्तक - सीमा में, यह ब्रिक -दीवार फिल्टर तक पहुंचता है। इस प्रकार, इनमें से, प्रथम-क्रम फ़िल्टर सबसे धीमी गति से रोल करता है, और इसलिए सबसे अल्प समय डोमेन कलाकृतियों को प्रदर्शित करता है, किन्तु स्टॉपबैंड में सबसे अधिक रिसाव होता है, जबकि क्रम बढ़ने पर रिसाव अल्प हो जाता है, किन्तु कलाकृतियों में वृद्धि होती है।[4]
लाभ
जबकि रिंगिंग कलाकृतियों को सामान्यतः अवांछनीय माना जाता है, संक्रमण के समय प्रारंभिक ओवरशूट (हेलोइंग) संक्रमण के समय व्युत्पन्न को बढ़ाकर तीक्ष्णता (स्पष्ट तीक्ष्णता) को बढ़ाता है, और इस प्रकार इसे वृद्धि के रूप में माना जा सकता है।[8]
संबंधित घटनाएं
ओवरशूट
एक और विरूपण साक्ष्य ओवरशूट (और अंडरशूट) है, जो स्वयं को रिंग के रूप में नहीं, जबकि संक्रमण में बढ़ी हुई छलांग के रूप में प्रकट करता है। यह रिंगिंग से संबंधित है, और प्रायः इसके साथ संयोजन में होता है।
ओवरशूट और अंडरशूट नकारात्मक टेल के कारण होते हैं- sinc में, पूर्व शून्य से अनंत तक का अभिन्न अंग, जिसमें प्रथम नकारात्मक लोब भी सम्मिलित है। जबकि रिंगिंग निम्नलिखित सकारात्मक टेल के कारण होता है- sinc में, दूसरे शून्य से अनंत तक का अभिन्न अंग, जिसमें प्रथम अन्य-केंद्रीय सकारात्मक लोब सम्मिलित है।
इस प्रकार रिंगिंग के लिए ओवरशूट आवश्यक है,[dubious ] किन्तु भिन्न-भिन्न हो सकता है: उदाहरण के लिए, 2-लोब्ड लैंक्ज़ो फ़िल्टर में प्रत्येक प्रकार से केवल नकारात्मक लोब होता है, जिसके पश्चात कोई सकारात्मक लोब नहीं होता है, और इस प्रकार ओवरशूट प्रदर्शित करता है किन्तु कोई रिंगिंग नहीं होता है, जबकि 3-लोब्ड लैंक्ज़ोस फ़िल्टर ओवरशूट और दोनों को प्रदर्शित करता है। चूँकि विंडोइंग इसे sinc फ़िल्टर या ट्रंकेटेड sinc फ़िल्टर की तुलना में अल्प कर देता है।
इसी प्रकार, बाइबिक इंटरपोलेशन में उपयोग किया जाने वाला कनवल्शन कर्नेल 2-लोब विंडो सिनस के समान है, जो नकारात्मक मान लेता है, और इस प्रकार ओवरशूट कलाकृतियों का उत्पादन करता है, जो संक्रमणों पर प्रकटीकरण के रूप में दिखाई देते हैं।
क्लिपिंग
ओवरशूट और अंडरशूट के पश्चात क्लिपिंग (ऑडियो) है।
यदि सिग्नल घिरा हुआ है, उदाहरण के लिए 8-बिट या 16-बिट पूर्णांक, यह ओवरशूट और अंडरशूट अनुमेय मानों की सीमा से अधिक हो सकता है, जिससे क्लिपिंग हो सकती है।
कठोरता से बोलना, क्लिपिंग ओवरशूट और सीमित संख्यात्मक त्रुटिहीन के संयोजन के कारण होता है, किन्तु यह रिंगिंग के साथ निकटता से जुड़ा होता है, और प्रायः इसके संयोजन में होता है।
क्लिपिंग असंबंधित कारणों से भी हो सकती है, सिग्नल से बस चैनल की सीमा से अधिक हो सकती है।
दूसरी ओर, छवियों में रिंगिंग को छुपाने के लिए क्लिपिंग का उपयोग किया जा सकता है। कुछ आधुनिक जेपीईजी कोडेक्स, जैसे कि मोजजेपीईजी और आईएसओ लिबजेपीईजी, आईडीसीटी परिणामों में जान-बूझकर ओवरशूट करके रिंगिंग को अल्प करने के लिए इस प्रकार की युक्ति का उपयोग करते हैं।[9] यह विचार मोजजेपीईजी पैच में उत्पन्न हुआ।[10]
रिंगिंग और रिपल
सिग्नल प्रोसेसिंग और संबंधित क्षेत्रों में, समय डोमेन दोलन की सामान्य घटना को रिंगिंग कहा जाता है, जबकि आवृत्ति डोमेन दोलनों को सामान्यतः रिपल कहा जाता है, चूँकि सामान्यतः "रिपलिंग" नहीं होता है।
डिजिटल सिग्नल प्रोसेसिंग में रिपल का प्रमुख स्रोत विंडो फलन का उपयोग होता है: यदि कोई अनंत आवेग प्रतिक्रिया (IIR) फ़िल्टर लेता है, जैसे कि sinc फ़िल्टर, और इसे बनाने के लिए विंडोज़ को सीमित आवेग प्रतिक्रिया की आवश्यकता होती है, जैसा कि विंडो डिजाइन विधि में है, फिर परिणामी फ़िल्टर की आवृत्ति प्रतिक्रिया IIR फ़िल्टर की आवृत्ति प्रतिक्रिया का कनवल्शन है, जो विंडो फलन की आवृत्ति प्रतिक्रिया के साथ है। विशेष रूप से, आयताकार फ़िल्टर की आवृत्ति प्रतिक्रिया sinc फलन है (आयताकार फलन और sinc फलन एक दूसरे के लिए फूरियर दोहरी हैं), और इस प्रकार समय डोमेन में फ़िल्टर का ट्रंकेशन आयताकार फ़िल्टर द्वारा गुणन से मेल खाता है, इस प्रकार कनवल्शन द्वारा आवृत्ति डोमेन में sinc फ़िल्टर, तरंग उत्पन्न करता है। प्रतीकों में, आवृत्ति प्रतिक्रिया है विशेष रूप से, sinc फलन को छोटा करने से ही उपज मिलती है समय डोमेन में, और आवृत्ति डोमेन में, ठीक उसी प्रकार जैसे लो-पास फ़िल्टरिंग (आवृत्ति डोमेन में ट्रंकटिंग) समय डोमेन में रिंगिंग का कारण बनता है, टाइम डोमेन में ट्रंकटिंग (आयताकार फ़िल्टर द्वारा विंडो) आवृत्ति डोमेन में रिपल का कारण बनता है।
उदाहरण
जेपीईजी
जेपीईजी संपीड़न तीव्र परिवर्तन पर रिंगिंग कलाकृतियों को प्रस्तुत कर सकता है, जो विशेष रूप से टेक्स्ट में दिखाई देते हैं।
यह उच्च आवृत्ति घटकों की हानि का कारण है, जैसा कि स्टेप रिस्पॉन्स रिंगिंग में होता है।
जेपीईजी 8×8 ब्लॉक का उपयोग करता है, जिस पर असतत कोसाइन परिवर्तन (डीसीटी) किया जाता है। डीसीटी फूरियर से संबंधित परिवर्तन है, और रिंगिंग उच्च आवृत्ति घटकों की हानि या उच्च आवृत्ति घटकों में त्रुटिहीन की हानि के कारण होती है।
वे छवि के किनारे पर भी हो सकते हैं: चूंकि जेपीईजी छवियों को 8 × 8 ब्लॉकों में विभाजित करता है, यदि कोई छवि ब्लॉकों की पूर्णांक संख्या नहीं है, तो किनारे को सरलता से एन्कोड नहीं किया जा सकता है, और ब्लैक बॉर्डर भरने जैसे समाधान स्रोत में तीव्र संक्रमण, इसलिए एन्कोडेड छवि में कलाकृतियां बज रही हैं।
तरंगिका-आधारित जेपीईजी 2000 में भी रिंगिंग होती है।
जेपीईजी और जेपीईजी 2000 में अन्य कलाकृतियां हैं, जैसा कि ऊपर दिखाया गया है, जैसे ब्लॉकिंग ("जग्गिस") और एज व्यस्तता (मॉस्क्वीटो नॉइज़), चूँकि ये प्रारूपों की बारीकियों के कारण हैं, और यहां चर्चा के अनुसार बज नहीं रहे हैं।
कुछ उदाहरण:
छवि | दोषरहित संपीड़न | हानिपूर्ण संपीड़न |
---|---|---|
वास्तविक | ||
कैनी एज डिटेक्टर, द्वारा संसाधित कलाकृतियों पर प्रकाश डाला |
प्री-इको
ऑडियो सिग्नल प्रोसेसिंग में, बजने से पूर्व और पश्चात में क्षणिक (ध्वनिकी) उत्पन्न हो सकती है, जैसे कि टक्कर उपकरणों से आवेगी ध्वनि, जैसे कि झांझ (यह आवेग बज रहा है) रिंग करता है। क्षणिक के पश्चात (कारण फिल्टर) प्रतिध्वनि सुनाई नहीं देती है, क्योंकि यह इसके द्वारा मास्क्ड है।
क्षणिक प्रभाव जिसे टेम्पोरल मास्किंग कहा जाता है। इस प्रकार क्षणभंगुर से पूर्व केवल (कारण-विरोधी) प्रतिध्वनि सुनाई देती है, और इस घटना को पूर्व-प्रतिध्वनि कहा जाता है।
यह घटना ऑडियो संपीड़न एल्गोरिदम में संपीड़न आर्टिफैक्ट के रूप में होती है जो फूरियर से संबंधित ट्रांसफॉर्म का उपयोग करती है, जैसे एमपी3, उन्नत ऑडियो कोडिंग (एएसी) और वॉर्बिस करते हैं।
समान घटनाएं
अन्य घटनाओं में रिंगिंग के समान लक्षण होते हैं, किन्तु उनके कारणों में भिन्न होते हैं। ऐसी स्थितियों में जहां ये बिंदु स्रोतों के चारों ओर गोलाकार कलाकृतियों का कारण बनते हैं, इन्हें गोल आकार (औपचारिक रूप से, वलय) के कारण "रिंग्स" के रूप में संदर्भित किया जा सकता है, जो इस पृष्ठ पर चर्चा की गई "रिंगिंग" (ऑसिलेटरी क्षय) आवृत्ति घटना से संबंधित नहीं है।
एज एन्हांसमेंट
एज एनहांसमेंट, जिसका उद्देश्य किनारों को बढ़ाना है, विशेष रूप से दोहराए जाने वाले एप्लिकेशन के अंतर्गत रिंगिंग घटना का कारण बन सकता है, जैसे कि डीवीडी प्लेयर के पश्चात टेलीविजन। यह लो-पास फ़िल्टरिंग के अतिरिक्त हाई-पास फ़िल्टरिंग द्वारा किया जा सकता है।[4]
विशेष कार्य
अनेक विशेष कार्य ऑसिलेटरी क्षय प्रदर्शित करते हैं, और इस प्रकार के फलन के साथ जुड़ने से आउटपुट में रिंगिंग होती है; कोई इन रिंगिंग पर विचार कर सकता है, या आवृत्ति डोमेन सिग्नल प्रोसेसिंग में इस शब्द को अनपेक्षित कलाकृतियों तक सीमित कर सकता है।
फ्राउनहोफर विवर्तन वायुमय डिस्क को पॉइंट स्प्रेड फलन के रूप में उत्पन्न करता है, जिसमें रिंगिंग पैटर्न होता है।
प्रथम प्रकार का बेसेल कार्य, जो वायुमय फलन से संबंधित है, इस प्रकार के क्षय को प्रदर्शित करता है।
कैमरों में, डिफोकस और गोलाकार विपथन के संयोजन से वृत्ताकार कलाकृतियाँ ("रिंग" पैटर्न) उत्पन्न हो सकती हैं। चूँकि, इन कलाकृतियों के पैटर्न को रिंगिंग के समान नहीं होना चाहिए (जैसा कि इस पृष्ठ पर चर्चा की गई है)- वे ऑसिलेटरी क्षय (घटती तीव्रता के वृत्त), या अन्य तीव्रता के पैटर्न, जैसे कि उज्ज्वल बैंड प्रदर्शित कर सकते हैं।
हस्तक्षेप
घोस्टिंग टेलीविजन हस्तक्षेप का रूप है जहां छवि दोहराई जाती है। चूँकि यह बज नहीं रहा है, इसे फलन के साथ कनवल्शन के रूप में व्याख्या किया जा सकता है, जो मूल में 1और कुछ दूरी पर ε (भूत की तीव्रता) है, जो औपचारिक रूप से उपरोक्त कार्यों के समान है (असतत शिखर, जबकि निरंतर दोलन की तुलना में)।
लेंस फ्लारे
फ़ोटोग्राफ़ी में, लेंस फ्लारे दोष है, जिसमें अवांछित प्रकाश, जैसे कि प्रतिबिंब और लेंस में प्रकिरण वाले तत्वों के कारण विभिन्न वृत्त हाइलाइट्स के चारों ओर, और पूर्ण फ़ोटो में भूतों के साथ दिखाई दे सकते हैं।
दृश्य परिवर्तन
मच बैंड के रूप में संक्रमण के समय दृश्य परिवर्तन हो सकता है, जो गिब्स घटना के समान अंडरशूट/ओवरशूट को अवधारणात्मक रूप से प्रदर्शित करता है।
यह भी देखें
- विरूपण साक्ष्य (त्रुटि)
- डिजिटल आर्टिफैक्ट
- सिन फिल्टर
- ईंट-दीवार फिल्टर
- रंगीन पथांतरण
- घोस्टिंग (टेलीविजन)
- गिब्स घटना
- लो पास फिल्टर
- पूर्व प्रतिध्वनि
- बैंगनी किनारा
संदर्भ
- ↑ 1.0 1.1 1.2 Bankman, Isaac N. (2000), Handbook of medical imaging, Academic Press, ISBN 978-0-12-077790-7, section I.6, Enhancement: Frequency Domain Techniques, p. 16
- ↑ 2.0 2.1 Digital Signal Processing, by J.S.Chitode, Technical Publications, 2008, ISBN 978-81-8431-346-8, 4 - 70
- ↑ Glassner, Andrew S (2004), Principles of Digital Image Synthesis (2 ed.), Morgan Kaufmann, ISBN 978-1-55860-276-2, p. 518
- ↑ 4.0 4.1 4.2 Microscope Image Processing, by Qiang Wu, Fatima Merchant, Kenneth Castleman, ISBN 978-0-12-372578-3 p. 71
- ↑ (Allen & Mills 2004) Section 9.3.1.1 Ideal Filters: Low pass, p. 621
- ↑ (Allen & Mills 2004) p. 623
- ↑ Op Amp applications handbook, by Walter G. Jung, Newnes, 2004, ISBN 978-0-7506-7844-5, p. 332
- ↑ Mitchell, Don P.; Netravali, Arun N. (August 1988). Reconstruction filters in computer-graphics (PDF). ACM SIGGRAPH International Conference on Computer Graphics and Interactive Techniques. Vol. 22. pp. 221–228. doi:10.1145/54852.378514. ISBN 0-89791-275-6.
- ↑ Richter, Thomas (September 2016). "JPEG on STEROIDS: Common optimization techniques for JPEG image compression". 2016 IEEE International Conference on Image Processing (ICIP): 61–65. doi:10.1109/ICIP.2016.7532319.
- ↑ Lesiński, Kornel. "ओवरशूट और क्लिपिंग के माध्यम से डीसीटी में डियरिंग". kornel.ski.
- Allen, Ronald L.; Mills, Duncan W. (2004), Signal analysis: time, frequency, scale, and structure, Wiley-IEEE, ISBN 978-0-471-23441-8