{{about|representing a [[positive polynomial|non-negative polynomial]] as sum of squares of polynomials|representing polynomial as a sum of squares of rational functions|Hilbert's seventeenth problem|the sum of squares of consecutive integers|square pyramidal number|representing an integer as a sum of squares of integers|Lagrange's four-square theorem}}
{{about|यह लेख गैर-ऋणात्मक बहुपद को बहुपदों के वर्गों के योग के रूप में प्रस्तुत करने के बारे में है।|तर्कसंगत कार्यों के वर्गों के योग के रूप में बहुपद का प्रतिनिधित्व करने के लिए है|हिल्बर्ट की सत्रहवीं समस्या|लगातार पूर्णांकों के वर्गों का योग|वर्ग पिरामिड संख्या|पूर्णांकों के वर्गों के योग के रूप में एक पूर्णांक का प्रतिनिधित्व करना है।|लैग्रेंज का चार वर्ग प्रमेय}}
गणित में, एक [[सजातीय बहुपद]] (अर्थात एक सजातीय बहुपद) h(x) [[एक बहुपद की डिग्री]] 2m [[वास्तविक संख्या]] n-आयामी सदिश x में रूपों (SOS) के वर्गों का योग होता है यदि और केवल यदि रूप उपस्थित हों <math>g_1(x),\ldots,g_k(x)</math> डिग्री एम की ऐसी है कि
गणित में, [[वास्तविक संख्या]] n आयामी सदिश x में [[एक बहुपद की डिग्री|बहुपद की डिग्री]] 2m का एक [[सजातीय बहुपद]] h(x) के रूप (एसओएस) के वर्गों का योग होता है और यदि केवल डिग्री एम के <math>g_1(x),\ldots,g_k(x)</math> के रूप में उपस्थित होती है। जैसे कि,
एसओएस का हर रूप भी एक [[सकारात्मक बहुपद]] है, और चूंकि विलोम (तर्क) हमेशा सत्य नहीं होता है, [[हिल्बर्ट]] ने सिद्ध किया कि एन = 2, 2 एम = 2 या एन = 3 और 2 एम = 4 के लिए एक फॉर्म एसओएस है यदि और केवल यदि यह सकारात्मक है।<ref>{{cite journal|last1=Hilbert|first1=David|title=रूपों के वर्गों के योग के रूप में निश्चित रूपों के प्रतिनिधित्व के बारे में|journal=Mathematische Annalen|date=September 1888|volume=32|issue=3|pages=342–350|doi=10.1007/bf01443605|s2cid=177804714 |url=https://zenodo.org/record/1428214}}</ref> सकारात्मक सममित रूपों पर एनालॉग समस्या के लिए भी यही मान्य है।<ref>{{cite journal|last1=Choi|first1=M. D.|last2=Lam|first2=T. Y.|title=हिल्बर्ट का एक पुराना सवाल|journal=Queen's Papers in Pure and Applied Mathematics|date=1977|volume=46|pages=385–405}}</ref><ref>{{cite journal|last1=Goel|first1=Charu|last2=Kuhlmann|first2=Salma|last3=Reznick|first3=Bruce|title=On the Choi–Lam analogue of Hilbert's 1888 theorem for symmetric forms|journal=Linear Algebra and Its Applications|date=May 2016|volume=496|pages=114–120|doi=10.1016/j.laa.2016.01.024|arxiv=1505.08145|s2cid=17579200 |author3-link=Bruce Reznick}}</ref>
एसओएस का हर रूप एक [[सकारात्मक बहुपद]] के रूप में होता है और चूंकि विलोम (तर्क) हमेशा सत्य नहीं होता है, [[हिल्बर्ट]] ने सिद्ध किया कि एन = 2, 2 एम = 2 या एन = 3 और 2 एम = 4 के लिए एक फॉर्म एसओएस के रूप में होता है, यदि और केवल यदि यह सकारात्मक होता है।<ref>{{cite journal|last1=Hilbert|first1=David|title=रूपों के वर्गों के योग के रूप में निश्चित रूपों के प्रतिनिधित्व के बारे में|journal=Mathematische Annalen|date=September 1888|volume=32|issue=3|pages=342–350|doi=10.1007/bf01443605|s2cid=177804714 |url=https://zenodo.org/record/1428214}}</ref> सकारात्मक सममित रूपों पर एनालॉग समस्या के लिए भी यही मान्य होता है।<ref>{{cite journal|last1=Choi|first1=M. D.|last2=Lam|first2=T. Y.|title=हिल्बर्ट का एक पुराना सवाल|journal=Queen's Papers in Pure and Applied Mathematics|date=1977|volume=46|pages=385–405}}</ref><ref>{{cite journal|last1=Goel|first1=Charu|last2=Kuhlmann|first2=Salma|last3=Reznick|first3=Bruce|title=On the Choi–Lam analogue of Hilbert's 1888 theorem for symmetric forms|journal=Linear Algebra and Its Applications|date=May 2016|volume=496|pages=114–120|doi=10.1016/j.laa.2016.01.024|arxiv=1505.08145|s2cid=17579200 |author3-link=Bruce Reznick}}</ref>
चूंकि प्रत्येक फॉर्म को एसओएस के रूप में प्रदर्शित नहीं किया जा सकता है, एसओएस होने के लिए एक फॉर्म के लिए स्पष्ट पर्याप्त शर्तें पाई गई हैं।<ref>{{cite journal|last1=Lasserre|first1=Jean B.|title=एक वास्तविक बहुपद के वर्गों का योग होने के लिए पर्याप्त शर्तें| journal=Archiv der Mathematik|volume=89|issue=5|pages=390–398|doi=10.1007/s00013-007-2251-y|url=http://www.optimization-online.org/DB_HTML/2007/02/1587.html|arxiv=math/0612358|year=2007|citeseerx=10.1.1.240.4438|s2cid=9319455 }}</ref><ref>{{cite journal| last1=Powers|first1=Victoria|author1-link=Victoria Powers|last2=Wörmann|first2=Thorsten|title=वास्तविक बहुपदों के वर्गों के योग के लिए एल्गोरिद्म|journal=Journal of Pure and Applied Algebra|date=1998|volume=127|issue=1|pages=99–104| doi=10.1016/S0022-4049(97)83827-3| url=http://www.mathcs.emory.edu/~vicki/pub/sos.pdf|doi-access=free}}</ref> इसके अतिरिक्त , हर वास्तविक गैर-नकारात्मक रूप को वांछित के रूप में निकटता से अनुमानित किया जा सकता है ( <math>l_1</math>इसके गुणांक वेक्टर का मानदंड) रूपों के अनुक्रम द्वारा <math>\{f_\epsilon\}</math> वह एसओएस हैं।<ref>{{cite journal|last1=Lasserre|first1=Jean B.|title=गैर-ऋणात्मक बहुपदों के वर्ग सन्निकटन का योग|journal=SIAM Review|date=2007|volume=49|issue=4|pages=651–669|doi=10.1137/070693709|arxiv=math/0412398|bibcode=2007SIAMR..49..651L}}</ref>
चूंकि प्रत्येक फॉर्म को एसओएस के रूप में प्रदर्शित नहीं किया जा सकता है, एसओएस होने के लिए एक फॉर्म के लिए स्पष्ट पर्याप्त शर्तें पाई गई हैं।<ref>{{cite journal|last1=Lasserre|first1=Jean B.|title=एक वास्तविक बहुपद के वर्गों का योग होने के लिए पर्याप्त शर्तें| journal=Archiv der Mathematik|volume=89|issue=5|pages=390–398|doi=10.1007/s00013-007-2251-y|url=http://www.optimization-online.org/DB_HTML/2007/02/1587.html|arxiv=math/0612358|year=2007|citeseerx=10.1.1.240.4438|s2cid=9319455 }}</ref><ref>{{cite journal| last1=Powers|first1=Victoria|author1-link=Victoria Powers|last2=Wörmann|first2=Thorsten|title=वास्तविक बहुपदों के वर्गों के योग के लिए एल्गोरिद्म|journal=Journal of Pure and Applied Algebra|date=1998|volume=127|issue=1|pages=99–104| doi=10.1016/S0022-4049(97)83827-3| url=http://www.mathcs.emory.edu/~vicki/pub/sos.pdf|doi-access=free}}</ref> इसके अतिरिक्त, हर वास्तविक गैर-नकारात्मक रूप को वांछित के रूप में निकटता से अनुमानित किया जाता है <math>l_1</math>इसके गुणांक वेक्टर का मानदंड रूपों के अनुक्रम द्वारा <math>\{f_\epsilon\}</math> एसओएस के रूप में हैं।<ref>{{cite journal|last1=Lasserre|first1=Jean B.|title=गैर-ऋणात्मक बहुपदों के वर्ग सन्निकटन का योग|journal=SIAM Review|date=2007|volume=49|issue=4|pages=651–669|doi=10.1137/070693709|arxiv=math/0412398|bibcode=2007SIAMR..49..651L}}</ref>
== स्क्वायर मैट्रिकियल प्रतिनिधित्व (एसएमआर) ==
== स्क्वायर मैट्रिकियल प्रतिनिधित्व (एसएमआर) ==
यह स्थापित करने के लिए कि क्या एक फॉर्म {{math|''h''(''x'')}} [[उत्तल अनुकूलन]] समस्या को हल करने के लिए एसओएस राशि है। वास्तव में, कोई {{math|''h''(''x'')}} के रूप में लिखा जा सकता है
यह स्थापित करने के लिए कि क्या एक फॉर्म {{math|''h''(''x'')}} [[उत्तल अनुकूलन]] समस्या को हल करने के लिए एसओएस राशि है। वास्तव में, कोई {{math|''h''(''x'')}} के रूप में लिखा जा सकता है
Revision as of 21:30, 15 March 2023
This article is about यह लेख गैर-ऋणात्मक बहुपद को बहुपदों के वर्गों के योग के रूप में प्रस्तुत करने के बारे में है।. For तर्कसंगत कार्यों के वर्गों के योग के रूप में बहुपद का प्रतिनिधित्व करने के लिए है, see हिल्बर्ट की सत्रहवीं समस्या. For लगातार पूर्णांकों के वर्गों का योग, see वर्ग पिरामिड संख्या. For पूर्णांकों के वर्गों के योग के रूप में एक पूर्णांक का प्रतिनिधित्व करना है।, see लैग्रेंज का चार वर्ग प्रमेय.
गणित में, वास्तविक संख्या n आयामी सदिश x में बहुपद की डिग्री 2m का एक सजातीय बहुपद h(x) के रूप (एसओएस) के वर्गों का योग होता है और यदि केवल डिग्री एम के के रूप में उपस्थित होती है। जैसे कि,
एसओएस का हर रूप एक सकारात्मक बहुपद के रूप में होता है और चूंकि विलोम (तर्क) हमेशा सत्य नहीं होता है, हिल्बर्ट ने सिद्ध किया कि एन = 2, 2 एम = 2 या एन = 3 और 2 एम = 4 के लिए एक फॉर्म एसओएस के रूप में होता है, यदि और केवल यदि यह सकारात्मक होता है।[1] सकारात्मक सममित रूपों पर एनालॉग समस्या के लिए भी यही मान्य होता है।[2][3]
चूंकि प्रत्येक फॉर्म को एसओएस के रूप में प्रदर्शित नहीं किया जा सकता है, एसओएस होने के लिए एक फॉर्म के लिए स्पष्ट पर्याप्त शर्तें पाई गई हैं।[4][5] इसके अतिरिक्त, हर वास्तविक गैर-नकारात्मक रूप को वांछित के रूप में निकटता से अनुमानित किया जाता है इसके गुणांक वेक्टर का मानदंड रूपों के अनुक्रम द्वारा एसओएस के रूप में हैं।[6]
यह स्थापित करने के लिए कि क्या एक फॉर्म h(x)उत्तल अनुकूलन समस्या को हल करने के लिए एसओएस राशि है। वास्तव में, कोई h(x) के रूप में लिखा जा सकता है
कहाँ एक वेक्टर है जिसमें एक्स में डिग्री एम के रूपों के लिए आधार होता है (जैसे एक्स में डिग्री एम के सभी एकपद ), प्राइम 'खिसकाना ़ को दर्शाता है, एच कोई भी सममित मैट्रिक्स संतोषजनक है
और सदिश स्थान का एक रैखिक पैरामीटरकरण है
वेक्टर का आयाम द्वारा दिया गया है
जबकि वेक्टर का आयाम द्वारा दिया गया है
तब, h(x) एसओएस है यदि और केवल यदि कोई वेक्टर उपस्थित है ऐसा है कि
मतलब कि मैट्रिक्स (गणित) धनात्मक-अर्द्धपरिमित मैट्रिक्स है|सकारात्मक-अर्द्धपरिमित। यह एक रैखिक मैट्रिक्स असमानता (एलएमआई) व्यवहार्यता परीक्षण है, जो एक उत्तल अनुकूलन समस्या है। इजहार में प्रस्तुत किया गया था [7] एक एलएमआई के माध्यम से एक फॉर्म एसओएस है या नहीं यह स्थापित करने के लिए स्क्वायर मैट्रिकियल प्रतिनिधित्व (एसएमआर) नाम के साथ। इस प्रतिनिधित्व को ग्राम मैट्रिक्स के रूप में भी जाना जाता है।[8]
उदाहरण
दो चरों में घात 4 के रूप पर विचार करें . अपने पास
चूँकि वहाँ उपस्थित है α ऐसा कि , अर्थात् , यह इस प्रकार है कि h(x) SOS है।
तीन चरों में घात 4 के रूप पर विचार करें . अपने पास
तब से के लिए , यह इस प्रकार है कि h(x) एसओएस है।
सामान्यीकरण
मैट्रिक्स मुसीबत का इशारा
वास्तविक n-आयामी सदिश x में आयाम r और डिग्री 2m का एक मैट्रिक्स रूप F(x) (अर्थात, एक मैट्रिक्स जिसकी प्रविष्टियाँ रूप हैं) SOS है यदि और केवल यदि मैट्रिक्स रूप उपस्थित हैं डिग्री एम की ऐसी है कि
मैट्रिक्स एसएमआर
उत्तल अनुकूलन समस्या को हल करने के लिए एक मैट्रिक्स फॉर्म एफ (एक्स) एसओएस राशि है या नहीं यह स्थापित करने के लिए। दरअसल, स्केलर केस के समान किसी भी एफ (एक्स) को एसएमआर के अनुसार लिखा जा सकता है
कहाँ आव्यूहों का क्रोनेकर गुणनफल है, H कोई सममित आव्यूह संतोषजनक है
और रैखिक स्थान का एक रैखिक पैरामीटरकरण है
वेक्टर का आयाम द्वारा दिया गया है
तब, F(x) एसओएस है यदि और केवल यदि कोई वेक्टर उपस्थित है जैसे कि निम्नलिखित LMI धारण करता है:
इजहार में प्रस्तुत किया गया था [9] यह स्थापित करने के लिए कि एलएमआई के माध्यम से मैट्रिक्स फॉर्म एसओएस है या नहीं।
गैर अनुमेय बहुपद एसओएस
नि: शुल्क बीजगणित R⟨X⟩ पर विचार करें जो एन नॉनकम्यूटिंग अक्षर एक्स = (एक्स) द्वारा उत्पन्न होता है1, ..., एक्सn) और सम्मलित होने से लैस है टी, ऐसा कि T R और X को ठीक करता है1, ..., एक्सn और X द्वारा बनाए गए शब्दों को उलट देता है1, ..., एक्सn.
कम्यूटेटिव स्थिति के अनुरूप, गैर-अनुक्रमिक सममित बहुपद f फॉर्म के गैर-अनुक्रमिक बहुपद हैं f = fT. जब किसी भी आयाम r × r के किसी भी वास्तविक मैट्रिक्स का मूल्यांकन एक सममित गैर-अनुक्रमिक बहुपद f पर किया जाता है, जिसके परिणामस्वरूप एक सकारात्मक अर्ध-निश्चित मैट्रिक्स होता है, f को मैट्रिक्स-पॉजिटिव कहा जाता है।
एक गैर क्रमविनिमेय बहुपद SOS है यदि वहां गैर क्रमविनिमेय बहुपद उपस्थित हैं ऐसा है कि
हैरानी की बात है कि गैर-अनुक्रमिक परिदृश्य में एक गैर-अनुक्रमिक बहुपद एसओएस है यदि और केवल यदि यह मैट्रिक्स-पॉजिटिव है।[10] इसके अतिरिक्त , गैर-अनुमेय बहुपदों के वर्गों के योग में मैट्रिक्स-पॉजिटिव बहुपदों को विघटित करने के लिए उपलब्ध एल्गोरिदम उपस्थित हैं।[11]
↑Chesi, G.; Tesi, A.; Vicino, A.; Genesio, R. (1999). "कुछ न्यूनतम दूरी की समस्याओं के उत्तलीकरण पर". Proceedings of the 5th European Control Conference. Karlsruhe, Germany: IEEE. pp. 1446–1451.
↑Chesi, G.; Garulli, A.; Tesi, A.; Vicino, A. (2003). "बहुपद पैरामीटर-निर्भर लायपुनोव कार्यों के माध्यम से पॉलीटोपिक प्रणालियों के लिए मजबूत स्थिरता". Proceedings of the 42nd IEEE Conference on Decision and Control. Maui, Hawaii: IEEE. pp. 4670–4675. doi:10.1109/CDC.2003.1272307.
↑Helton, J. William (September 2002). ""सकारात्मक" गैर-अनुसूचित बहुपद वर्गों का योग हैं". The Annals of Mathematics. 156 (2): 675–694. doi:10.2307/3597203. JSTOR3597203.
↑Burgdorf, Sabine; Cafuta, Kristijan; Klep, Igor; Povh, Janez (25 October 2012). "गैर-अनुविनिमेय बहुपदों के हर्मिटियन वर्गों के योग के एल्गोरिथम पहलू". Computational Optimization and Applications. 55 (1): 137–153. CiteSeerX10.1.1.416.543. doi:10.1007/s10589-012-9513-8. S2CID254416733.