लो पास फिल्टर: Difference between revisions

From Vigyanwiki
(Created page with "{{short description|Type of signal filter}} एक उच्च पास फिल्टर एक फ़िल्टर (सिग्नल प्रोसेसिं...")
 
No edit summary
Line 1: Line 1:
{{short description|Type of signal filter}}
{{short description|Type of signal filter}}
एक [[उच्च पास फिल्टर]] एक [[फ़िल्टर (सिग्नल प्रोसेसिंग)]] है जो [[सिग्नल (इलेक्ट्रिकल इंजीनियरिंग)]] को एक चयनित कटऑफ [[आवृत्ति]] से कम आवृत्ति के साथ पास करता है और कटऑफ आवृत्ति से अधिक आवृत्तियों के साथ संकेतों को क्षीण करता है। फ़िल्टर की सटीक [[आवृत्ति प्रतिक्रिया]] [[फिल्टर डिजाइन]] पर निर्भर करती है। फ़िल्टर को कभी-कभी ऑडियो अनुप्रयोगों में हाई-कट फ़िल्टर या ट्रेबल-कट फ़िल्टर कहा जाता है। एक निम्न-पास फ़िल्टर एक उच्च-पास फ़िल्टर का पूरक है।
एक [[उच्च पास फिल्टर|उच्च पास निस्यंदक]] एक [[फ़िल्टर (सिग्नल प्रोसेसिंग)|निस्यंदक ( संकेत प्रोसेसिंग)]] है जो [[सिग्नल (इलेक्ट्रिकल इंजीनियरिंग)|संकेत (इलेक्ट्रिकल इंजीनियरिंग)]] को एक चयनित कटऑफ [[आवृत्ति]] से कम आवृत्ति के साथ पास करता है और कट ऑफ आवृत्ति से अधिक आवृत्तियों के साथ संकेतों को क्षीण करता है। निस्यंदक की सटीक [[आवृत्ति प्रतिक्रिया]] [[फिल्टर डिजाइन|निस्यंदक प्रारुप]] पर निर्भर करती है। निस्यंदक को कभी-कभी श्रव्य अनुप्रयोगों में हाई-कट निस्यंदक या ट्रेबल-कट निस्यंदक कहा जाता है। एक निम्न-पास निस्यंदक एक उच्च-पास निस्यंदक का पूरक है।


प्रकाशिकी में, उच्च-पास और निम्न-पास के अलग-अलग अर्थ हो सकते हैं, यह इस बात पर निर्भर करता है कि प्रकाश की आवृत्ति या तरंग दैर्ध्य का जिक्र है, क्योंकि ये चर विपरीत रूप से संबंधित हैं। हाई-पास फ़्रीक्वेंसी फ़िल्टर लो-पास वेवलेंथ फ़िल्टर के रूप में कार्य करेंगे, और इसके विपरीत। इस कारण भ्रम से बचने के लिए वेवलेंथ फिल्टर को 'शॉर्ट-पास' और 'लॉन्ग-पास' के रूप में संदर्भित करना एक अच्छा अभ्यास है, जो 'हाई-पास' और 'लो-पास' के अनुरूप होगा। '' आवृत्तियों।<ref>{{citation |url=http://www.globalspec.com/learnmore/optics_optical_components/optical_components/long_short_pass_filters |title=Long Pass Filters and Short Pass Filters Information |access-date=2017-10-04}}</ref>
प्रकाशिकी में, उच्च-पास और निम्न-पास के अलग-अलग अर्थ हो सकते हैं, यह इस बात पर निर्भर करता है कि प्रकाश की आवृत्ति या तरंग दैर्ध्य का जिक्र है, क्योंकि ये चर विपरीत रूप से संबंधित हैं। हाई-पास आवृत्ति निस्यंदक लो-पास वेवलेंथ निस्यंदक के रूप में कार्य करेंगे, और इसके विपरीत। इस कारण भ्रम से बचने के लिए वेवलेंथ निस्यंदक को 'शॉर्ट-पास' और 'लॉन्ग-पास' के रूप में संदर्भित करना एक अच्छा अभ्यास है, जो 'हाई-पास' और 'लो-पास' के अनुरूप होगा। '' आवृत्तियों।<ref>{{citation |url=http://www.globalspec.com/learnmore/optics_optical_components/optical_components/long_short_pass_filters |title=Long Pass Filters and Short Pass Filters Information |access-date=2017-10-04}}</ref>
लो-पास फिल्टर कई अलग-अलग रूपों में मौजूद हैं, जिनमें इलेक्ट्रॉनिक सर्किट जैसे [[ध्वनि मुद्रण]] में इस्तेमाल किया जाने वाला हिस फिल्टर, [[एनालॉग-टू-डिजिटल रूपांतरण]] से पहले कंडीशनिंग सिग्नल के लिए [[एंटी - एलियासिंग फ़िल्टर]], डेटा के स्मूथिंग सेट के लिए [[डिजिटल फिल्टर]], ध्वनिक बाधाएं शामिल हैं। छवियों का [[गौस्सियन धुंधलापन]], और इसी तरह। वित्त जैसे क्षेत्रों में उपयोग किया जाने वाला [[मूविंग एवरेज (वित्त)]] ऑपरेशन एक विशेष प्रकार का लो-पास फिल्टर है, और इसका विश्लेषण उसी [[संकेत आगे बढ़ाना]] तकनीकों के साथ किया जा सकता है, जो अन्य लो-पास फिल्टर के लिए उपयोग की जाती हैं। कम-पास फिल्टर सिग्नल का एक आसान रूप प्रदान करते हैं, अल्पकालिक उतार-चढ़ाव को दूर करते हैं और लंबी अवधि की प्रवृत्ति को छोड़ते हैं।


फ़िल्टर डिज़ाइनर अक्सर [[प्रोटोटाइप फ़िल्टर]] के रूप में लो-पास फ़ॉर्म का उपयोग करते हैं। यही है, एकता बैंडविड्थ और प्रतिबाधा वाला फ़िल्टर। वांछित बैंडविड्थ और प्रतिबाधा के लिए स्केलिंग और वांछित बैंडफॉर्म (यानी लो-पास, हाई-पास, [[बंदपास छननी]]|बैंड-पास या [[बैंड-स्टॉप फ़िल्टर]]|बैंड-स्टॉप) में परिवर्तित करके वांछित फिल्टर को प्रोटोटाइप से प्राप्त किया जाता है। ).
लो-पास निस्यंदक कई अलग-अलग रूपों में मौजूद हैं, जिनमें विद्युत परिपथ जैसे [[ध्वनि मुद्रण]] में इस्तेमाल किया जाने वाला हिस निस्यंदक, [[एनालॉग-टू-डिजिटल रूपांतरण|एनालॉग-टू-अंकीय रूपांतरण]] से पूर्व अनुकूलन संकेत के लिए [[एंटी - एलियासिंग फ़िल्टर|एंटी - एलियासिंग निस्यंदक]], डेटा के स्मूथिंग सेट के लिए [[डिजिटल फिल्टर|अंकीय निस्यंदक]], ध्वनिक बाधाएं सम्मिलित हैं। छवियों का [[गौस्सियन धुंधलापन]], और इसी तरह। वित्त जैसे क्षेत्रों में उपयोग किया जाने वाला [[मूविंग एवरेज (वित्त)]] ऑपरेशन एक विशेष प्रकार का लो-पास निस्यंदक है, और इसका विश्लेषण उसी [[संकेत आगे बढ़ाना]] तकनीकों के साथ किया जा सकता है, जो अन्य लो-पास निस्यंदक के लिए उपयोग की जाती हैं। कम-पास निस्यंदक  संकेत का एक सरल रूप प्रदान करते हैं, अल्पकालिक उतार-चढ़ाव को दूर करते हैं और लंबी अवधि की प्रवृत्ति को छोड़ते हैं।
 
निस्यंदक अभिकल्पक प्रायः [[प्रोटोटाइप फ़िल्टर|प्रोटोटाइप निस्यंदक]] के रूप में लो-पास फ़ॉर्म का उपयोग करते हैं। यही है, एकता बैंडविड्थ और प्रतिबाधा वाला निस्यंदक। वांछित बैंडविड्थ और प्रतिबाधा के लिए स्केलिंग और वांछित बैंडफॉर्म (यानी लो-पास, हाई-पास, [[बंदपास छननी]]|बैंड-पास या [[बैंड-स्टॉप फ़िल्टर|बैंड-स्टॉप निस्यंदक]]|बैंड-स्टॉप) में परिवर्तित करके वांछित निस्यंदक को प्रोटोटाइप से प्राप्त किया जाता है। ).


== उदाहरण ==
== उदाहरण ==
लो-पास फिल्टर के उदाहरण ध्वनिकी, प्रकाशिकी और इलेक्ट्रॉनिक्स में पाए जाते हैं।
लो-पास निस्यंदक के उदाहरण ध्वनिकी, प्रकाशिकी और विद्युत्स में पाए जाते हैं।


एक कठोर भौतिक बाधा उच्च ध्वनि आवृत्तियों को प्रतिबिंबित करती है, और इसलिए ध्वनि संचारित करने के लिए ध्वनिक निम्न-पास फ़िल्टर के रूप में कार्य करती है। जब संगीत दूसरे कमरे में चल रहा होता है, तो निम्न स्वर आसानी से सुनाई देते हैं, जबकि उच्च स्वर क्षीण हो जाते हैं।
एक कठोर भौतिक बाधा उच्च ध्वनि आवृत्तियों को प्रतिबिंबित करती है, और इसलिए ध्वनि संचारित करने के लिए ध्वनिक निम्न-पास निस्यंदक के रूप में कार्य करती है। जब संगीत दूसरे कमरे में चल रहा होता है, तो निम्न स्वर सरली से सुनाई देते हैं, जबकि उच्च स्वर क्षीण हो जाते हैं।


समान फ़ंक्शन वाले एक [[ऑप्टिकल फिल्टर]] को सही ढंग से कम-पास फ़िल्टर कहा जा सकता है, लेकिन भ्रम से बचने के लिए पारंपरिक रूप से लॉन्गपास फ़िल्टर (कम आवृत्ति लंबी तरंग दैर्ध्य) कहा जाता है।<ref>{{citation |url=http://www.globalspec.com/learnmore/optics_optical_components/optical_components/long_short_pass_filters |title=Long Pass Filters and Short Pass Filters Information |access-date=2017-10-04}}</ref>
समान कार्य वाले एक [[ऑप्टिकल फिल्टर|ऑप्टिकल निस्यंदक]] को सही ढंग से कम-पास निस्यंदक कहा जा सकता है, लेकिन भ्रम से बचने के लिए पारंपरिक रूप से लॉन्गपास निस्यंदक (कम आवृत्ति लंबी तरंग दैर्ध्य) कहा जाता है।<ref>{{citation |url=http://www.globalspec.com/learnmore/optics_optical_components/optical_components/long_short_pass_filters |title=Long Pass Filters and Short Pass Filters Information |access-date=2017-10-04}}</ref>
वोल्टेज संकेतों के लिए एक इलेक्ट्रॉनिक कम-पास [[आरसी फिल्टर]] में, इनपुट सिग्नल में उच्च आवृत्तियों को क्षीण किया जाता है, लेकिन फ़िल्टर में [[आरसी समय स्थिर]]ांक द्वारा निर्धारित कटऑफ आवृत्ति के नीचे थोड़ा क्षीणन होता है। वर्तमान संकेतों के लिए, एक समान सर्किट, समानांतर सर्किट # समानांतर सर्किट में एक रोकनेवाला और संधारित्र का उपयोग करके, समान तरीके से काम करता है। (वर्तमान डिवाइडर को अधिक विस्तार से देखें #इलेक्ट्रॉनिक लो-पास फिल्टर।)


[[सबवूफर]] और अन्य प्रकार के [[ध्वनि-विस्तारक यंत्र]]ों के इनपुट पर इलेक्ट्रॉनिक लो-पास फ़िल्टर का उपयोग किया जाता है, ताकि उच्च पिचों को अवरुद्ध किया जा सके जो कुशलता से पुनरुत्पादन नहीं कर सकते। रेडियो ट्रांसमीटर [[लयबद्ध]] उत्सर्जन को अवरुद्ध करने के लिए कम-पास फिल्टर का उपयोग करते हैं जो अन्य संचारों में हस्तक्षेप कर सकते हैं। कई [[विद्युत गिटार]] पर टोन नॉब एक ​​लो-पास फिल्टर है जिसका उपयोग ध्वनि में ट्रेबल की मात्रा को कम करने के लिए किया जाता है। एक समाकलक एक और समय स्थिरांक है #विद्युत परिपथों में समय स्थिरांक लो-पास फिल्टर।<ref>{{cite book |title      = Microelectronic Circuits, 3 ed.
वोल्टता संकेतों के लिए एक विद्युत कम-पास [[आरसी फिल्टर|आरसी निस्यंदक]] में, इनपुट संकेत में उच्च आवृत्तियों को क्षीण किया जाता है, लेकिन निस्यंदक में [[आरसी समय स्थिर]]ांक द्वारा निर्धारित कटऑफ आवृत्ति के नीचे थोड़ा क्षीणन होता है। वर्तमान संकेतों के लिए, एक समान परिपथ, समानांतर परिपथ में एक रोकनेवाला और संधारित्र का उपयोग करके, समान तरीके से काम करता है। (वर्तमान डिवाइडर को अधिक विस्तार से देखें #विद्युत लो-पास निस्यंदक।)
 
[[सबवूफर]] और अन्य प्रकार के [[ध्वनि-विस्तारक यंत्र]] के इनपुट पर विद्युत लो-पास निस्यंदक का उपयोग किया जाता है, ताकि उच्च पिचों को अवरुद्ध किया जा सके जो कुशलता से पुनरुत्पादन नहीं कर सकते। रेडियो ट्रांसमीटर [[लयबद्ध]] उत्सर्जन को अवरुद्ध करने के लिए कम-पास निस्यंदक का उपयोग करते हैं जो अन्य संचारों में हस्तक्षेप कर सकते हैं। कई [[विद्युत गिटार]] पर टोन नॉब एक ​​लो-पास निस्यंदक है जिसका उपयोग ध्वनि में ट्रेबल की मात्रा को कम करने के लिए किया जाता है। एक समाकलक एक और समय स्थिरांक है #विद्युत परिपथों में समय स्थिरांक लो-पास निस्यंदक।<ref>{{cite book |title      = Microelectronic Circuits, 3 ed.
  |page        = [https://archive.org/details/microelectronicc00sedr_0/page/60 60]
  |page        = [https://archive.org/details/microelectronicc00sedr_0/page/60 60]
  |first1      = Adel
  |first1      = Adel
Line 28: Line 30:
  |url        = https://archive.org/details/microelectronicc00sedr_0/page/60
  |url        = https://archive.org/details/microelectronicc00sedr_0/page/60
}}</ref>
}}</ref>
[[डीएसएल फाड़नेवाला]]्स के साथ फिट की गई टेलीफोन लाइनें लो-पास और हाई-पास फिल्टर का उपयोग करती हैं। [[डिजिटल खरीदारों की पंक्ति]] को अलग करने के लिए हाई-पास फिल्टर और समान मुड़ जोड़ी तारों को साझा करने वाले सादे पुराने टेलीफोन सेवा सिग्नल।<ref>{{cite web|url=http://www.epanorama.net/documents/telecom/adsl_filter.html |title=ADSL filters explained |publisher=Epanorama.net |access-date=2013-09-24}}</ref><ref>{{cite web |url=http://www.pcweenie.com/hni/broadband/broad6.shtml |title=Home Networking – Local Area Network |publisher=Pcweenie.com |date=2009-04-12 |access-date=2013-09-24 |archive-url=https://web.archive.org/web/20130927135123/http://www.pcweenie.com/hni/broadband/broad6.shtml |archive-date=2013-09-27 |url-status=dead }}</ref>
लो-पास फिल्टर भी एनालॉग और वर्चुअल एनालॉग [[सिंथेसाइज़र]] द्वारा बनाई गई ध्वनि की मूर्तिकला में महत्वपूर्ण भूमिका निभाते हैं। घटाव संश्लेषण देखें।


[[नमूनाकरण (सिग्नल प्रोसेसिंग)]] से पहले और [[डिजिटल-से-एनालॉग रूपांतरण]] में पुनर्निर्माण फ़िल्टर के लिए एक कम-पास फ़िल्टर का उपयोग एंटी-अलियासिंग फ़िल्टर के रूप में किया जाता है।
[[डीएसएल फाड़नेवाला]]्स के साथ फिट की गई टेलीफोन लाइनें लो-पास और हाई-पास निस्यंदक का उपयोग करती हैं। [[डिजिटल खरीदारों की पंक्ति|अंकीय खरीदारों की पंक्ति]] को अलग करने के लिए हाई-पास निस्यंदक और समान मुड़ जोड़ी तारों को साझा करने वाले सादे पुराने टेलीफोन सेवा  संकेत।<ref>{{cite web|url=http://www.epanorama.net/documents/telecom/adsl_filter.html |title=ADSL filters explained |publisher=Epanorama.net |access-date=2013-09-24}}</ref><ref>{{cite web |url=http://www.pcweenie.com/hni/broadband/broad6.shtml |title=Home Networking – Local Area Network |publisher=Pcweenie.com |date=2009-04-12 |access-date=2013-09-24 |archive-url=https://web.archive.org/web/20130927135123/http://www.pcweenie.com/hni/broadband/broad6.shtml |archive-date=2013-09-27 |url-status=dead }}</ref>
 
लो-पास निस्यंदक भी एनालॉग और वर्चुअल एनालॉग [[सिंथेसाइज़र]] द्वारा बनाई गई ध्वनि की मूर्तिकला में महत्वपूर्ण भूमिका निभाते हैं। घटाव संश्लेषण देखें।
 
[[नमूनाकरण (सिग्नल प्रोसेसिंग)|नमूनाकरण ( संकेत प्रोसेसिंग)]] से पूर्व और [[डिजिटल-से-एनालॉग रूपांतरण|अंकीय-से-एनालॉग रूपांतरण]] में पुनर्निर्माण निस्यंदक के लिए एक कम-पास निस्यंदक का उपयोग उपघटन प्रतिरोधी निस्यंदक के रूप में किया जाता है।
 
== आदर्श और वास्तविक निस्यंदक ==
[[File:Sinc function (normalized).svg|thumb|sinc कार्य, एक आदर्श निम्न-पास निस्यंदक का समय-डोमेन [[आवेग प्रतिक्रिया]]।]]
[[File:Butterworth response.svg|thumb|350px|प्रथम-क्रम (एक-ध्रुव) निम्न-पास निस्यंदक का लाभ-परिमाण आवृत्ति प्रतिक्रिया। पावर गेन [[डेसिबल]] में दिखाया गया है (यानी, एक 3 डेसिबल गिरावट एक अतिरिक्त अर्ध-शक्ति क्षीणन दर्शाती है)। [[कोणीय आवृत्ति]] प्रति सेकंड रेडियन की इकाइयों में एक लघुगणकीय पैमाने पर दिखाई जाती है।]]एक sinc निस्यंदक|आदर्श लो-पास निस्यंदक कटऑफ़ आवृत्ति से ऊपर की सभी आवृत्ति को पूरी तरह से हटा देता है जबकि नीचे की आवृत्ति अपरिवर्तित रहती है; इसकी आवृत्ति प्रतिक्रिया एक आयताकार कार्य है और एक ईंट-दीवार निस्यंदक है। व्यावहारिक निस्यंदक में मौजूद संक्रमण क्षेत्र एक आदर्श निस्यंदक में मौजूद नहीं होता है। एक आदर्श लो-पास निस्यंदक को गणितीय रूप से (सैद्धांतिक रूप से) आवृत्ति डोमेन में आयताकार कार्य द्वारा एक  संकेत को गुणा करके या समतुल्य रूप से, इसके आवेग प्रतिक्रिया के साथ [[कनवल्शन]], समय डोमेन में एक sinc कार्य द्वारा महसूस किया जा सकता है।


== आदर्श और वास्तविक फ़िल्टर ==
हालांकि, समय में अनंत सीमा के संकेतों के बिना भी आदर्श निस्यंदक का एहसास करना असंभव है, और इसलिए आम तौर पर वास्तविक चल रहे संकेतों के लिए अनुमानित होने की आवश्यकता होती है, क्योंकि sinc कार्य का समर्थन क्षेत्र सभी पिछले और भविष्य के समय तक फैला हुआ है। इसलिए कनवल्शन करने के लिए निस्यंदक को अनंत विलंब, या अनंत भविष्य और अतीत का ज्ञान होना चाहिए। यह अतीत और भविष्य में शून्य के विस्तार को मानकर पूर्व-रिकॉर्ड किए गए अंकीय संकेतों के लिए प्रभावी रूप से वसूली योग्य है, या सामान्यतः  संकेत को दोहराव बनाकर और फूरियर विश्लेषण का उपयोग करके।
[[File:Sinc function (normalized).svg|thumb|sinc फ़ंक्शन, एक आदर्श निम्न-पास फ़िल्टर का समय-डोमेन [[आवेग प्रतिक्रिया]]।]]
[[File:Butterworth response.svg|thumb|350px|प्रथम-क्रम (एक-ध्रुव) निम्न-पास फ़िल्टर का लाभ-परिमाण आवृत्ति प्रतिक्रिया। पावर गेन [[डेसिबल]] में दिखाया गया है (यानी, एक 3 डेसिबल गिरावट एक अतिरिक्त अर्ध-शक्ति क्षीणन दर्शाती है)। [[कोणीय आवृत्ति]] प्रति सेकंड रेडियन की इकाइयों में एक लघुगणकीय पैमाने पर दिखाई जाती है।]]एक sinc फ़िल्टर|आदर्श लो-पास फ़िल्टर कटऑफ़ फ़्रीक्वेंसी से ऊपर की सभी फ़्रीक्वेंसी को पूरी तरह से हटा देता है जबकि नीचे की फ़्रीक्वेंसी अपरिवर्तित रहती है; इसकी आवृत्ति प्रतिक्रिया एक आयताकार कार्य है और एक ईंट-दीवार फ़िल्टर है। व्यावहारिक फिल्टर में मौजूद संक्रमण क्षेत्र एक आदर्श फिल्टर में मौजूद नहीं होता है। एक आदर्श लो-पास फ़िल्टर को गणितीय रूप से (सैद्धांतिक रूप से) फ़्रीक्वेंसी डोमेन में आयताकार फ़ंक्शन द्वारा एक सिग्नल को गुणा करके या समतुल्य रूप से, इसके आवेग प्रतिक्रिया के साथ [[कनवल्शन]], समय डोमेन में एक sinc फ़ंक्शन द्वारा महसूस किया जा सकता है।


हालांकि, समय में अनंत सीमा के संकेतों के बिना भी आदर्श फिल्टर का एहसास करना असंभव है, और इसलिए आम तौर पर वास्तविक चल रहे संकेतों के लिए अनुमानित होने की आवश्यकता होती है, क्योंकि sinc फ़ंक्शन का समर्थन क्षेत्र सभी पिछले और भविष्य के समय तक फैला हुआ है। इसलिए कनवल्शन करने के लिए फ़िल्टर को अनंत विलंब, या अनंत भविष्य और अतीत का ज्ञान होना चाहिए। यह अतीत और भविष्य में शून्य के विस्तार को मानकर पूर्व-रिकॉर्ड किए गए डिजिटल संकेतों के लिए प्रभावी रूप से वसूली योग्य है, या आमतौर पर सिग्नल को दोहराव बनाकर और फूरियर विश्लेषण का उपयोग करके।
[[रीयल-टाइम कंप्यूटिंग]] के लिए वास्तविक निस्यंदक | रीयल-टाइम एप्लिकेशन एक सीमित आवेग प्रतिक्रिया बनाने के लिए अनंत आवेग प्रतिक्रिया को ट्रंकेटिंग और [[खिड़की समारोह]] द्वारा आदर्श निस्यंदक का अनुमान लगाते हैं; [[सिन फिल्टर|सिन निस्यंदक]] को लागू करने के लिए  संकेत को मध्यम अवधि के लिए विलंबित करने की आवश्यकता होती है, जिससे गणना को भविष्य में थोड़ा सा देखने की अनुमति मिलती है। यह विलंब चरण (तरंगों) के रूप में प्रकट होता है। सन्निकटन में अधिक सटीकता के लिए अधिक विलंब की आवश्यकता होती है।


[[रीयल-टाइम कंप्यूटिंग]] के लिए वास्तविक फ़िल्टर | रीयल-टाइम एप्लिकेशन एक सीमित आवेग प्रतिक्रिया बनाने के लिए अनंत आवेग प्रतिक्रिया को ट्रंकेटिंग और [[खिड़की समारोह]] द्वारा आदर्श फ़िल्टर का अनुमान लगाते हैं; [[सिन फिल्टर]] को लागू करने के लिए सिग्नल को मध्यम अवधि के लिए विलंबित करने की आवश्यकता होती है, जिससे गणना को भविष्य में थोड़ा सा देखने की अनुमति मिलती है। यह विलंब चरण (तरंगों) के रूप में प्रकट होता है। सन्निकटन में अधिक सटीकता के लिए अधिक विलंब की आवश्यकता होती है।
[[गिब्स घटना]] के माध्यम से रिंगिंग कलाकृतियों में एक आदर्श निम्न-पास निस्यंदक का परिणाम होता है। विंडोिंग कार्य की पसंद से इन्हें कम या खराब किया जा सकता है, और विंडो कार्य # निस्यंदक डिज़ाइन में इन कलाकृतियों को समझना और कम करना सम्मिलित है। उदाहरण के लिए, साधारण काट-छाँट [of sinc] गंभीर रिंगिंग कलाकृतियों का कारण बनता है,  संकेत पुनर्निर्माण में, और इन कलाकृतियों को कम करने के लिए विंडो फ़ंक्शंस का उपयोग किया जाता है जो किनारों पर अधिक सरली से गिर जाते हैं।<ref>[http://www.cg.tuwien.ac.at/research/vis/vismed/Windows/MasteringWindows.pdf Mastering Windows: Improving Reconstruction]</ref>


[[गिब्स घटना]] के माध्यम से रिंगिंग कलाकृतियों में एक आदर्श निम्न-पास फ़िल्टर का परिणाम होता है। विंडोिंग फ़ंक्शन की पसंद से इन्हें कम या खराब किया जा सकता है, और विंडो फ़ंक्शन # फ़िल्टर डिज़ाइन में इन कलाकृतियों को समझना और कम करना शामिल है। उदाहरण के लिए, साधारण काट-छाँट [of sinc] गंभीर रिंगिंग कलाकृतियों का कारण बनता है, सिग्नल पुनर्निर्माण में, और इन कलाकृतियों को कम करने के लिए विंडो फ़ंक्शंस का उपयोग किया जाता है जो किनारों पर अधिक आसानी से गिर जाते हैं।<ref>[http://www.cg.tuwien.ac.at/research/vis/vismed/Windows/MasteringWindows.pdf Mastering Windows: Improving Reconstruction]</ref>
व्हिटेकर-शैनन इंटरपोलेशन फॉर्मूला वर्णन करता है कि नमूना [[डिजिटल सिग्नल (सिग्नल प्रोसेसिंग)|अंकीय  संकेत ( संकेत प्रोसेसिंग)]] से निरंतर संकेत का पुनर्निर्माण करने के लिए एक आदर्श निम्न-पास निस्यंदक का उपयोग कैसे किया जाए। वास्तविक [[डिज़िटल से एनालॉग कन्वर्टर]] वास्तविक निस्यंदक सन्निकटन का उपयोग करते हैं।
व्हिटेकर-शैनन इंटरपोलेशन फॉर्मूला वर्णन करता है कि नमूना [[डिजिटल सिग्नल (सिग्नल प्रोसेसिंग)]] से निरंतर सिग्नल का पुनर्निर्माण करने के लिए एक आदर्श निम्न-पास फ़िल्टर का उपयोग कैसे किया जाए। वास्तविक [[डिज़िटल से एनालॉग कन्वर्टर]] वास्तविक फ़िल्टर सन्निकटन का उपयोग करते हैं।


== समय प्रतिक्रिया ==
== समय प्रतिक्रिया ==


सरल निम्न-पास RC फ़िल्टर की प्रतिक्रिया को हल करके एक कम-पास फ़िल्टर का समय प्रतिक्रिया पाया जाता है।
सरल निम्न-पास RC निस्यंदक की प्रतिक्रिया को हल करके एक कम-पास निस्यंदक का समय प्रतिक्रिया पाया जाता है।


  [[File:1st Order Lowpass Filter RC.svg|right|frameडी | एक साधारण लो-पास [[आरसी सर्किट]]]]किरचॉफ के सर्किट कानूनों का उपयोग करना। किरचॉफ के नियम हम अंतर समीकरण पर पहुंचते हैं<ref name=":0">{{Cite book|last=Hayt, William H., Jr. and Kemmerly, Jack E.|title=Engineering Circuit Analysis|publisher=McGRAW-HILL BOOK COMPANY|year=1978|location=New York|pages=211-224, 684-729}}</ref>
  [[File:1st Order Lowpass Filter RC.svg|right| एक साधारण लो-पास [[आरसी सर्किट|आरसी परिपथ]]]]किरचॉफ के परिपथ कानूनों का उपयोग करना। किरचॉफ के नियम हम अंतर समीकरण पर पहुंचते हैं<ref name=":0">{{Cite book|last=Hayt, William H., Jr. and Kemmerly, Jack E.|title=Engineering Circuit Analysis|publisher=McGRAW-HILL BOOK COMPANY|year=1978|location=New York|pages=211-224, 684-729}}</ref>
:<math>v_{\text{out}}(t) = v_{\text{in}}(t) - RC \frac{\operatorname{d}v_{\text{out}}}{\operatorname{d}t}</math>
:<math>v_{\text{out}}(t) = v_{\text{in}}(t) - RC \frac{\operatorname{d}v_{\text{out}}}{\operatorname{d}t}</math>


Line 55: Line 60:
अगर हम जाने दें <math>v_{\text{in}}(t)</math> परिमाण का एक चरण कार्य हो <math>V_i</math> तो अंतर समीकरण का हल है<ref>{{Cite book|last=Boyce, William and DiPrima, Richard|title=Elementary Differential Equations and Boundary Value Problems|publisher=JOHN WILEY & SONS|year=1965|location=New York|pages=11–24}}</ref>
अगर हम जाने दें <math>v_{\text{in}}(t)</math> परिमाण का एक चरण कार्य हो <math>V_i</math> तो अंतर समीकरण का हल है<ref>{{Cite book|last=Boyce, William and DiPrima, Richard|title=Elementary Differential Equations and Boundary Value Problems|publisher=JOHN WILEY & SONS|year=1965|location=New York|pages=11–24}}</ref>
:<math>v_{\text{out}}(t) = V_i (1 - e^{-\omega_0 t}),</math>
:<math>v_{\text{out}}(t) = V_i (1 - e^{-\omega_0 t}),</math>
कहाँ <math>\omega_0 = {1 \over RC}</math> फिल्टर की कटऑफ आवृत्ति है।
कहाँ <math>\omega_0 = {1 \over RC}</math> निस्यंदक की कटऑफ आवृत्ति है।


== आवृत्ति प्रतिक्रिया ==
== आवृत्ति प्रतिक्रिया ==
एक सर्किट की आवृत्ति प्रतिक्रिया को चिह्नित करने का सबसे आम तरीका इसका लाप्लास रूपांतरण खोजना है<ref name=":0" />स्थानांतरण प्रकार्य, <math>H(s) = {V_{\rm out}(s) \over V_{\rm in}(s)}</math>. हमारे अवकल समीकरण के लाप्लास रूपांतरण को लेना और के लिए हल करना <math>H(s)</math> हम पाते हैं
एक परिपथ की आवृत्ति प्रतिक्रिया को चिह्नित करने का सबसे आम तरीका इसका लाप्लास रूपांतरण खोजना है<ref name=":0" />स्थानांतरण प्रकार्य, <math>H(s) = {V_{\rm out}(s) \over V_{\rm in}(s)}</math>. हमारे अवकल समीकरण के लाप्लास रूपांतरण को लेना और के लिए हल करना <math>H(s)</math> हम पाते हैं


:<math>H(s) = {V_{\rm out}(s) \over V_{\rm in}(s)} = {\omega_0 \over (s + \omega_0)}</math>
:<math>H(s) = {V_{\rm out}(s) \over V_{\rm in}(s)} = {\omega_0 \over (s + \omega_0)}</math>
Line 64: Line 69:


== असतत समय नमूनाकरण के माध्यम से अंतर समीकरण ==
== असतत समय नमूनाकरण के माध्यम से अंतर समीकरण ==
के नियमित अंतराल पर उपरोक्त चरण इनपुट प्रतिक्रिया का नमूना लेकर एक असतत रैखिक अंतर समीकरण आसानी से प्राप्त किया जाता है <math>nT</math> कहाँ <math>n = 0, 1, ...</math> और <math>T</math> नमूनों के बीच का समय है। हमारे पास लगातार दो नमूनों के बीच का अंतर लेना
के नियमित अंतराल पर उपरोक्त चरण इनपुट प्रतिक्रिया का नमूना लेकर एक असतत रैखिक अंतर समीकरण सरली से प्राप्त किया जाता है <math>nT</math> कहाँ <math>n = 0, 1, ...</math> और <math>T</math> नमूनों के बीच का समय है। हमारे पास लगातार दो नमूनों के बीच का अंतर लेना


:<math>v_{\rm out}(nT) - v_{\rm out}((n-1)T) = V_i (1 - e^{-\omega_0 nT}) - V_i (1 - e^{-\omega_0 ((n-1)T)}) </math>
:<math>v_{\rm out}(nT) - v_{\rm out}((n-1)T) = V_i (1 - e^{-\omega_0 nT}) - V_i (1 - e^{-\omega_0 ((n-1)T)}) </math>
Line 77: Line 82:


=== त्रुटि विश्लेषण ===
=== त्रुटि विश्लेषण ===
अंतर समीकरण से पुनर्निर्मित आउटपुट सिग्नल की तुलना करना, <math>V_n = \beta V_{n-1} + (1-\beta)v_n</math>, चरण इनपुट प्रतिक्रिया के लिए, <math>v_{\text{out}}(t) = V_i (1 - e^{-\omega_0 t})</math>, हम पाते हैं कि एक सटीक पुनर्निर्माण (0% त्रुटि) है। यह एक समय अपरिवर्तनीय इनपुट के लिए पुनर्निर्मित आउटपुट है। हालाँकि, यदि इनपुट समय संस्करण है, जैसे <math>v_{\text{in}}(t) = V_i \sin(\omega t)</math>, यह मॉडल अवधि के साथ चरण कार्यों की एक श्रृंखला के रूप में इनपुट सिग्नल का अनुमान लगाता है <math>T</math> पुनर्निर्मित आउटपुट सिग्नल में त्रुटि उत्पन्न करना। टाइम वेरिएंट इनपुट्स से उत्पन्न त्रुटि को निर्धारित करना मुश्किल है{{cn|date=August 2020}} लेकिन के रूप में घट जाती है <math>T\rightarrow0</math>.
अंतर समीकरण से पुनर्निर्मित आउटपुट संकेत की तुलना करना, <math>V_n = \beta V_{n-1} + (1-\beta)v_n</math>, चरण इनपुट प्रतिक्रिया के लिए, <math>v_{\text{out}}(t) = V_i (1 - e^{-\omega_0 t})</math>, हम पाते हैं कि एक सटीक पुनर्निर्माण (0% त्रुटि) है। यह एक समय अपरिवर्तनीय इनपुट के लिए पुनर्निर्मित आउटपुट है। हालाँकि, यदि इनपुट समय संस्करण है, जैसे <math>v_{\text{in}}(t) = V_i \sin(\omega t)</math>, यह मॉडल अवधि के साथ चरण कार्यों की एक श्रृंखला के रूप में इनपुट संकेत का अनुमान लगाता है <math>T</math> पुनर्निर्मित आउटपुट संकेत में त्रुटि उत्पन्न करना। टाइम वेरिएंट इनपुट्स से उत्पन्न त्रुटि को निर्धारित करना मुश्किल है{{cn|date=August 2020}} लेकिन के रूप में घट जाती है <math>T\rightarrow0</math>.


== असतत-समय की प्राप्ति ==
== असतत-समय की प्राप्ति ==
{{For|another method of conversion from continuous- to discrete-time|Bilinear transform}}
{{For|another method of conversion from continuous- to discrete-time|Bilinear transform}}
कई डिजिटल फिल्टर निम्न-पास विशेषताओं को देने के लिए डिज़ाइन किए गए हैं। दोनों [[अनंत आवेग प्रतिक्रिया]] और परिमित आवेग प्रतिक्रिया कम पास फिल्टर के साथ-साथ [[फूरियर रूपांतरण]] का उपयोग करने वाले फिल्टर व्यापक रूप से उपयोग किए जाते हैं।
कई अंकीय निस्यंदक निम्न-पास विशेषताओं को देने के लिए डिज़ाइन किए गए हैं। दोनों [[अनंत आवेग प्रतिक्रिया]] और परिमित आवेग प्रतिक्रिया कम पास निस्यंदक के साथ-साथ [[फूरियर रूपांतरण]] का उपयोग करने वाले निस्यंदक व्यापक रूप से उपयोग किए जाते हैं।


=== सरल अनंत आवेग प्रतिक्रिया फ़िल्टर ===
=== सरल अनंत आवेग प्रतिक्रिया निस्यंदक ===


एक अनंत आवेग प्रतिक्रिया कम-पास फ़िल्टर का प्रभाव समय डोमेन में आरसी फ़िल्टर के व्यवहार का विश्लेषण करके कंप्यूटर पर अनुकरण किया जा सकता है, और उसके बाद मॉडल को [[असतत संकेत]] दिया जा सकता है।
एक अनंत आवेग प्रतिक्रिया कम-पास निस्यंदक का प्रभाव समय डोमेन में आरसी निस्यंदक के व्यवहार का विश्लेषण करके कंप्यूटर पर अनुकरण किया जा सकता है, और उसके बाद मॉडल को [[असतत संकेत]] दिया जा सकता है।


[[File:1st Order Lowpass Filter RC.svg|right|frameडी | एक साधारण लो-पास आरसी सर्किट]]किरचॉफ के सर्किट कानूनों के अनुसार सर्किट आरेख से दाईं ओर। किरचॉफ के नियम और [[समाई]] की परिभाषा:
[[File:1st Order Lowpass Filter RC.svg|right| एक साधारण लो-पास आरसी परिपथ]]किरचॉफ के परिपथ कानूनों के अनुसार परिपथ आरेख से दाईं ओर। किरचॉफ के नियम और [[समाई]] की परिभाषा:
{{NumBlk|::|<math>v_{\text{in}}(t) - v_{\text{out}}(t) = R \; मैं(टी)</गणित>|{{EquationRef|V}}}}
{{NumBlk|::|<math>v_{\text{in}}(t) - v_{\text{out}}(t) = R \; मैं(टी)</गणित>|{{EquationRef|V}}}}
{{NumBlk|::|<math>Q_c(t) = C \, v_{\text{out}}(टी) </ गणित> |{{EquationRef|Q}}}}
{{NumBlk|::|<math>Q_c(t) = C \, v_{\text{out}}(टी) </ गणित> |{{EquationRef|Q}}}}
Line 103: Line 108:
पदों को पुनर्व्यवस्थित करने से [[पुनरावृत्ति संबंध]] प्राप्त होता है
पदों को पुनर्व्यवस्थित करने से [[पुनरावृत्ति संबंध]] प्राप्त होता है
:<math>y_i = \overbrace{x_i \left( \frac{\Delta_T}{RC + \Delta_T} \right)}^{\text{Input contribution}} + \overbrace{y_{i-1} \left( \frac{RC}{RC + \Delta_T} \right)}^{\text{Inertia from previous output}}.</math>
:<math>y_i = \overbrace{x_i \left( \frac{\Delta_T}{RC + \Delta_T} \right)}^{\text{Input contribution}} + \overbrace{y_{i-1} \left( \frac{RC}{RC + \Delta_T} \right)}^{\text{Inertia from previous output}}.</math>
यही है, एक साधारण आरसी लो-पास फिल्टर का असतत-समय कार्यान्वयन घातीय चौरसाई है
यही है, एक साधारण आरसी लो-पास निस्यंदक का असतत-समय कार्यान्वयन घातीय चौरसाई है
:<math>y_i = \alpha x_i + (1 - \alpha) y_{i-1} \qquad \text{where} \qquad \alpha := \frac{\Delta_T}{RC + \Delta_T} .</math>
:<math>y_i = \alpha x_i + (1 - \alpha) y_{i-1} \qquad \text{where} \qquad \alpha := \frac{\Delta_T}{RC + \Delta_T} .</math>
परिभाषा के अनुसार, चौरसाई कारक सीमा के भीतर है <math> 0 \;\leq\; \alpha \;\leq\; 1</math>. के लिए अभिव्यक्ति  {{mvar| α}} समतुल्य समय स्थिर उत्पन्न करता है {{math|''RC''}} नमूना अवधि के संदर्भ में <math>\Delta_T</math> और चौरसाई कारक  {{mvar| α}},
परिभाषा के अनुसार, चौरसाई कारक सीमा के भीतर है <math> 0 \;\leq\; \alpha \;\leq\; 1</math>. के लिए अभिव्यक्ति  {{mvar| α}} समतुल्य समय स्थिर उत्पन्न करता है {{math|''RC''}} नमूना अवधि के संदर्भ में <math>\Delta_T</math> और चौरसाई कारक  {{mvar| α}},
Line 115: Line 120:
अगर  {{mvar| α}}= 0.5, तो आरसी समय स्थिर नमूना अवधि के बराबर है। अगर <math>\alpha \;\ll\; 0.5</math>, तो आरसी नमूना अंतराल से काफी बड़ा है, और <math>\Delta_T \;\approx\; \alpha RC</math>.
अगर  {{mvar| α}}= 0.5, तो आरसी समय स्थिर नमूना अवधि के बराबर है। अगर <math>\alpha \;\ll\; 0.5</math>, तो आरसी नमूना अंतराल से काफी बड़ा है, और <math>\Delta_T \;\approx\; \alpha RC</math>.


फ़िल्टर पुनरावृत्ति संबंध इनपुट नमूने और पूर्ववर्ती आउटपुट के संदर्भ में आउटपुट नमूने निर्धारित करने का एक तरीका प्रदान करता है। निम्नलिखित [[स्यूडोकोड]] एल्गोरिथम डिजिटल नमूनों की एक श्रृंखला पर कम-पास फिल्टर के प्रभाव का अनुकरण करता है:
निस्यंदक पुनरावृत्ति संबंध इनपुट नमूने और पूर्ववर्ती आउटपुट के संदर्भ में आउटपुट नमूने निर्धारित करने का एक तरीका प्रदान करता है। निम्नलिखित [[स्यूडोकोड]] एल्गोरिथम अंकीय नमूनों की एक श्रृंखला पर कम-पास निस्यंदक के प्रभाव का अनुकरण करता है:


  // आरसी कम-पास फ़िल्टर आउटपुट नमूने लौटाएं, इनपुट नमूने दिए गए हैं,
  // आरसी कम-पास निस्यंदक आउटपुट नमूने लौटाएं, इनपुट नमूने दिए गए हैं,
  // समय अंतराल डीटी, और समय निरंतर आरसी
  // समय अंतराल डीटी, और समय निरंतर आरसी
  'फ़ंक्शन' लोपास (वास्तविक [1..n] x, वास्तविक dt, वास्तविक RC)
  'कार्य' लोपास (वास्तविक [1..n] x, वास्तविक dt, वास्तविक RC)
     'वर' असली [1..एन] वाई
     'वर' असली [1..एन] वाई
     'var' वास्तविक α := dt / (RC + dt)
     'var' वास्तविक α�:= dt / (RC + dt)
     वाई [1] := α * x [1]
     वाई [1]:= α * x [1]
     'के लिए' मैं 'से' 2 'से' एन
     'के लिए' मैं 'से' 2 'से' एन
         y[i] := α * x[i] + (1-α) * y[i-1]
         y[i] := α * x[i] + (1-α) * y[i-1]
Line 132: Line 137:
         y[i] := y[i-1] + α * (x[i] - y[i-1])
         y[i] := y[i-1] + α * (x[i] - y[i-1])


अर्थात्, एक फ़िल्टर आउटपुट से अगले में परिवर्तन पिछले आउटपुट और अगले इनपुट के बीच के अंतर के लिए [[आनुपातिकता (गणित)]] है। यह घातीय चौरसाई गुण निरंतर-समय प्रणाली में देखे गए घातीय कार्य क्षय से मेल खाता है। जैसा कि अपेक्षित था, जैसे-जैसे समय स्थिर आरसी बढ़ता है, असतत-समय चौरसाई पैरामीटर <math>  \alpha</math> घट जाती है, और आउटपुट नमूने <math> (y_1,\, y_2,\, \ldots,\, y_n)</math> इनपुट नमूने में बदलाव के लिए अधिक धीरे-धीरे प्रतिक्रिया दें <math>  (x_1,\, x_2,\, \ldots,\, x_n)</math>; प्रणाली में अधिक [[जड़ता]] है। यह फ़िल्टर एक [[अनंत-आवेग-प्रतिक्रिया]] (IIR) सिंगल-पोल लो-पास फ़िल्टर है।
अर्थात्, एक निस्यंदक आउटपुट से अगले में परिवर्तन पिछले आउटपुट और अगले इनपुट के बीच के अंतर के लिए [[आनुपातिकता (गणित)]] है। यह घातीय चौरसाई गुण निरंतर-समय प्रणाली में देखे गए घातीय कार्य क्षय से मेल खाता है। जैसा कि अपेक्षित था, जैसे-जैसे समय स्थिर आरसी बढ़ता है, असतत-समय चौरसाई पैरामीटर <math>  \alpha</math> घट जाती है, और आउटपुट नमूने <math> (y_1,\, y_2,\, \ldots,\, y_n)</math> इनपुट नमूने में बदलाव के लिए अधिक धीरे-धीरे प्रतिक्रिया दें <math>  (x_1,\, x_2,\, \ldots,\, x_n)</math>; प्रणाली में अधिक [[जड़ता]] है। यह निस्यंदक एक [[अनंत-आवेग-प्रतिक्रिया]] (IIR) सिंगल-पोल लो-पास निस्यंदक है।


=== परिमित आवेग प्रतिक्रिया ===
=== परिमित आवेग प्रतिक्रिया ===
परिमित-आवेग-प्रतिक्रिया फ़िल्टर बनाए जा सकते हैं जो एक आदर्श शार्प-कटऑफ़ लो-पास फ़िल्टर के sinc फ़ंक्शन टाइम-डोमेन प्रतिक्रिया के अनुमानित हैं। न्यूनतम विरूपण के लिए परिमित आवेग प्रतिक्रिया फ़िल्टर में असीमित संख्या में गुणांक एक असीमित सिग्नल पर काम कर रहे हैं। व्यवहार में, टाइम-डोमेन प्रतिक्रिया समय छोटा होना चाहिए और अक्सर एक सरलीकृत आकार का होता है; सबसे सरल मामले में, एक [[औसत चल रहा है]] का उपयोग किया जा सकता है, जो वर्ग समय की प्रतिक्रिया देता है।<ref>Whilmshurst, T H (1990) ''Signal recovery from noise in electronic instrumentation.'' {{ISBN|9780750300582}} </ref>
परिमित-आवेग-प्रतिक्रिया निस्यंदक बनाए जा सकते हैं जो एक आदर्श शार्प-कटऑफ़ लो-पास निस्यंदक के sinc कार्य टाइम-डोमेन प्रतिक्रिया के अनुमानित हैं। न्यूनतम विरूपण के लिए परिमित आवेग प्रतिक्रिया निस्यंदक में असीमित संख्या में गुणांक एक असीमित संकेत पर काम कर रहे हैं। व्यवहार में, टाइम-डोमेन प्रतिक्रिया समय छोटा होना चाहिए और प्रायः एक सरलीकृत आकार का होता है; सबसे सरल मामले में, एक [[औसत चल रहा है]] का उपयोग किया जा सकता है, जो वर्ग समय की प्रतिक्रिया देता है।<ref>Whilmshurst, T H (1990) ''Signal recovery from noise in electronic instrumentation.'' {{ISBN|9780750300582}} </ref>




=== फूरियर रूपांतरण ===
=== फूरियर रूपांतरण ===
{{unreferenced section|date=March 2015}}
{{unreferenced section|date=March 2015}}
गैर-रीयलटाइम फ़िल्टरिंग के लिए, कम पास फ़िल्टर प्राप्त करने के लिए, पूरे सिग्नल को आमतौर पर लूप सिग्नल के रूप में लिया जाता है, फूरियर ट्रांसफॉर्म लिया जाता है, फ़्रीक्वेंसी डोमेन में फ़िल्टर किया जाता है, इसके बाद उलटा फूरियर ट्रांसफ़ॉर्म होता है। O(n log(n)) की तुलना में केवल O(n log(n)) संचालन आवश्यक हैं<sup>2</sup>) टाइम डोमेन फ़िल्टरिंग एल्गोरिदम के लिए।
गैर-रीयलटाइम निस्यंदकिंग के लिए, कम पास निस्यंदक प्राप्त करने के लिए, पूरे संकेत को सामान्यतः लूप संकेत के रूप में लिया जाता है, फूरियर ट्रांसफॉर्म लिया जाता है, आवृत्ति डोमेन में निस्यंदक किया जाता है, इसके बाद उलटा फूरियर ट्रांसफ़ॉर्म होता है। O(n log(n)) की तुलना में केवल O(n log(n)) संचालन आवश्यक हैं<sup>2</sup>) टाइम डोमेन निस्यंदकिंग एल्गोरिदम के लिए।


यह कभी-कभी वास्तविक समय में भी किया जा सकता है, जहां छोटे, अतिव्यापी ब्लॉकों पर फूरियर रूपांतरण करने के लिए सिग्नल काफी देर तक देरी हो जाती है।
यह कभी-कभी वास्तविक समय में भी किया जा सकता है, जहां छोटे, अतिव्यापी ब्लॉकों पर फूरियर रूपांतरण करने के लिए संकेत काफी देर तक देरी हो जाती है।


== निरंतर-समय की प्राप्ति ==
== निरंतर-समय की प्राप्ति ==
[[File:Butterworth Filter Orders.svg|thumb|350px|कटऑफ फ्रीक्वेंसी के साथ ऑर्डर 1 से 5 के बटरवर्थ लो-पास फिल्टर के लाभ का प्लॉट <math>\omega_0 = 1</math>. ध्यान दें कि ढलान 20n dB/दशक है जहां n फ़िल्टर क्रम है।]]बदलती आवृत्ति के लिए विभिन्न प्रतिक्रियाओं के साथ कई अलग-अलग प्रकार के फ़िल्टर सर्किट हैं। एक फिल्टर की आवृत्ति प्रतिक्रिया आम तौर पर एक [[बोडे प्लॉट]] का उपयोग करके प्रदर्शित की जाती है, और फिल्टर को इसकी कटऑफ आवृत्ति और आवृत्ति [[धड़ल्ले से बोलना]] की दर से चित्रित किया जाता है। सभी मामलों में, कटऑफ़ फ़्रीक्वेंसी पर, फ़िल्टर इनपुट पावर को आधे या 3 dB तक कम कर देता है। तो फिल्टर का 'आदेश' कटऑफ आवृत्ति से अधिक आवृत्तियों के लिए अतिरिक्त क्षीणन की मात्रा निर्धारित करता है।
[[File:Butterworth Filter Orders.svg|thumb|350px|कटऑफ आवृत्ति के साथ ऑर्डर 1 से 5 के बटरवर्थ लो-पास निस्यंदक के लाभ का प्लॉट <math>\omega_0 = 1</math>. ध्यान दें कि ढलान 20n dB/दशक है जहां n निस्यंदक क्रम है।]]बदलती आवृत्ति के लिए विभिन्न प्रतिक्रियाओं के साथ कई अलग-अलग प्रकार के निस्यंदक परिपथ हैं। एक निस्यंदक की आवृत्ति प्रतिक्रिया आम तौर पर एक [[बोडे प्लॉट]] का उपयोग करके प्रदर्शित की जाती है, और निस्यंदक को इसकी कटऑफ आवृत्ति और आवृत्ति [[धड़ल्ले से बोलना]] की दर से चित्रित किया जाता है। सभी मामलों में, कटऑफ़ आवृत्ति पर, निस्यंदक इनपुट पावर को आधे या 3 dB तक कम कर देता है। तो निस्यंदक का 'आदेश' कटऑफ आवृत्ति से अधिक आवृत्तियों के लिए अतिरिक्त क्षीणन की मात्रा निर्धारित करता है।


* एक 'प्रथम-क्रम फ़िल्टर', उदाहरण के लिए, सिग्नल आयाम को आधे से कम कर देता है (इसलिए शक्ति 4 के कारक से कम हो जाती है, या {{nowrap|6 dB)}}, हर बार आवृत्ति दोगुनी हो जाती है (एक सप्तक ऊपर जाती है); अधिक सटीक रूप से, उच्च आवृत्ति की सीमा में पावर रोलऑफ़ 20 dB प्रति [[दशक (लॉग स्केल)]] तक पहुंचता है। पहले क्रम के फिल्टर के लिए परिमाण बोड प्लॉट कटऑफ आवृत्ति के नीचे एक क्षैतिज रेखा और कटऑफ आवृत्ति के ऊपर एक विकर्ण रेखा की तरह दिखता है। दोनों के बीच की सीमा पर एक घुटने का वक्र भी है, जो दो सीधी रेखा वाले क्षेत्रों के बीच सुचारू रूप से संक्रमण करता है। यदि प्रथम-क्रम निम्न-पास फ़िल्टर के स्थानांतरण फ़ंक्शन में [[शून्य (जटिल विश्लेषण)]] के साथ-साथ ध्रुव (जटिल विश्लेषण) होता है, तो उच्च आवृत्तियों के कुछ अधिकतम क्षीणन पर, बोड प्लॉट फिर से समतल हो जाता है; इस तरह का प्रभाव उदाहरण के लिए एक-पोल फिल्टर के आसपास थोड़ा सा इनपुट लीक होने के कारण होता है; यह एक-ध्रुव-एक-शून्य फ़िल्टर अभी भी एक प्रथम-क्रम निम्न-पास है। पोल-जीरो प्लॉट और आरसी सर्किट देखें।
* एक 'प्रथम-क्रम निस्यंदक', उदाहरण के लिए, संकेत आयाम को आधे से कम कर देता है (इसलिए शक्ति 4 के कारक से कम हो जाती है, या {{nowrap|6 dB)}}, हर बार आवृत्ति दोगुनी हो जाती है (एक सप्तक ऊपर जाती है); अधिक सटीक रूप से, उच्च आवृत्ति की सीमा में पावर रोलऑफ़ 20 dB प्रति [[दशक (लॉग स्केल)]] तक पहुंचता है। पूर्व क्रम के निस्यंदक के लिए परिमाण बोड प्लॉट कटऑफ आवृत्ति के नीचे एक क्षैतिज रेखा और कटऑफ आवृत्ति के ऊपर एक विकर्ण रेखा की तरह दिखता है। दोनों के बीच की सीमा पर एक घुटने का वक्र भी है, जो दो सीधी रेखा वाले क्षेत्रों के बीच सुचारू रूप से संक्रमण करता है। यदि प्रथम-क्रम निम्न-पास निस्यंदक के स्थानांतरण कार्य में [[शून्य (जटिल विश्लेषण)]] के साथ-साथ ध्रुव (जटिल विश्लेषण) होता है, तो उच्च आवृत्तियों के कुछ अधिकतम क्षीणन पर, बोड प्लॉट फिर से समतल हो जाता है; इस तरह का प्रभाव उदाहरण के लिए एक-पोल निस्यंदक के आसपास थोड़ा सा इनपुट लीक होने के कारण होता है; यह एक-ध्रुव-एक-शून्य निस्यंदक अभी भी एक प्रथम-क्रम निम्न-पास है। पोल-जीरो प्लॉट और आरसी परिपथ देखें।
* एक 'दूसरे क्रम का फिल्टर' उच्च आवृत्तियों को अधिक तेजी से क्षीण करता है। इस प्रकार के फ़िल्टर के लिए बोड प्लॉट प्रथम-क्रम फ़िल्टर जैसा दिखता है, सिवाय इसके कि यह अधिक तेज़ी से गिर जाता है। उदाहरण के लिए, एक दूसरे क्रम का [[बटरवर्थ फिल्टर]] सिग्नल के आयाम को उसके मूल स्तर के एक चौथाई तक कम कर देता है, हर बार आवृत्ति दोगुनी हो जाती है (इसलिए बिजली 12 dB प्रति सप्तक, या 40 dB प्रति दशक कम हो जाती है)। अन्य ऑल-पोल सेकंड-ऑर्डर फ़िल्टर शुरू में उनके [[क्यू कारक]] के आधार पर अलग-अलग दरों पर रोल ऑफ हो सकते हैं, लेकिन 12 dB प्रति [[सप्टक]] की समान अंतिम दर तक पहुंच सकते हैं; प्रथम-क्रम फ़िल्टर के साथ, स्थानांतरण फ़ंक्शन में शून्य उच्च-आवृत्ति स्पर्शोन्मुख को बदल सकते हैं। [[आरएलसी सर्किट]] देखें।
* एक 'दूसरे क्रम का निस्यंदक' उच्च आवृत्तियों को अधिक तेजी से क्षीण करता है। इस प्रकार के निस्यंदक के लिए बोड प्लॉट प्रथम-क्रम निस्यंदक जैसा दिखता है, सिवाय इसके कि यह अधिक तेज़ी से गिर जाता है। उदाहरण के लिए, एक दूसरे क्रम का [[बटरवर्थ फिल्टर|बटरवर्थ निस्यंदक]] संकेत के आयाम को उसके मूल स्तर के एक चौथाई तक कम कर देता है, हर बार आवृत्ति दोगुनी हो जाती है (इसलिए बिजली 12 dB प्रति सप्तक, या 40 dB प्रति दशक कम हो जाती है)। अन्य ऑल-पोल सेकंड-ऑर्डर निस्यंदक शुरू में उनके [[क्यू कारक]] के आधार पर अलग-अलग दरों पर रोल ऑफ हो सकते हैं, लेकिन 12 dB प्रति [[सप्टक]] की समान अंतिम दर तक पहुंच सकते हैं; प्रथम-क्रम निस्यंदक के साथ, स्थानांतरण कार्य में शून्य उच्च-आवृत्ति स्पर्शोन्मुख को बदल सकते हैं। [[आरएलसी सर्किट|आरएलसी परिपथ]] देखें।
* तीसरा- और उच्च-क्रम फ़िल्टर समान रूप से परिभाषित किए गए हैं। सामान्य तौर पर, ऑर्डर के लिए पावर रोलऑफ़ की अंतिम दर-{{mvar| n}} ऑल-पोल फ़िल्टर 6 है{{mvar|n}} डीबी प्रति सप्तक (20{{mvar|n}} डीबी प्रति दशक)।
* तीसरा- और उच्च-क्रम निस्यंदक समान रूप से परिभाषित किए गए हैं। सामान्य तौर पर, ऑर्डर के लिए पावर रोलऑफ़ की अंतिम दर-{{mvar| n}} ऑल-पोल निस्यंदक 6 है{{mvar|n}} डीबी प्रति सप्तक (20{{mvar|n}} डीबी प्रति दशक)।


किसी भी बटरवर्थ फ़िल्टर पर, यदि कोई क्षैतिज रेखा को दाईं ओर और तिरछी रेखा को ऊपरी-बाएँ (फ़ंक्शन के स्पर्शोन्मुख) तक बढ़ाता है, तो वे कटऑफ़ आवृत्ति, क्षैतिज रेखा के नीचे 3 dB पर प्रतिच्छेद करते हैं। विभिन्न प्रकार के फिल्टर (बटरवर्थ फिल्टर, [[चेबिशेव फिल्टर]], [[बेसल फिल्टर]], आदि) सभी में अलग-अलग दिखने वाले घुटने के मोड़ होते हैं। कई दूसरे क्रम के फिल्टर में पीकिंग या इलेक्ट्रिकल अनुनाद होता है जो इस चोटी पर क्षैतिज रेखा के ऊपर अपनी आवृत्ति प्रतिक्रिया डालता है।
किसी भी बटरवर्थ निस्यंदक पर, यदि कोई क्षैतिज रेखा को दाईं ओर और तिरछी रेखा को ऊपरी-बाएँ (कार्य के स्पर्शोन्मुख) तक बढ़ाता है, तो वे कटऑफ़ आवृत्ति, क्षैतिज रेखा के नीचे 3 dB पर प्रतिच्छेद करते हैं। विभिन्न प्रकार के निस्यंदक (बटरवर्थ निस्यंदक, [[चेबिशेव फिल्टर|चेबिशेव निस्यंदक]], [[बेसल फिल्टर|बेसल निस्यंदक]], आदि) सभी में अलग-अलग दिखने वाले घुटने के मोड़ होते हैं। कई दूसरे क्रम के निस्यंदक में पीकिंग या इलेक्ट्रिकल अनुनाद होता है जो इस चोटी पर क्षैतिज रेखा के ऊपर अपनी आवृत्ति प्रतिक्रिया डालता है।


'निम्न' और 'उच्च' के अर्थ—अर्थात् कटऑफ़ आवृत्ति—फ़िल्टर की विशेषताओं पर निर्भर करती है। लो-पास फ़िल्टर शब्द केवल फ़िल्टर की प्रतिक्रिया के आकार को संदर्भित करता है; एक हाई-पास फिल्टर बनाया जा सकता है जो किसी भी लो-पास फिल्टर की तुलना में कम आवृत्ति पर कट ऑफ करता है—यह उनकी प्रतिक्रियाएं हैं जो उन्हें अलग करती हैं। किसी भी वांछित आवृत्ति रेंज के लिए इलेक्ट्रॉनिक सर्किट तैयार किए जा सकते हैं, सीधे माइक्रोवेव फ़्रीक्वेंसी (1 GHz से ऊपर) और उच्चतर के माध्यम से।
'निम्न' और 'उच्च' के अर्थ—अर्थात् कटऑफ़ आवृत्ति—निस्यंदक की विशेषताओं पर निर्भर करती है। लो-पास निस्यंदक शब्द केवल निस्यंदक की प्रतिक्रिया के आकार को संदर्भित करता है; एक हाई-पास निस्यंदक बनाया जा सकता है जो किसी भी लो-पास निस्यंदक की तुलना में कम आवृत्ति पर कट ऑफ करता है—यह उनकी प्रतिक्रियाएं हैं जो उन्हें अलग करती हैं। किसी भी वांछित आवृत्ति रेंज के लिए विद्युत परिपथ तैयार किए जा सकते हैं, सीधे माइक्रोवेव आवृत्ति (1 GHz से ऊपर) और उच्चतर के माध्यम से।


=== लाप्लास अंकन ===
=== लाप्लास अंकन ===
निरंतर-समय के फिल्टर को उनके आवेग प्रतिक्रिया के लाप्लास परिवर्तन के संदर्भ में भी वर्णित किया जा सकता है, जिससे फ़िल्टर की सभी विशेषताओं को ध्रुवों के पैटर्न और लाप्लास के शून्य को जटिल विमान में बदलने पर विचार करके आसानी से विश्लेषण किया जा सकता है। (असतत समय में, इसी तरह आवेग प्रतिक्रिया के जेड-रूपांतरण पर विचार कर सकते हैं।)
निरंतर-समय के निस्यंदक को उनके आवेग प्रतिक्रिया के लाप्लास परिवर्तन के संदर्भ में भी वर्णित किया जा सकता है, जिससे निस्यंदक की सभी विशेषताओं को ध्रुवों के पैटर्न और लाप्लास के शून्य को जटिल विमान में बदलने पर विचार करके सरली से विश्लेषण किया जा सकता है। (असतत समय में, इसी तरह आवेग प्रतिक्रिया के जेड-रूपांतरण पर विचार कर सकते हैं।)


उदाहरण के लिए, प्रथम-क्रम निम्न-पास फ़िल्टर को लाप्लास नोटेशन में वर्णित किया जा सकता है:
उदाहरण के लिए, प्रथम-क्रम निम्न-पास निस्यंदक को लाप्लास नोटेशन में वर्णित किया जा सकता है:
:<math>
:<math>
\frac{\text{Output}}{\text{Input}} = K \frac{1}{\tau s + 1}
\frac{\text{Output}}{\text{Input}} = K \frac{1}{\tau s + 1}
</math>
</math>
जहाँ s लाप्लास परिवर्तन चर है, τ फ़िल्टर समय स्थिरांक है, और K [[पासबैंड]] में फ़िल्टर का [[लाभ (इलेक्ट्रॉनिक्स)]] है।
जहाँ s लाप्लास परिवर्तन चर है, τ निस्यंदक समय स्थिरांक है, और K [[पासबैंड]] में निस्यंदक का [[लाभ (इलेक्ट्रॉनिक्स)|लाभ (विद्युत्स)]] है।


== इलेक्ट्रॉनिक लो-पास फिल्टर ==
== विद्युत लो-पास निस्यंदक ==


=== पहला आदेश ===
=== पहला आदेश ===


==== आरसी फिल्टर ====
==== आरसी निस्यंदक ====
{{Main|RC circuit#Series circuit}}
{{Main|RC circuit#Series circuit}}
[[File:RC Divider.svg|thumb|200px|पैसिव, फर्स्ट ऑर्डर लो-पास आरसी फिल्टर]]एक साधारण लो-पास फिल्टर विद्युत परिपथ में [[बाहरी विद्युत भार]] के साथ श्रृंखला में एक प्रतिरोधक होता है, और भार के साथ समानांतर में एक [[संधारित्र]] होता है। कैपेसिटर रिएक्शन (इलेक्ट्रॉनिक्स) प्रदर्शित करता है, और कम आवृत्ति संकेतों को ब्लॉक करता है, इसके बजाय उन्हें लोड के माध्यम से मजबूर करता है। उच्च आवृत्तियों पर प्रतिक्रिया कम हो जाती है, और संधारित्र प्रभावी रूप से शॉर्ट सर्किट के रूप में कार्य करता है। [[अवरोध]] और कैपेसिटेंस का कॉम्बिनेशन फिल्टर का टाइम कॉन्स्टेंट देता है <math> \tau \;=\; RC </math> (ग्रीक अक्षर ताऊ द्वारा दर्शाया गया)। ब्रेक फ़्रीक्वेंसी, जिसे टर्नओवर फ़्रीक्वेंसी, कॉर्नर फ़्रीक्वेंसी या कटऑफ़ फ़्रीक्वेंसी (हर्ट्ज़ में) भी कहा जाता है, समय स्थिर द्वारा निर्धारित किया जाता है:
[[File:RC Divider.svg|thumb|200px|पैसिव, फर्स्ट ऑर्डर लो-पास आरसी निस्यंदक]]एक साधारण लो-पास निस्यंदक विद्युत परिपथ में [[बाहरी विद्युत भार]] के साथ श्रृंखला में एक प्रतिरोधक होता है, और भार के साथ समानांतर में एक [[संधारित्र]] होता है। कैपेसिटर रिएक्शन (विद्युत्स) प्रदर्शित करता है, और कम आवृत्ति संकेतों को ब्लॉक करता है, इसके बजाय उन्हें लोड के माध्यम से मजबूर करता है। उच्च आवृत्तियों पर प्रतिक्रिया कम हो जाती है, और संधारित्र प्रभावी रूप से शॉर्ट परिपथ के रूप में कार्य करता है। [[अवरोध]] और कैपेसिटेंस का कॉम्बिनेशन निस्यंदक का टाइम कॉन्स्टेंट देता है <math> \tau \;=\; RC </math> (ग्रीक अक्षर ताऊ द्वारा दर्शाया गया)। ब्रेक आवृत्ति, जिसे टर्नओवर आवृत्ति, कॉर्नर आवृत्ति या कटऑफ़ आवृत्ति (हर्ट्ज़ में) भी कहा जाता है, समय स्थिर द्वारा निर्धारित किया जाता है:


:<math>
:<math>
Line 180: Line 185:
\omega_\mathrm{c} = {1 \over \tau} = {1 \over R C}
\omega_\mathrm{c} = {1 \over \tau} = {1 \over R C}
</math>
</math>
इस सर्किट को उस समय पर विचार करके समझा जा सकता है जब संधारित्र को प्रतिरोधक के माध्यम से चार्ज या डिस्चार्ज करने की आवश्यकता होती है:
इस परिपथ को उस समय पर विचार करके समझा जा सकता है जब संधारित्र को प्रतिरोधक के माध्यम से चार्ज या डिस्चार्ज करने की आवश्यकता होती है:
* कम आवृत्तियों पर, संधारित्र के लिए व्यावहारिक रूप से इनपुट वोल्टेज के समान वोल्टेज तक चार्ज करने के लिए बहुत समय होता है।
* कम आवृत्तियों पर, संधारित्र के लिए व्यावहारिक रूप से इनपुट वोल्टता के समान वोल्टता तक चार्ज करने के लिए बहुत समय होता है।
* उच्च आवृत्तियों पर, इनपुट स्विच की दिशा बदलने से पहले संधारित्र के पास केवल थोड़ी मात्रा में चार्ज करने का समय होता है। इनपुट ऊपर और नीचे जाने वाली राशि का केवल एक छोटा सा अंश आउटपुट ऊपर और नीचे जाता है। दोगुनी आवृत्ति पर, इसके पास केवल आधी राशि चार्ज करने का समय होता है।
* उच्च आवृत्तियों पर, इनपुट स्विच की दिशा बदलने से पूर्व संधारित्र के पास केवल थोड़ी मात्रा में चार्ज करने का समय होता है। इनपुट ऊपर और नीचे जाने वाली राशि का केवल एक छोटा सा अंश आउटपुट ऊपर और नीचे जाता है। दोगुनी आवृत्ति पर, इसके पास केवल आधी राशि चार्ज करने का समय होता है।


इस सर्किट को समझने का दूसरा तरीका एक विशेष आवृत्ति पर रिएक्शन (इलेक्ट्रॉनिक्स) की अवधारणा के माध्यम से है:
इस परिपथ को समझने का दूसरा तरीका एक विशेष आवृत्ति पर रिएक्शन (विद्युत्स) की अवधारणा के माध्यम से है:
* चूँकि दिष्टधारा (DC) संधारित्र के माध्यम से प्रवाहित नहीं हो सकती है, DC इनपुट को चिह्नित पथ से बाहर प्रवाहित होना चाहिए <math> V_\mathrm{out}</math> (संधारित्र को हटाने के समान)।
* चूँकि दिष्टधारा (DC) संधारित्र के माध्यम से प्रवाहित नहीं हो सकती है, DC इनपुट को चिह्नित पथ से बाहर प्रवाहित होना चाहिए <math> V_\mathrm{out}</math> (संधारित्र को हटाने के समान)।
* चूँकि [[प्रत्यावर्ती धारा]] (AC) संधारित्र के माध्यम से बहुत अच्छी तरह से बहती है, लगभग साथ ही साथ यह ठोस तार के माध्यम से बहती है, AC इनपुट संधारित्र के माध्यम से बहता है, प्रभावी रूप से जमीन पर [[शार्ट सर्किट]] (केवल एक तार के साथ संधारित्र को बदलने के अनुरूप)।
* चूँकि [[प्रत्यावर्ती धारा]] (AC) संधारित्र के माध्यम से बहुत अच्छी तरह से बहती है, लगभग साथ ही साथ यह ठोस तार के माध्यम से बहती है, AC इनपुट संधारित्र के माध्यम से बहता है, प्रभावी रूप से जमीन पर [[शार्ट सर्किट|शार्ट परिपथ]] (केवल एक तार के साथ संधारित्र को बदलने के अनुरूप)।


कैपेसिटर ऑन/ऑफ ऑब्जेक्ट नहीं है (जैसे ब्लॉक या पास फ्लुइडिक स्पष्टीकरण ऊपर)। संधारित्र इन दो चरम सीमाओं के बीच परिवर्तनशील रूप से कार्य करता है। यह बोड प्लॉट और आवृत्ति प्रतिक्रिया है जो इस परिवर्तनशीलता को दर्शाती है।
कैपेसिटर ऑन/ऑफ ऑब्जेक्ट नहीं है (जैसे ब्लॉक या पास फ्लुइडिक स्पष्टीकरण ऊपर)। संधारित्र इन दो चरम सीमाओं के बीच परिवर्तनशील रूप से कार्य करता है। यह बोड प्लॉट और आवृत्ति प्रतिक्रिया है जो इस परिवर्तनशीलता को दर्शाती है।


==== आरएल फिल्टर ====
==== आरएल निस्यंदक ====
{{Main|RL circuit#Series circuit}}
{{Main|RL circuit#Series circuit}}
एक रोकनेवाला-[[प्रारंभ करनेवाला]] सर्किट या [[आरएल फिल्टर]] एक विद्युत सर्किट है जो [[वोल्टेज स्रोत]] या [[वर्तमान स्रोत]] द्वारा संचालित प्रतिरोधों और प्रेरकों से बना होता है। प्रथम श्रेणी का RL परिपथ एक प्रतिरोधक और एक प्रेरक से बना होता है और यह RL परिपथ का सबसे सरल प्रकार है।
एक रोकनेवाला-[[प्रारंभ करनेवाला]] परिपथ या [[आरएल फिल्टर|आरएल निस्यंदक]] एक विद्युत परिपथ है जो [[वोल्टेज स्रोत|वोल्टता स्रोत]] या [[वर्तमान स्रोत]] द्वारा संचालित प्रतिरोधों और प्रेरकों से बना होता है। प्रथम श्रेणी का RL परिपथ एक प्रतिरोधक और एक प्रेरक से बना होता है और यह RL परिपथ का सबसे सरल प्रकार है।


पहला ऑर्डर आरएल सर्किट सबसे सरल [[एनालॉग फिल्टर]] अनंत आवेग प्रतिक्रिया [[इलेक्ट्रॉनिक फिल्टर]] में से एक है। इसमें एक रोकनेवाला और एक प्रारंभ करनेवाला होता है, या तो श्रृंखला और समानांतर सर्किट में # श्रृंखला सर्किट एक वोल्टेज स्रोत द्वारा संचालित होता है या श्रृंखला और समानांतर सर्किट में होता है # वर्तमान स्रोत द्वारा संचालित समानांतर सर्किट।
पहला ऑर्डर आरएल परिपथ सबसे सरल [[एनालॉग फिल्टर|एनालॉग निस्यंदक]] अनंत आवेग प्रतिक्रिया [[इलेक्ट्रॉनिक फिल्टर|विद्युत निस्यंदक]] में से एक है। इसमें एक रोकनेवाला और एक प्रारंभ करनेवाला होता है, या तो श्रृंखला और समानांतर परिपथ में # श्रृंखला परिपथ एक वोल्टता स्रोत द्वारा संचालित होता है या श्रृंखला और समानांतर परिपथ में होता है वर्तमान स्रोत द्वारा संचालित समानांतर परिपथ।


=== दूसरा क्रम ===
=== द्वितीय क्रम ===


====RLC फ़िल्टर ====
====आरएलसी निस्यंदक ====
[[File:RLC_low-pass.svg|thumb|कम-पास फिल्टर के रूप में आरएलसी सर्किट]]एक आर[[एलसी सर्किट]] (अक्षर आर, एल और सी एक अलग क्रम में हो सकते हैं) एक विद्युत सर्किट है जिसमें एक प्रतिरोधक, एक प्रारंभ करनेवाला और एक संधारित्र होता है, जो श्रृंखला में या समानांतर में जुड़ा होता है। नाम का आरएलसी भाग उन अक्षरों के कारण है जो क्रमशः विद्युत प्रतिरोध, [[अधिष्ठापन]] और समाई के लिए सामान्य विद्युत प्रतीक हैं। सर्किट वर्तमान के लिए एक [[लयबद्ध दोलक]] बनाता है और एक एलसी सर्किट के समान तरीके से अनुनाद करेगा। प्रतिरोध की उपस्थिति का मुख्य अंतर यह है कि सर्किट में प्रेरित कोई भी दोलन समय के साथ समाप्त हो जाएगा यदि इसे किसी स्रोत द्वारा जारी नहीं रखा जाता है। प्रतिरोधक के इस प्रभाव को अवमंदन कहते हैं। प्रतिरोध की उपस्थिति भी शिखर गुंजयमान आवृत्ति को कुछ हद तक कम कर देती है। वास्तविक परिपथों में कुछ प्रतिरोध अपरिहार्य होते हैं, भले ही एक प्रतिरोधक विशेष रूप से एक घटक के रूप में शामिल न हो। सिद्धांत के उद्देश्य के लिए एक आदर्श, शुद्ध एलसी सर्किट एक अमूर्त है।
[[File:RLC_low-pass.svg|thumb|कम-पास निस्यंदक के रूप में आरएलसी परिपथ]]एक आर[[एलसी सर्किट|एलसी परिपथ]] (अक्षर आर, एल और सी एक अलग क्रम में हो सकते हैं) एक विद्युत परिपथ है जिसमें एक प्रतिरोधक, एक प्रारंभ करनेवाला और एक संधारित्र होता है, जो श्रृंखला में या समानांतर में जुड़ा होता है। नाम का आरएलसी भाग उन अक्षरों के कारण है जो क्रमशः विद्युत प्रतिरोध, [[अधिष्ठापन]] और समाई के लिए सामान्य विद्युत प्रतीक हैं। परिपथ वर्तमान के लिए एक [[लयबद्ध दोलक]] बनाता है और एक एलसी परिपथ के समान तरीके से अनुनाद करेगा। प्रतिरोध की उपस्थिति का मुख्य अंतर यह है कि परिपथ में प्रेरित कोई भी दोलन समय के साथ समाप्त हो जाएगा यदि इसे किसी स्रोत द्वारा जारी नहीं रखा जाता है। प्रतिरोधक के इस प्रभाव को अवमंदन कहते हैं। प्रतिरोध की उपस्थिति भी शिखर गुंजयमान आवृत्ति को कुछ हद तक कम कर देती है। वास्तविक परिपथों में कुछ प्रतिरोध अपरिहार्य होते हैं, भले ही एक प्रतिरोधक विशेष रूप से एक घटक के रूप में सम्मिलित न हो। सिद्धांत के उद्देश्य के लिए एक आदर्श, शुद्ध एलसी परिपथ एक अमूर्त है।


इस सर्किट के कई अनुप्रयोग हैं। उनका उपयोग कई अलग-अलग प्रकार के [[इलेक्ट्रॉनिक थरथरानवाला]] में किया जाता है। एक अन्य महत्वपूर्ण अनुप्रयोग [[ट्यूनर (इलेक्ट्रॉनिक्स)]] के लिए है, जैसे कि [[रिसीवर (रेडियो)]] या [[टीवी सेट]] में, जहाँ उनका उपयोग परिवेशी रेडियो तरंगों से आवृत्तियों की एक संकीर्ण श्रेणी का चयन करने के लिए किया जाता है। इस भूमिका में सर्किट को अक्सर ट्यून्ड सर्किट कहा जाता है। एक RLC सर्किट का उपयोग बैंड-पास फिल्टर, बैंड-स्टॉप फिल्टर, लो-पास फिल्टर या हाई-पास फिल्टर के रूप में किया जा सकता है। आरएलसी फिल्टर को दूसरे क्रम के सर्किट के रूप में वर्णित किया गया है, जिसका अर्थ है कि सर्किट में किसी भी वोल्टेज या करंट को सर्किट विश्लेषण में दूसरे क्रम के [[अंतर समीकरण]] द्वारा वर्णित किया जा सकता है।
इस परिपथ के कई अनुप्रयोग हैं। उनका उपयोग कई अलग-अलग प्रकार के [[इलेक्ट्रॉनिक थरथरानवाला|विद्युत थरथरानवाला]] में किया जाता है। एक अन्य महत्वपूर्ण अनुप्रयोग [[ट्यूनर (इलेक्ट्रॉनिक्स)|ट्यूनर (विद्युत्स)]] के लिए है, जैसे कि [[रिसीवर (रेडियो)]] या [[टीवी सेट]] में, जहाँ उनका उपयोग परिवेशी रेडियो तरंगों से आवृत्तियों की एक संकीर्ण श्रेणी का चयन करने के लिए किया जाता है। इस भूमिका में परिपथ को प्रायः ट्यून्ड परिपथ कहा जाता है। एक RLC परिपथ का उपयोग बैंड-पास निस्यंदक, बैंड-स्टॉप निस्यंदक, लो-पास निस्यंदक या हाई-पास निस्यंदक के रूप में किया जा सकता है। आरएलसी निस्यंदक को दूसरे क्रम के परिपथ के रूप में वर्णित किया गया है, जिसका अर्थ है कि परिपथ में किसी भी वोल्टता या करंट को परिपथ विश्लेषण में दूसरे क्रम के [[अंतर समीकरण]] द्वारा वर्णित किया जा सकता है।


=== उच्च क्रम निष्क्रिय फिल्टर ===
=== उच्च क्रम निष्क्रिय निस्यंदक ===
उच्च क्रम के निष्क्रिय फिल्टर भी बनाए जा सकते हैं (तीसरे क्रम के उदाहरण के लिए आरेख देखें)।
उच्च क्रम के निष्क्रिय निस्यंदक भी बनाए जा सकते हैं (तृतीय क्रम के उदाहरण के लिए आरेख देखें)।     [[File:LowPass3poleICauer.svg|300px|केंद्र|अंगूठा|तीसरा क्रम निम्न-पास फ़िल्टर ([[कायर टोपोलॉजी]])। फिल्टर कटऑफ फ्रीक्वेंसी ω के साथ बटरवर्थ फिल्टर बन जाता है<sub>c</sub>=1 जब (उदाहरण के लिए) सी<sub>2</sub>= 4/पी व्यक्तिगत, टी<sub>4</sub>=1 ओम, एल<sub>1</sub>=3/2 हेनरी और एल<sub>3</sub>= 1/2 हेनरी।]]
[[File:LowPass3poleICauer.svg|300px|केंद्र|अंगूठा|तीसरा क्रम निम्न-पास फ़िल्टर ([[कायर टोपोलॉजी]])। फिल्टर कटऑफ फ्रीक्वेंसी ω के साथ बटरवर्थ फिल्टर बन जाता है<sub>c</sub>=1 जब (उदाहरण के लिए) सी<sub>2</sub>= 4/पी व्यक्तिगत, टी<sub>4</sub>=1 ओम, एल<sub>1</sub>=3/2 हेनरी और एल<sub>3</sub>= 1/2 हेनरी।]]


{{clear}}
{{clear}}




=== सक्रिय इलेक्ट्रॉनिक प्राप्ति ===
=== सक्रिय विद्युत प्राप्ति ===
[[File:Active Lowpass Filter RC.svg|thumb|right|300px|एक सक्रिय निम्न-पास फ़िल्टर]]एक अन्य प्रकार का विद्युत सर्किट एक सक्रिय निम्न-पास फ़िल्टर है।
[[File:Active Lowpass Filter RC.svg|thumb|right|300px|एक सक्रिय निम्न-पास निस्यंदक]]एक अन्य प्रकार का विद्युत परिपथ एक सक्रिय निम्न-पास निस्यंदक है।


चित्र में दिखाए गए [[ऑपरेशनल एंप्लीफायर]] सर्किट में, कटऑफ फ्रीक्वेंसी ([[हेटर्स]] में) को इस प्रकार परिभाषित किया गया है:
चित्र में दिखाए गए [[ऑपरेशनल एंप्लीफायर|परिचालन प्रवर्धक]] परिपथ में, कटऑफ आवृत्ति ([[हेटर्स]] में) को इस प्रकार परिभाषित किया गया है:


:<math>f_{\text{c}} = \frac{1}{2 \pi R_2 C}</math>
:<math>f_{\text{c}} = \frac{1}{2 \pi R_2 C}</math>
Line 219: Line 223:


:<math>\omega_{\text{c}} = \frac{1}{R_2 C}</math>
:<math>\omega_{\text{c}} = \frac{1}{R_2 C}</math>
पासबैंड में लाभ -R है<sub>2</sub>/आर<sub>1</sub>, और [[स्टॉपबैंड]] -6 dB प्रति सप्तक (यानी -20 dB प्रति दशक) पर बंद हो जाता है क्योंकि यह एक प्रथम-क्रम फ़िल्टर है।
पासबैंड में लाभ -''R''<sub>2</sub>/''R है'', और [[स्टॉपबैंड]] -6 dB प्रति सप्तक (अर्थात -20 dB प्रति दशक) पर बंद हो जाता है क्योंकि यह एक प्रथम-क्रम निस्यंदक है।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 20:33, 10 March 2023

एक उच्च पास निस्यंदक एक निस्यंदक ( संकेत प्रोसेसिंग) है जो संकेत (इलेक्ट्रिकल इंजीनियरिंग) को एक चयनित कटऑफ आवृत्ति से कम आवृत्ति के साथ पास करता है और कट ऑफ आवृत्ति से अधिक आवृत्तियों के साथ संकेतों को क्षीण करता है। निस्यंदक की सटीक आवृत्ति प्रतिक्रिया निस्यंदक प्रारुप पर निर्भर करती है। निस्यंदक को कभी-कभी श्रव्य अनुप्रयोगों में हाई-कट निस्यंदक या ट्रेबल-कट निस्यंदक कहा जाता है। एक निम्न-पास निस्यंदक एक उच्च-पास निस्यंदक का पूरक है।

प्रकाशिकी में, उच्च-पास और निम्न-पास के अलग-अलग अर्थ हो सकते हैं, यह इस बात पर निर्भर करता है कि प्रकाश की आवृत्ति या तरंग दैर्ध्य का जिक्र है, क्योंकि ये चर विपरीत रूप से संबंधित हैं। हाई-पास आवृत्ति निस्यंदक लो-पास वेवलेंथ निस्यंदक के रूप में कार्य करेंगे, और इसके विपरीत। इस कारण भ्रम से बचने के लिए वेवलेंथ निस्यंदक को 'शॉर्ट-पास' और 'लॉन्ग-पास' के रूप में संदर्भित करना एक अच्छा अभ्यास है, जो 'हाई-पास' और 'लो-पास' के अनुरूप होगा। आवृत्तियों।[1]

लो-पास निस्यंदक कई अलग-अलग रूपों में मौजूद हैं, जिनमें विद्युत परिपथ जैसे ध्वनि मुद्रण में इस्तेमाल किया जाने वाला हिस निस्यंदक, एनालॉग-टू-अंकीय रूपांतरण से पूर्व अनुकूलन संकेत के लिए एंटी - एलियासिंग निस्यंदक, डेटा के स्मूथिंग सेट के लिए अंकीय निस्यंदक, ध्वनिक बाधाएं सम्मिलित हैं। छवियों का गौस्सियन धुंधलापन, और इसी तरह। वित्त जैसे क्षेत्रों में उपयोग किया जाने वाला मूविंग एवरेज (वित्त) ऑपरेशन एक विशेष प्रकार का लो-पास निस्यंदक है, और इसका विश्लेषण उसी संकेत आगे बढ़ाना तकनीकों के साथ किया जा सकता है, जो अन्य लो-पास निस्यंदक के लिए उपयोग की जाती हैं। कम-पास निस्यंदक संकेत का एक सरल रूप प्रदान करते हैं, अल्पकालिक उतार-चढ़ाव को दूर करते हैं और लंबी अवधि की प्रवृत्ति को छोड़ते हैं।

निस्यंदक अभिकल्पक प्रायः प्रोटोटाइप निस्यंदक के रूप में लो-पास फ़ॉर्म का उपयोग करते हैं। यही है, एकता बैंडविड्थ और प्रतिबाधा वाला निस्यंदक। वांछित बैंडविड्थ और प्रतिबाधा के लिए स्केलिंग और वांछित बैंडफॉर्म (यानी लो-पास, हाई-पास, बंदपास छननी|बैंड-पास या बैंड-स्टॉप निस्यंदक|बैंड-स्टॉप) में परिवर्तित करके वांछित निस्यंदक को प्रोटोटाइप से प्राप्त किया जाता है। ).

उदाहरण

लो-पास निस्यंदक के उदाहरण ध्वनिकी, प्रकाशिकी और विद्युत्स में पाए जाते हैं।

एक कठोर भौतिक बाधा उच्च ध्वनि आवृत्तियों को प्रतिबिंबित करती है, और इसलिए ध्वनि संचारित करने के लिए ध्वनिक निम्न-पास निस्यंदक के रूप में कार्य करती है। जब संगीत दूसरे कमरे में चल रहा होता है, तो निम्न स्वर सरली से सुनाई देते हैं, जबकि उच्च स्वर क्षीण हो जाते हैं।

समान कार्य वाले एक ऑप्टिकल निस्यंदक को सही ढंग से कम-पास निस्यंदक कहा जा सकता है, लेकिन भ्रम से बचने के लिए पारंपरिक रूप से लॉन्गपास निस्यंदक (कम आवृत्ति लंबी तरंग दैर्ध्य) कहा जाता है।[2]

वोल्टता संकेतों के लिए एक विद्युत कम-पास आरसी निस्यंदक में, इनपुट संकेत में उच्च आवृत्तियों को क्षीण किया जाता है, लेकिन निस्यंदक में आरसी समय स्थिरांक द्वारा निर्धारित कटऑफ आवृत्ति के नीचे थोड़ा क्षीणन होता है। वर्तमान संकेतों के लिए, एक समान परिपथ, समानांतर परिपथ में एक रोकनेवाला और संधारित्र का उपयोग करके, समान तरीके से काम करता है। (वर्तमान डिवाइडर को अधिक विस्तार से देखें #विद्युत लो-पास निस्यंदक।)

सबवूफर और अन्य प्रकार के ध्वनि-विस्तारक यंत्र के इनपुट पर विद्युत लो-पास निस्यंदक का उपयोग किया जाता है, ताकि उच्च पिचों को अवरुद्ध किया जा सके जो कुशलता से पुनरुत्पादन नहीं कर सकते। रेडियो ट्रांसमीटर लयबद्ध उत्सर्जन को अवरुद्ध करने के लिए कम-पास निस्यंदक का उपयोग करते हैं जो अन्य संचारों में हस्तक्षेप कर सकते हैं। कई विद्युत गिटार पर टोन नॉब एक ​​लो-पास निस्यंदक है जिसका उपयोग ध्वनि में ट्रेबल की मात्रा को कम करने के लिए किया जाता है। एक समाकलक एक और समय स्थिरांक है #विद्युत परिपथों में समय स्थिरांक लो-पास निस्यंदक।[3]

डीएसएल फाड़नेवाला्स के साथ फिट की गई टेलीफोन लाइनें लो-पास और हाई-पास निस्यंदक का उपयोग करती हैं। अंकीय खरीदारों की पंक्ति को अलग करने के लिए हाई-पास निस्यंदक और समान मुड़ जोड़ी तारों को साझा करने वाले सादे पुराने टेलीफोन सेवा संकेत।[4][5]

लो-पास निस्यंदक भी एनालॉग और वर्चुअल एनालॉग सिंथेसाइज़र द्वारा बनाई गई ध्वनि की मूर्तिकला में महत्वपूर्ण भूमिका निभाते हैं। घटाव संश्लेषण देखें।

नमूनाकरण ( संकेत प्रोसेसिंग) से पूर्व और अंकीय-से-एनालॉग रूपांतरण में पुनर्निर्माण निस्यंदक के लिए एक कम-पास निस्यंदक का उपयोग उपघटन प्रतिरोधी निस्यंदक के रूप में किया जाता है।

आदर्श और वास्तविक निस्यंदक

sinc कार्य, एक आदर्श निम्न-पास निस्यंदक का समय-डोमेन आवेग प्रतिक्रिया
प्रथम-क्रम (एक-ध्रुव) निम्न-पास निस्यंदक का लाभ-परिमाण आवृत्ति प्रतिक्रिया। पावर गेन डेसिबल में दिखाया गया है (यानी, एक 3 डेसिबल गिरावट एक अतिरिक्त अर्ध-शक्ति क्षीणन दर्शाती है)। कोणीय आवृत्ति प्रति सेकंड रेडियन की इकाइयों में एक लघुगणकीय पैमाने पर दिखाई जाती है।

एक sinc निस्यंदक|आदर्श लो-पास निस्यंदक कटऑफ़ आवृत्ति से ऊपर की सभी आवृत्ति को पूरी तरह से हटा देता है जबकि नीचे की आवृत्ति अपरिवर्तित रहती है; इसकी आवृत्ति प्रतिक्रिया एक आयताकार कार्य है और एक ईंट-दीवार निस्यंदक है। व्यावहारिक निस्यंदक में मौजूद संक्रमण क्षेत्र एक आदर्श निस्यंदक में मौजूद नहीं होता है। एक आदर्श लो-पास निस्यंदक को गणितीय रूप से (सैद्धांतिक रूप से) आवृत्ति डोमेन में आयताकार कार्य द्वारा एक संकेत को गुणा करके या समतुल्य रूप से, इसके आवेग प्रतिक्रिया के साथ कनवल्शन, समय डोमेन में एक sinc कार्य द्वारा महसूस किया जा सकता है।

हालांकि, समय में अनंत सीमा के संकेतों के बिना भी आदर्श निस्यंदक का एहसास करना असंभव है, और इसलिए आम तौर पर वास्तविक चल रहे संकेतों के लिए अनुमानित होने की आवश्यकता होती है, क्योंकि sinc कार्य का समर्थन क्षेत्र सभी पिछले और भविष्य के समय तक फैला हुआ है। इसलिए कनवल्शन करने के लिए निस्यंदक को अनंत विलंब, या अनंत भविष्य और अतीत का ज्ञान होना चाहिए। यह अतीत और भविष्य में शून्य के विस्तार को मानकर पूर्व-रिकॉर्ड किए गए अंकीय संकेतों के लिए प्रभावी रूप से वसूली योग्य है, या सामान्यतः संकेत को दोहराव बनाकर और फूरियर विश्लेषण का उपयोग करके।

रीयल-टाइम कंप्यूटिंग के लिए वास्तविक निस्यंदक | रीयल-टाइम एप्लिकेशन एक सीमित आवेग प्रतिक्रिया बनाने के लिए अनंत आवेग प्रतिक्रिया को ट्रंकेटिंग और खिड़की समारोह द्वारा आदर्श निस्यंदक का अनुमान लगाते हैं; सिन निस्यंदक को लागू करने के लिए संकेत को मध्यम अवधि के लिए विलंबित करने की आवश्यकता होती है, जिससे गणना को भविष्य में थोड़ा सा देखने की अनुमति मिलती है। यह विलंब चरण (तरंगों) के रूप में प्रकट होता है। सन्निकटन में अधिक सटीकता के लिए अधिक विलंब की आवश्यकता होती है।

गिब्स घटना के माध्यम से रिंगिंग कलाकृतियों में एक आदर्श निम्न-पास निस्यंदक का परिणाम होता है। विंडोिंग कार्य की पसंद से इन्हें कम या खराब किया जा सकता है, और विंडो कार्य # निस्यंदक डिज़ाइन में इन कलाकृतियों को समझना और कम करना सम्मिलित है। उदाहरण के लिए, साधारण काट-छाँट [of sinc] गंभीर रिंगिंग कलाकृतियों का कारण बनता है, संकेत पुनर्निर्माण में, और इन कलाकृतियों को कम करने के लिए विंडो फ़ंक्शंस का उपयोग किया जाता है जो किनारों पर अधिक सरली से गिर जाते हैं।[6]

व्हिटेकर-शैनन इंटरपोलेशन फॉर्मूला वर्णन करता है कि नमूना अंकीय संकेत ( संकेत प्रोसेसिंग) से निरंतर संकेत का पुनर्निर्माण करने के लिए एक आदर्श निम्न-पास निस्यंदक का उपयोग कैसे किया जाए। वास्तविक डिज़िटल से एनालॉग कन्वर्टर वास्तविक निस्यंदक सन्निकटन का उपयोग करते हैं।

समय प्रतिक्रिया

सरल निम्न-पास RC निस्यंदक की प्रतिक्रिया को हल करके एक कम-पास निस्यंदक का समय प्रतिक्रिया पाया जाता है।

एक साधारण लो-पास आरसी परिपथ

किरचॉफ के परिपथ कानूनों का उपयोग करना। किरचॉफ के नियम हम अंतर समीकरण पर पहुंचते हैं[7]


कदम इनपुट प्रतिक्रिया उदाहरण

अगर हम जाने दें परिमाण का एक चरण कार्य हो तो अंतर समीकरण का हल है[8]

कहाँ निस्यंदक की कटऑफ आवृत्ति है।

आवृत्ति प्रतिक्रिया

एक परिपथ की आवृत्ति प्रतिक्रिया को चिह्नित करने का सबसे आम तरीका इसका लाप्लास रूपांतरण खोजना है[7]स्थानांतरण प्रकार्य, . हमारे अवकल समीकरण के लाप्लास रूपांतरण को लेना और के लिए हल करना हम पाते हैं


असतत समय नमूनाकरण के माध्यम से अंतर समीकरण

के नियमित अंतराल पर उपरोक्त चरण इनपुट प्रतिक्रिया का नमूना लेकर एक असतत रैखिक अंतर समीकरण सरली से प्राप्त किया जाता है कहाँ और नमूनों के बीच का समय है। हमारे पास लगातार दो नमूनों के बीच का अंतर लेना

के लिए हल करना हम पाते हैं

कहाँ अंकन का उपयोग करना और , और हमारे नमूना मूल्य को प्रतिस्थापित करते हुए, , हमें अंतर समीकरण मिलता है


त्रुटि विश्लेषण

अंतर समीकरण से पुनर्निर्मित आउटपुट संकेत की तुलना करना, , चरण इनपुट प्रतिक्रिया के लिए, , हम पाते हैं कि एक सटीक पुनर्निर्माण (0% त्रुटि) है। यह एक समय अपरिवर्तनीय इनपुट के लिए पुनर्निर्मित आउटपुट है। हालाँकि, यदि इनपुट समय संस्करण है, जैसे , यह मॉडल अवधि के साथ चरण कार्यों की एक श्रृंखला के रूप में इनपुट संकेत का अनुमान लगाता है पुनर्निर्मित आउटपुट संकेत में त्रुटि उत्पन्न करना। टाइम वेरिएंट इनपुट्स से उत्पन्न त्रुटि को निर्धारित करना मुश्किल है[citation needed] लेकिन के रूप में घट जाती है .

असतत-समय की प्राप्ति

कई अंकीय निस्यंदक निम्न-पास विशेषताओं को देने के लिए डिज़ाइन किए गए हैं। दोनों अनंत आवेग प्रतिक्रिया और परिमित आवेग प्रतिक्रिया कम पास निस्यंदक के साथ-साथ फूरियर रूपांतरण का उपयोग करने वाले निस्यंदक व्यापक रूप से उपयोग किए जाते हैं।

सरल अनंत आवेग प्रतिक्रिया निस्यंदक

एक अनंत आवेग प्रतिक्रिया कम-पास निस्यंदक का प्रभाव समय डोमेन में आरसी निस्यंदक के व्यवहार का विश्लेषण करके कंप्यूटर पर अनुकरण किया जा सकता है, और उसके बाद मॉडल को असतत संकेत दिया जा सकता है।

एक साधारण लो-पास आरसी परिपथ

किरचॉफ के परिपथ कानूनों के अनुसार परिपथ आरेख से दाईं ओर। किरचॉफ के नियम और समाई की परिभाषा:

Failed to parse (Conversion error. Server ("cli") reported: "SyntaxError: Expected "-", "[", "\\", "\\begin", "\\begin{", "]", "^", "_", "{", "}", [ \t\n\r], [%$], [().], [,:;?!'], [/|], [0-9], [><~], [\-+*=], or [a-zA-Z] but "म" found.in 1:60"): {\displaystyle v_{\text{in}}(t) - v_{\text{out}}(t) = R \; मैं(टी)</गणित>|{{EquationRef|V}}}} {{NumBlk|::|<math>Q_c(t) = C \, v_{\text{out}}(टी) </ गणित> |{{EquationRef|Q}}}} {{NumBlk|::|<math>i(t) = \frac{\operatorname{d} Q_c}{\operatorname{d} t}}

 

 

 

 

(I)

कहाँ समय पर संधारित्र में संग्रहित आवेश है t. प्रतिस्थापन समीकरण Q समीकरण में I देता है , जिसे समीकरण में प्रतिस्थापित किया जा सकता है V ताकि

इस समीकरण को अलग किया जा सकता है। सादगी के लिए, मान लें कि इनपुट और आउटपुट के नमूने समान रूप से दूरी वाले बिंदुओं पर अलग किए गए समय में लिए जाते हैं समय। के नमूने लिए क्रम से प्रदर्शित करें , और जाने क्रम से प्रदर्शित करें , जो समय में समान बिंदुओं के अनुरूप हैं। इन प्रतिस्थापनों को बनाना,

पदों को पुनर्व्यवस्थित करने से पुनरावृत्ति संबंध प्राप्त होता है

यही है, एक साधारण आरसी लो-पास निस्यंदक का असतत-समय कार्यान्वयन घातीय चौरसाई है

परिभाषा के अनुसार, चौरसाई कारक सीमा के भीतर है . के लिए अभिव्यक्ति α समतुल्य समय स्थिर उत्पन्न करता है RC नमूना अवधि के संदर्भ में और चौरसाई कारक α,

याद करते हुए

इसलिए

टिप्पणी α और से संबंधित हैं,

और

अगर α= 0.5, तो आरसी समय स्थिर नमूना अवधि के बराबर है। अगर , तो आरसी नमूना अंतराल से काफी बड़ा है, और .

निस्यंदक पुनरावृत्ति संबंध इनपुट नमूने और पूर्ववर्ती आउटपुट के संदर्भ में आउटपुट नमूने निर्धारित करने का एक तरीका प्रदान करता है। निम्नलिखित स्यूडोकोड एल्गोरिथम अंकीय नमूनों की एक श्रृंखला पर कम-पास निस्यंदक के प्रभाव का अनुकरण करता है:

// आरसी कम-पास निस्यंदक आउटपुट नमूने लौटाएं, इनपुट नमूने दिए गए हैं,
// समय अंतराल डीटी, और समय निरंतर आरसी
'कार्य' लोपास (वास्तविक [1..n] x, वास्तविक dt, वास्तविक RC)
    'वर' असली [1..एन] वाई
    'var' वास्तविक α�:= dt / (RC + dt)
    वाई [1]�:= α * x [1]
    'के लिए' मैं 'से' 2 'से' एन
        y[i] := α * x[i] + (1-α) * y[i-1]
    'वापसी' वाई

प्रोग्रामिंग लूप जो प्रत्येक एन आउटपुट की गणना करता है, समकक्ष में कोड रीफैक्टरिंग हो सकता है:

    'के लिए' मैं 'से' 2 'से' एन
        y[i] := y[i-1] + α * (x[i] - y[i-1])

अर्थात्, एक निस्यंदक आउटपुट से अगले में परिवर्तन पिछले आउटपुट और अगले इनपुट के बीच के अंतर के लिए आनुपातिकता (गणित) है। यह घातीय चौरसाई गुण निरंतर-समय प्रणाली में देखे गए घातीय कार्य क्षय से मेल खाता है। जैसा कि अपेक्षित था, जैसे-जैसे समय स्थिर आरसी बढ़ता है, असतत-समय चौरसाई पैरामीटर घट जाती है, और आउटपुट नमूने इनपुट नमूने में बदलाव के लिए अधिक धीरे-धीरे प्रतिक्रिया दें ; प्रणाली में अधिक जड़ता है। यह निस्यंदक एक अनंत-आवेग-प्रतिक्रिया (IIR) सिंगल-पोल लो-पास निस्यंदक है।

परिमित आवेग प्रतिक्रिया

परिमित-आवेग-प्रतिक्रिया निस्यंदक बनाए जा सकते हैं जो एक आदर्श शार्प-कटऑफ़ लो-पास निस्यंदक के sinc कार्य टाइम-डोमेन प्रतिक्रिया के अनुमानित हैं। न्यूनतम विरूपण के लिए परिमित आवेग प्रतिक्रिया निस्यंदक में असीमित संख्या में गुणांक एक असीमित संकेत पर काम कर रहे हैं। व्यवहार में, टाइम-डोमेन प्रतिक्रिया समय छोटा होना चाहिए और प्रायः एक सरलीकृत आकार का होता है; सबसे सरल मामले में, एक औसत चल रहा है का उपयोग किया जा सकता है, जो वर्ग समय की प्रतिक्रिया देता है।[9]


फूरियर रूपांतरण

गैर-रीयलटाइम निस्यंदकिंग के लिए, कम पास निस्यंदक प्राप्त करने के लिए, पूरे संकेत को सामान्यतः लूप संकेत के रूप में लिया जाता है, फूरियर ट्रांसफॉर्म लिया जाता है, आवृत्ति डोमेन में निस्यंदक किया जाता है, इसके बाद उलटा फूरियर ट्रांसफ़ॉर्म होता है। O(n log(n)) की तुलना में केवल O(n log(n)) संचालन आवश्यक हैं2) टाइम डोमेन निस्यंदकिंग एल्गोरिदम के लिए।

यह कभी-कभी वास्तविक समय में भी किया जा सकता है, जहां छोटे, अतिव्यापी ब्लॉकों पर फूरियर रूपांतरण करने के लिए संकेत काफी देर तक देरी हो जाती है।

निरंतर-समय की प्राप्ति

कटऑफ आवृत्ति के साथ ऑर्डर 1 से 5 के बटरवर्थ लो-पास निस्यंदक के लाभ का प्लॉट . ध्यान दें कि ढलान 20n dB/दशक है जहां n निस्यंदक क्रम है।

बदलती आवृत्ति के लिए विभिन्न प्रतिक्रियाओं के साथ कई अलग-अलग प्रकार के निस्यंदक परिपथ हैं। एक निस्यंदक की आवृत्ति प्रतिक्रिया आम तौर पर एक बोडे प्लॉट का उपयोग करके प्रदर्शित की जाती है, और निस्यंदक को इसकी कटऑफ आवृत्ति और आवृत्ति धड़ल्ले से बोलना की दर से चित्रित किया जाता है। सभी मामलों में, कटऑफ़ आवृत्ति पर, निस्यंदक इनपुट पावर को आधे या 3 dB तक कम कर देता है। तो निस्यंदक का 'आदेश' कटऑफ आवृत्ति से अधिक आवृत्तियों के लिए अतिरिक्त क्षीणन की मात्रा निर्धारित करता है।

  • एक 'प्रथम-क्रम निस्यंदक', उदाहरण के लिए, संकेत आयाम को आधे से कम कर देता है (इसलिए शक्ति 4 के कारक से कम हो जाती है, या 6 dB), हर बार आवृत्ति दोगुनी हो जाती है (एक सप्तक ऊपर जाती है); अधिक सटीक रूप से, उच्च आवृत्ति की सीमा में पावर रोलऑफ़ 20 dB प्रति दशक (लॉग स्केल) तक पहुंचता है। पूर्व क्रम के निस्यंदक के लिए परिमाण बोड प्लॉट कटऑफ आवृत्ति के नीचे एक क्षैतिज रेखा और कटऑफ आवृत्ति के ऊपर एक विकर्ण रेखा की तरह दिखता है। दोनों के बीच की सीमा पर एक घुटने का वक्र भी है, जो दो सीधी रेखा वाले क्षेत्रों के बीच सुचारू रूप से संक्रमण करता है। यदि प्रथम-क्रम निम्न-पास निस्यंदक के स्थानांतरण कार्य में शून्य (जटिल विश्लेषण) के साथ-साथ ध्रुव (जटिल विश्लेषण) होता है, तो उच्च आवृत्तियों के कुछ अधिकतम क्षीणन पर, बोड प्लॉट फिर से समतल हो जाता है; इस तरह का प्रभाव उदाहरण के लिए एक-पोल निस्यंदक के आसपास थोड़ा सा इनपुट लीक होने के कारण होता है; यह एक-ध्रुव-एक-शून्य निस्यंदक अभी भी एक प्रथम-क्रम निम्न-पास है। पोल-जीरो प्लॉट और आरसी परिपथ देखें।
  • एक 'दूसरे क्रम का निस्यंदक' उच्च आवृत्तियों को अधिक तेजी से क्षीण करता है। इस प्रकार के निस्यंदक के लिए बोड प्लॉट प्रथम-क्रम निस्यंदक जैसा दिखता है, सिवाय इसके कि यह अधिक तेज़ी से गिर जाता है। उदाहरण के लिए, एक दूसरे क्रम का बटरवर्थ निस्यंदक संकेत के आयाम को उसके मूल स्तर के एक चौथाई तक कम कर देता है, हर बार आवृत्ति दोगुनी हो जाती है (इसलिए बिजली 12 dB प्रति सप्तक, या 40 dB प्रति दशक कम हो जाती है)। अन्य ऑल-पोल सेकंड-ऑर्डर निस्यंदक शुरू में उनके क्यू कारक के आधार पर अलग-अलग दरों पर रोल ऑफ हो सकते हैं, लेकिन 12 dB प्रति सप्टक की समान अंतिम दर तक पहुंच सकते हैं; प्रथम-क्रम निस्यंदक के साथ, स्थानांतरण कार्य में शून्य उच्च-आवृत्ति स्पर्शोन्मुख को बदल सकते हैं। आरएलसी परिपथ देखें।
  • तीसरा- और उच्च-क्रम निस्यंदक समान रूप से परिभाषित किए गए हैं। सामान्य तौर पर, ऑर्डर के लिए पावर रोलऑफ़ की अंतिम दर- n ऑल-पोल निस्यंदक 6 हैn डीबी प्रति सप्तक (20n डीबी प्रति दशक)।

किसी भी बटरवर्थ निस्यंदक पर, यदि कोई क्षैतिज रेखा को दाईं ओर और तिरछी रेखा को ऊपरी-बाएँ (कार्य के स्पर्शोन्मुख) तक बढ़ाता है, तो वे कटऑफ़ आवृत्ति, क्षैतिज रेखा के नीचे 3 dB पर प्रतिच्छेद करते हैं। विभिन्न प्रकार के निस्यंदक (बटरवर्थ निस्यंदक, चेबिशेव निस्यंदक, बेसल निस्यंदक, आदि) सभी में अलग-अलग दिखने वाले घुटने के मोड़ होते हैं। कई दूसरे क्रम के निस्यंदक में पीकिंग या इलेक्ट्रिकल अनुनाद होता है जो इस चोटी पर क्षैतिज रेखा के ऊपर अपनी आवृत्ति प्रतिक्रिया डालता है।

'निम्न' और 'उच्च' के अर्थ—अर्थात् कटऑफ़ आवृत्ति—निस्यंदक की विशेषताओं पर निर्भर करती है। लो-पास निस्यंदक शब्द केवल निस्यंदक की प्रतिक्रिया के आकार को संदर्भित करता है; एक हाई-पास निस्यंदक बनाया जा सकता है जो किसी भी लो-पास निस्यंदक की तुलना में कम आवृत्ति पर कट ऑफ करता है—यह उनकी प्रतिक्रियाएं हैं जो उन्हें अलग करती हैं। किसी भी वांछित आवृत्ति रेंज के लिए विद्युत परिपथ तैयार किए जा सकते हैं, सीधे माइक्रोवेव आवृत्ति (1 GHz से ऊपर) और उच्चतर के माध्यम से।

लाप्लास अंकन

निरंतर-समय के निस्यंदक को उनके आवेग प्रतिक्रिया के लाप्लास परिवर्तन के संदर्भ में भी वर्णित किया जा सकता है, जिससे निस्यंदक की सभी विशेषताओं को ध्रुवों के पैटर्न और लाप्लास के शून्य को जटिल विमान में बदलने पर विचार करके सरली से विश्लेषण किया जा सकता है। (असतत समय में, इसी तरह आवेग प्रतिक्रिया के जेड-रूपांतरण पर विचार कर सकते हैं।)

उदाहरण के लिए, प्रथम-क्रम निम्न-पास निस्यंदक को लाप्लास नोटेशन में वर्णित किया जा सकता है:

जहाँ s लाप्लास परिवर्तन चर है, τ निस्यंदक समय स्थिरांक है, और K पासबैंड में निस्यंदक का लाभ (विद्युत्स) है।

विद्युत लो-पास निस्यंदक

पहला आदेश

आरसी निस्यंदक

पैसिव, फर्स्ट ऑर्डर लो-पास आरसी निस्यंदक

एक साधारण लो-पास निस्यंदक विद्युत परिपथ में बाहरी विद्युत भार के साथ श्रृंखला में एक प्रतिरोधक होता है, और भार के साथ समानांतर में एक संधारित्र होता है। कैपेसिटर रिएक्शन (विद्युत्स) प्रदर्शित करता है, और कम आवृत्ति संकेतों को ब्लॉक करता है, इसके बजाय उन्हें लोड के माध्यम से मजबूर करता है। उच्च आवृत्तियों पर प्रतिक्रिया कम हो जाती है, और संधारित्र प्रभावी रूप से शॉर्ट परिपथ के रूप में कार्य करता है। अवरोध और कैपेसिटेंस का कॉम्बिनेशन निस्यंदक का टाइम कॉन्स्टेंट देता है (ग्रीक अक्षर ताऊ द्वारा दर्शाया गया)। ब्रेक आवृत्ति, जिसे टर्नओवर आवृत्ति, कॉर्नर आवृत्ति या कटऑफ़ आवृत्ति (हर्ट्ज़ में) भी कहा जाता है, समय स्थिर द्वारा निर्धारित किया जाता है:

या समकक्ष (कांति प्रति सेकंड में):

इस परिपथ को उस समय पर विचार करके समझा जा सकता है जब संधारित्र को प्रतिरोधक के माध्यम से चार्ज या डिस्चार्ज करने की आवश्यकता होती है:

  • कम आवृत्तियों पर, संधारित्र के लिए व्यावहारिक रूप से इनपुट वोल्टता के समान वोल्टता तक चार्ज करने के लिए बहुत समय होता है।
  • उच्च आवृत्तियों पर, इनपुट स्विच की दिशा बदलने से पूर्व संधारित्र के पास केवल थोड़ी मात्रा में चार्ज करने का समय होता है। इनपुट ऊपर और नीचे जाने वाली राशि का केवल एक छोटा सा अंश आउटपुट ऊपर और नीचे जाता है। दोगुनी आवृत्ति पर, इसके पास केवल आधी राशि चार्ज करने का समय होता है।

इस परिपथ को समझने का दूसरा तरीका एक विशेष आवृत्ति पर रिएक्शन (विद्युत्स) की अवधारणा के माध्यम से है:

  • चूँकि दिष्टधारा (DC) संधारित्र के माध्यम से प्रवाहित नहीं हो सकती है, DC इनपुट को चिह्नित पथ से बाहर प्रवाहित होना चाहिए (संधारित्र को हटाने के समान)।
  • चूँकि प्रत्यावर्ती धारा (AC) संधारित्र के माध्यम से बहुत अच्छी तरह से बहती है, लगभग साथ ही साथ यह ठोस तार के माध्यम से बहती है, AC इनपुट संधारित्र के माध्यम से बहता है, प्रभावी रूप से जमीन पर शार्ट परिपथ (केवल एक तार के साथ संधारित्र को बदलने के अनुरूप)।

कैपेसिटर ऑन/ऑफ ऑब्जेक्ट नहीं है (जैसे ब्लॉक या पास फ्लुइडिक स्पष्टीकरण ऊपर)। संधारित्र इन दो चरम सीमाओं के बीच परिवर्तनशील रूप से कार्य करता है। यह बोड प्लॉट और आवृत्ति प्रतिक्रिया है जो इस परिवर्तनशीलता को दर्शाती है।

आरएल निस्यंदक

एक रोकनेवाला-प्रारंभ करनेवाला परिपथ या आरएल निस्यंदक एक विद्युत परिपथ है जो वोल्टता स्रोत या वर्तमान स्रोत द्वारा संचालित प्रतिरोधों और प्रेरकों से बना होता है। प्रथम श्रेणी का RL परिपथ एक प्रतिरोधक और एक प्रेरक से बना होता है और यह RL परिपथ का सबसे सरल प्रकार है।

पहला ऑर्डर आरएल परिपथ सबसे सरल एनालॉग निस्यंदक अनंत आवेग प्रतिक्रिया विद्युत निस्यंदक में से एक है। इसमें एक रोकनेवाला और एक प्रारंभ करनेवाला होता है, या तो श्रृंखला और समानांतर परिपथ में # श्रृंखला परिपथ एक वोल्टता स्रोत द्वारा संचालित होता है या श्रृंखला और समानांतर परिपथ में होता है वर्तमान स्रोत द्वारा संचालित समानांतर परिपथ।

द्वितीय क्रम

आरएलसी निस्यंदक

कम-पास निस्यंदक के रूप में आरएलसी परिपथ

एक आरएलसी परिपथ (अक्षर आर, एल और सी एक अलग क्रम में हो सकते हैं) एक विद्युत परिपथ है जिसमें एक प्रतिरोधक, एक प्रारंभ करनेवाला और एक संधारित्र होता है, जो श्रृंखला में या समानांतर में जुड़ा होता है। नाम का आरएलसी भाग उन अक्षरों के कारण है जो क्रमशः विद्युत प्रतिरोध, अधिष्ठापन और समाई के लिए सामान्य विद्युत प्रतीक हैं। परिपथ वर्तमान के लिए एक लयबद्ध दोलक बनाता है और एक एलसी परिपथ के समान तरीके से अनुनाद करेगा। प्रतिरोध की उपस्थिति का मुख्य अंतर यह है कि परिपथ में प्रेरित कोई भी दोलन समय के साथ समाप्त हो जाएगा यदि इसे किसी स्रोत द्वारा जारी नहीं रखा जाता है। प्रतिरोधक के इस प्रभाव को अवमंदन कहते हैं। प्रतिरोध की उपस्थिति भी शिखर गुंजयमान आवृत्ति को कुछ हद तक कम कर देती है। वास्तविक परिपथों में कुछ प्रतिरोध अपरिहार्य होते हैं, भले ही एक प्रतिरोधक विशेष रूप से एक घटक के रूप में सम्मिलित न हो। सिद्धांत के उद्देश्य के लिए एक आदर्श, शुद्ध एलसी परिपथ एक अमूर्त है।

इस परिपथ के कई अनुप्रयोग हैं। उनका उपयोग कई अलग-अलग प्रकार के विद्युत थरथरानवाला में किया जाता है। एक अन्य महत्वपूर्ण अनुप्रयोग ट्यूनर (विद्युत्स) के लिए है, जैसे कि रिसीवर (रेडियो) या टीवी सेट में, जहाँ उनका उपयोग परिवेशी रेडियो तरंगों से आवृत्तियों की एक संकीर्ण श्रेणी का चयन करने के लिए किया जाता है। इस भूमिका में परिपथ को प्रायः ट्यून्ड परिपथ कहा जाता है। एक RLC परिपथ का उपयोग बैंड-पास निस्यंदक, बैंड-स्टॉप निस्यंदक, लो-पास निस्यंदक या हाई-पास निस्यंदक के रूप में किया जा सकता है। आरएलसी निस्यंदक को दूसरे क्रम के परिपथ के रूप में वर्णित किया गया है, जिसका अर्थ है कि परिपथ में किसी भी वोल्टता या करंट को परिपथ विश्लेषण में दूसरे क्रम के अंतर समीकरण द्वारा वर्णित किया जा सकता है।

उच्च क्रम निष्क्रिय निस्यंदक

उच्च क्रम के निष्क्रिय निस्यंदक भी बनाए जा सकते हैं (तृतीय क्रम के उदाहरण के लिए आरेख देखें)। तीसरा क्रम निम्न-पास फ़िल्टर (कायर टोपोलॉजी)। फिल्टर कटऑफ फ्रीक्वेंसी ω के साथ बटरवर्थ फिल्टर बन जाता हैc=1 जब (उदाहरण के लिए) सी2= 4/पी व्यक्तिगत, टी4=1 ओम, एल1=3/2 हेनरी और एल3= 1/2 हेनरी।


सक्रिय विद्युत प्राप्ति

एक सक्रिय निम्न-पास निस्यंदक

एक अन्य प्रकार का विद्युत परिपथ एक सक्रिय निम्न-पास निस्यंदक है।

चित्र में दिखाए गए परिचालन प्रवर्धक परिपथ में, कटऑफ आवृत्ति (हेटर्स में) को इस प्रकार परिभाषित किया गया है:

या समकक्ष (रेडियन प्रति सेकंड में):

पासबैंड में लाभ -R2/R है, और स्टॉपबैंड -6 dB प्रति सप्तक (अर्थात -20 dB प्रति दशक) पर बंद हो जाता है क्योंकि यह एक प्रथम-क्रम निस्यंदक है।

यह भी देखें

संदर्भ

  1. Long Pass Filters and Short Pass Filters Information, retrieved 2017-10-04
  2. Long Pass Filters and Short Pass Filters Information, retrieved 2017-10-04
  3. Sedra, Adel; Smith, Kenneth C. (1991). Microelectronic Circuits, 3 ed. Saunders College Publishing. p. 60. ISBN 0-03-051648-X.
  4. "ADSL filters explained". Epanorama.net. Retrieved 2013-09-24.
  5. "Home Networking – Local Area Network". Pcweenie.com. 2009-04-12. Archived from the original on 2013-09-27. Retrieved 2013-09-24.
  6. Mastering Windows: Improving Reconstruction
  7. 7.0 7.1 Hayt, William H., Jr. and Kemmerly, Jack E. (1978). Engineering Circuit Analysis. New York: McGRAW-HILL BOOK COMPANY. pp. 211–224, 684–729.{{cite book}}: CS1 maint: multiple names: authors list (link)
  8. Boyce, William and DiPrima, Richard (1965). Elementary Differential Equations and Boundary Value Problems. New York: JOHN WILEY & SONS. pp. 11–24.{{cite book}}: CS1 maint: multiple names: authors list (link)
  9. Whilmshurst, T H (1990) Signal recovery from noise in electronic instrumentation. ISBN 9780750300582


बाहरी संबंध