लो पास फिल्टर: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{short description|Type of signal filter}} | {{short description|Type of signal filter}} | ||
एक [[उच्च पास फिल्टर|उच्च पास निस्यंदक]] एक [[फ़िल्टर (सिग्नल प्रोसेसिंग)|निस्यंदक]] है जो एक चयनित कटऑफ [[आवृत्ति]] से कम आवृत्ति के साथ [[सिग्नल (इलेक्ट्रिकल इंजीनियरिंग)|संकेतों]] को पास करता है और कट ऑफ आवृत्ति से अधिक आवृत्तियों के साथ संकेतों को क्षीण करता है। निस्यंदक की सटीक [[आवृत्ति प्रतिक्रिया]] [[फिल्टर डिजाइन|निस्यंदक प्रारुप]] पर निर्भर करती है। निस्यंदक को कभी-कभी श्रव्य अनुप्रयोगों में उच्च-कट निस्यंदक या ट्रेबल-कट निस्यंदक कहा जाता है। एक लो-पास निस्यंदक एक उच्च-पास निस्यंदक का पूरक है। | |||
प्रकाशिकी में, उच्च-पास और | प्रकाशिकी में, उच्च-पास और लो-पास के अलग-अलग अर्थ हो सकते हैं, यह इस बात पर निर्भर करता है कि प्रकाश की आवृत्ति या तरंग दैर्ध्य से संबंधित है या नहीं, क्योंकि ये चर विपरीत रूप से संबंधित हैं। उच्च-पास आवृत्ति निस्यंदक लो-पास तरंग दैर्ध्य निस्यंदक के रूप में कार्य करेंगे, और इसके विपरीत इस कारण भ्रम से बचने के लिए तरंग दैर्ध्य निस्यंदक को 'शॉर्ट-पास' और 'लॉन्ग-पास' के रूप में संदर्भित करना एक उचित अभ्यास है, जो 'उच्च-पास' और 'लो-पास' आवृत्तियों के अनुरूप होगा।''<ref>{{citation |url=http://www.globalspec.com/learnmore/optics_optical_components/optical_components/long_short_pass_filters |title=Long Pass Filters and Short Pass Filters Information |access-date=2017-10-04}}</ref>'' | ||
लो-पास निस्यंदक कई अलग-अलग रूपों में उपस्थित हैं, जिनमें विद्युत परिपथ जैसे [[ध्वनि मुद्रण|श्रव्य]] में उपयोग किये जाने वाले हिस निस्यंदक, [[एनालॉग-टू-डिजिटल रूपांतरण|अनुरूप अंकीय रूपांतरण]] से पूर्व अनुकूलन संकेत के लिए [[एंटी - एलियासिंग फ़िल्टर|उपघटन प्रतिरोधी निस्यंदक]], डेटा के सपाट समूह के लिए [[डिजिटल फिल्टर|अंकीय निस्यंदक]], ध्वनिक बाधाएं, और इसी तरह छवियों का धुँधलापन भी सम्मिलित हैं। वित्त जैसे क्षेत्रों में उपयोग किये जाने वाले [[मूविंग एवरेज (वित्त)|औसत चलन]] संचालन एक विशेष प्रकार का लो-पास निस्यंदक है, और उसी [[संकेत आगे बढ़ाना|संकेत प्रक्रमन]] प्रविधियों के साथ इसका विश्लेषण किया जा सकता है, जैसा कि अन्य लो-पास निस्यंदक के लिए उपयोग किया जाता हैं। लो-पास निस्यंदक संकेत का एक सरल रूप प्रदान करते हैं, अल्पकालिक उतार-चढ़ाव को दूर करते हैं और लंबी अवधि की प्रवृत्ति को छोड़ते हैं। | |||
निस्यंदक अभिकल्पक प्रायः [[प्रोटोटाइप फ़िल्टर|प्रतिमान निस्यंदक]] के रूप में | निस्यंदक अभिकल्पक प्रायः [[प्रोटोटाइप फ़िल्टर|प्रतिमान निस्यंदक]] के रूप में लो-पास विधि का उपयोग करते हैं। यही, एकता बैंड विस्तार और प्रतिबाधा वाला निस्यंदक है। वांछित बैंड विस्तार और प्रतिबाधा के लिए प्रवर्धन और वांछित बैंडफॉर्म (उच्च लो-पास, उच्च-पास, बैंड-पास या बैंड-स्टॉप) में परिवर्तित करके वांछित निस्यंदक को प्रतिमान से प्राप्त किया जाता है)। | ||
== उदाहरण == | == उदाहरण == | ||
लो-पास निस्यंदक के उदाहरण ध्वनिकी, प्रकाशिकी और विद्युत् में पाए जाते हैं। | |||
एक कठोर भौतिक बाधा उच्च ध्वनि आवृत्तियों को प्रतिबिंबित करती है, और इसलिए ध्वनि संचारित करने के लिए ध्वनिक | एक कठोर भौतिक बाधा उच्च ध्वनि आवृत्तियों को प्रतिबिंबित करती है, और इसलिए ध्वनि संचारित करने के लिए ध्वनिक लो-पास निस्यंदक के रूप में कार्य करती है। जब संगीत दूसरे कमरे में चल रहा होता है, तो लो स्वर सरलता से सुनाई देते हैं, जबकि उच्च स्वर क्षीण हो जाते हैं। | ||
एक समान प्रकार्य वाले [[ऑप्टिकल फिल्टर|प्रकाशिकी निस्यंदक]] को शुद्ध रूप से | एक समान प्रकार्य वाले [[ऑप्टिकल फिल्टर|प्रकाशिकी निस्यंदक]] को शुद्ध रूप से लो-पास निस्यंदक कहा जा सकता है, लेकिन भ्रम से बचने के लिए पारंपरिक रूप से लॉन्गपास निस्यंदक (कम आवृत्ति लंबी तरंग दैर्ध्य) कहा जाता है।<ref>{{citation |url=http://www.globalspec.com/learnmore/optics_optical_components/optical_components/long_short_pass_filters |title=Long Pass Filters and Short Pass Filters Information |access-date=2017-10-04}}</ref> | ||
वोल्टता संकेतों के लिए एक विद्युत | वोल्टता संकेतों के लिए एक विद्युत लो-पास [[आरसी फिल्टर|आरसी निस्यंदक]] में, इनपुट संकेतों में उच्च आवृत्तियों को क्षीण किया जाता है, लेकिन निस्यंदक में [[आरसी समय स्थिर|आरसी समय स्थिरांक]] द्वारा निर्धारित कटऑफ आवृत्ति के नीचे थोड़ा क्षीण जाता होता है। वर्तमान संकेतों के लिए, एक समान परिपथ, समानांतर में एक प्रतिरोधक और संधारित्र का उपयोग करके, समान माध्यम से कार्य करता है (नीचे अधिक विस्तार से विचार विमर्श किए गए वर्तमान विभक्त को देखें)। | ||
[[सबवूफर|सबवूफ़र्स]] और अन्य प्रकार के [[ध्वनि-विस्तारक यंत्र|ध्वनि-विस्तारक यंत्रो]] के इनपुट पर विद्युत | [[सबवूफर|सबवूफ़र्स]] और अन्य प्रकार के [[ध्वनि-विस्तारक यंत्र|ध्वनि-विस्तारक यंत्रो]] के इनपुट पर विद्युत लो-पास निस्यंदक का उपयोग किया जाता है, ताकि उच्च पिचों को अवरुद्ध किया जा सके जो कुशलता से पुनरुत्पादन नहीं कर सकते है। रेडियो संचारण [[लयबद्ध|समस्वरित]] उत्सर्जन को अवरुद्ध करने के लिए लो-पास निस्यंदक का उपयोग करते हैं जो अन्य संचारों में हस्तक्षेप कर सकते हैं। कई [[विद्युत गिटार]] पर ध्वनि नॉब एक लो-पास निस्यंदक है जिसका उपयोग ध्वनि में उच्च स्वर की मात्रा को कम करने के लिए किया जाता है। एक समाकलक एक और समय स्थिरांक है।<ref>{{cite book |title = Microelectronic Circuits, 3 ed. | ||
|page = [https://archive.org/details/microelectronicc00sedr_0/page/60 60] | |page = [https://archive.org/details/microelectronicc00sedr_0/page/60 60] | ||
|first1 = Adel | |first1 = Adel | ||
Line 31: | Line 31: | ||
}}</ref> | }}</ref> | ||
[[डीएसएल फाड़नेवाला|डीएसएल विखंडक]] के साथ लगी दूरभाष श्रृंखलाएं डीएसएल को पॉट्स संकेतों (और उच्च-पास इसके विपरीत) से अलग करने के लिए | [[डीएसएल फाड़नेवाला|डीएसएल विखंडक]] के साथ लगी दूरभाष श्रृंखलाएं डीएसएल को पॉट्स संकेतों (और उच्च-पास इसके विपरीत) से अलग करने के लिए लो-पास निस्यंदक का उपयोग करती हैं, जो तारों की एक ही जोड़ी (संचरण माध्यम) को साझा करती हैं।<ref>{{cite web|url=http://www.epanorama.net/documents/telecom/adsl_filter.html |title=ADSL filters explained |publisher=Epanorama.net |access-date=2013-09-24}}</ref><ref>{{cite web |url=http://www.pcweenie.com/hni/broadband/broad6.shtml |title=Home Networking – Local Area Network |publisher=Pcweenie.com |date=2009-04-12 |access-date=2013-09-24 |archive-url=https://web.archive.org/web/20130927135123/http://www.pcweenie.com/hni/broadband/broad6.shtml |archive-date=2013-09-27 |url-status=dead }}</ref> | ||
लो-पास निस्यंदक भी और आभासी अनुरूप [[सिंथेसाइज़र|संश्लेषित्र]] द्वारा बनाई गई ध्वनि की मूर्तिकला में महत्वपूर्ण भूमिका निभाते हैं। इसके लिए घटाव संश्लेषण को देखें। | |||
[[नमूनाकरण (सिग्नल प्रोसेसिंग)|प्रतिदर्श]] से पूर्व और [[डिजिटल-से-एनालॉग रूपांतरण|अंकीय अनुरूप रूपांतरण]] में पुनर्निर्माण के लिए एक | [[नमूनाकरण (सिग्नल प्रोसेसिंग)|प्रतिदर्श]] से पूर्व और [[डिजिटल-से-एनालॉग रूपांतरण|अंकीय अनुरूप रूपांतरण]] में पुनर्निर्माण के लिए एक लो-पास निस्यंदक का उपयोग उपघटन प्रतिरोधी निस्यंदक के रूप में किया जाता है। | ||
== आदर्श और वास्तविक निस्यंदक == | == आदर्श और वास्तविक निस्यंदक == | ||
[[File:Sinc function (normalized).svg|thumb|sinc कार्य, एक आदर्श | [[File:Sinc function (normalized).svg|thumb|sinc कार्य, एक आदर्श लो-पास निस्यंदक का समय-क्षेत्र [[आवेग प्रतिक्रिया]]।]] | ||
[[File:Butterworth response.svg|thumb|350px|प्रथम-क्रम (एक-ध्रुव) | [[File:Butterworth response.svg|thumb|350px|प्रथम-क्रम (एक-ध्रुव) लो-पास निस्यंदक का लाभ-परिमाण आवृत्ति प्रतिक्रिया। पावर गेन [[डेसिबल]] में दिखाया गया है (यानी, एक 3 डेसिबल गिरावट एक अतिरिक्त अर्ध-शक्ति क्षीणन दर्शाती है)। [[कोणीय आवृत्ति]] प्रति सेकंड रेडियन की इकाइयों में एक लघुगणकीय पैमाने पर दिखाई जाती है।]]एक आदर्श लो-पास निस्यंदक कटऑफ़ आवृत्ति से ऊपर की सभी आवृत्ति को पूर्णतया पदच्युत कर देता है जबकि नीचे की आवृत्ति अपरिवर्तित रहती है; इसकी आवृत्ति प्रतिक्रिया एक आयताकार प्रकार्य है और एक ईंट-दीवार निस्यंदक है। व्यावहारिक निस्यंदक में उपस्थित संक्रमण क्षेत्र एक आदर्श निस्यंदक में उपस्थित नहीं होता है। एक आदर्श लो-पास निस्यंदक को गणितीय रूप से (सैद्धांतिक रूप से) आवृत्ति क्षेत्र में आयताकार प्रकार्य द्वारा एक संकेत को गुणा करके या समतुल्य रूप से, इसके आवेग प्रतिक्रिया के साथ [[कनवल्शन|संवलन]], समय क्षेत्र में एक सीन्स प्रकार्य द्वारा ज्ञात किया जा सकता है। | ||
हालांकि, समय में अनंत सीमा के संकेतों के बिना भी आदर्श निस्यंदक का अनुभव करना असंभव है, और इसलिए सामान्यतः वास्तविक चल रहे संकेतों के लिए अनुमानित होने की आवश्यकता होती है, क्योंकि सीन्स प्रकार्य का समर्थन क्षेत्र सभी भूतकाल और भविष्य के समय तक विस्तारित है। इसलिए संवलन करने के लिए निस्यंदक को अनंत विलंब, या अनंत भविष्य और भूतकाल का ज्ञान होना चाहिए। यह भूतकाल और भविष्य में शून्य के विस्तार को मानकर पूर्व अभिलेखित किए गए अंकीय संकेतों, या सामान्यतः संकेतों को पुनरावृत्तीय बनाकर और फूरियर विश्लेषण का उपयोग करके प्रभावी रूप से कार्यान्वित होने योग्य है। | हालांकि, समय में अनंत सीमा के संकेतों के बिना भी आदर्श निस्यंदक का अनुभव करना असंभव है, और इसलिए सामान्यतः वास्तविक चल रहे संकेतों के लिए अनुमानित होने की आवश्यकता होती है, क्योंकि सीन्स प्रकार्य का समर्थन क्षेत्र सभी भूतकाल और भविष्य के समय तक विस्तारित है। इसलिए संवलन करने के लिए निस्यंदक को अनंत विलंब, या अनंत भविष्य और भूतकाल का ज्ञान होना चाहिए। यह भूतकाल और भविष्य में शून्य के विस्तार को मानकर पूर्व अभिलेखित किए गए अंकीय संकेतों, या सामान्यतः संकेतों को पुनरावृत्तीय बनाकर और फूरियर विश्लेषण का उपयोग करके प्रभावी रूप से कार्यान्वित होने योग्य है। | ||
Line 45: | Line 45: | ||
वास्तविक समय अनुप्रयोगों के लिए वास्तविक निस्यंदक सीमित आवेग प्रतिक्रिया बनाने के लिए अनंत आवेग प्रतिक्रिया को ट्रंकिंग और विंडोिंग करके आदर्श निस्यंदक का अनुमान लगाते हैं; [[सिन फिल्टर|उस निस्यंदक]] को प्रयुक्त करने के लिए संकेत को मध्यम अवधि के लिए विलंबित करने की आवश्यकता होती है, जिससे गणना को भविष्य में थोड़ा सा देखने की अनुमति मिलती है। यह विलंब चरण परिवर्तन के रूप में प्रकट होती है। सन्निकटन में अधिक सटीकता के लिए अधिक विलंब की आवश्यकता होती है। | वास्तविक समय अनुप्रयोगों के लिए वास्तविक निस्यंदक सीमित आवेग प्रतिक्रिया बनाने के लिए अनंत आवेग प्रतिक्रिया को ट्रंकिंग और विंडोिंग करके आदर्श निस्यंदक का अनुमान लगाते हैं; [[सिन फिल्टर|उस निस्यंदक]] को प्रयुक्त करने के लिए संकेत को मध्यम अवधि के लिए विलंबित करने की आवश्यकता होती है, जिससे गणना को भविष्य में थोड़ा सा देखने की अनुमति मिलती है। यह विलंब चरण परिवर्तन के रूप में प्रकट होती है। सन्निकटन में अधिक सटीकता के लिए अधिक विलंब की आवश्यकता होती है। | ||
[[गिब्स घटना]] के माध्यम से वलयन कलाकृतियों में आदर्श | [[गिब्स घटना]] के माध्यम से वलयन कलाकृतियों में आदर्श लो-पास निस्यंदक का परिणाम होता है। विंडोिंग प्रकार्य के चयन से इन्हें कम या नष्ट किया जा सकता है, और वास्तविक निस्यंदक के प्रारुप और विकल्प में इन कलाकृतियों को समझना और कम करना सम्मिलित है। उदाहरण के लिए, "साधारण खंडन [सिंक का] अनलंकृत वलयन कलाकृतियों का कारण बनता है," संकेत पुनर्निर्माण में, और इन कलाकृतियों को कम करने के लिए विंडोिंग प्रकार्य का उपयोग किया जाता है जो किनारों पर अधिक सरलता से गिरते हैं।<ref>[http://www.cg.tuwien.ac.at/research/vis/vismed/Windows/MasteringWindows.pdf Mastering Windows: Improving Reconstruction]</ref> | ||
व्हिटेकर-शैनन प्रक्षेप सूत्र वर्णन करता है कि प्रारूप [[डिजिटल सिग्नल (सिग्नल प्रोसेसिंग)|अंकीय संकेतों]] से निरंतर संकेतों का पुनर्निर्माण करने के लिए एक आदर्श | व्हिटेकर-शैनन प्रक्षेप सूत्र वर्णन करता है कि प्रारूप [[डिजिटल सिग्नल (सिग्नल प्रोसेसिंग)|अंकीय संकेतों]] से निरंतर संकेतों का पुनर्निर्माण करने के लिए एक आदर्श लो-पास निस्यंदक का उपयोग कैसे किया जाए। इसलिये वास्तविक [[डिज़िटल से एनालॉग कन्वर्टर|अंकीय]] [[डिज़िटल से एनालॉग कन्वर्टर|अनुरूप रूपांतरण]] वास्तविक निस्यंदक सन्निकटन का उपयोग करते हैं। | ||
== समय प्रतिक्रिया == | == समय प्रतिक्रिया == | ||
सरल | सरल लो-पास RC निस्यंदक की प्रतिक्रिया को हल करके एक लो-पास निस्यंदक की समय प्रतिक्रिया पायी जाती है। | ||
[[File:1st Order Lowpass Filter RC.svg|right| एक साधारण | [[File:1st Order Lowpass Filter RC.svg|right| एक साधारण लो-पास [[आरसी सर्किट|आरसी परिपथ]]]]किरचॉफ के परिपथ नियमों का उपयोग करके हम अवकल समीकरण पर पहुंचते हैं।<ref name=":0">{{Cite book|last=Hayt, William H., Jr. and Kemmerly, Jack E.|title=Engineering Circuit Analysis|publisher=McGRAW-HILL BOOK COMPANY|year=1978|location=New York|pages=211-224, 684-729}}</ref> | ||
:<math>v_{\text{out}}(t) = v_{\text{in}}(t) - RC \frac{\operatorname{d}v_{\text{out}}}{\operatorname{d}t}</math> | :<math>v_{\text{out}}(t) = v_{\text{in}}(t) - RC \frac{\operatorname{d}v_{\text{out}}}{\operatorname{d}t}</math> | ||
Line 84: | Line 84: | ||
=== त्रुटि विश्लेषण === | === त्रुटि विश्लेषण === | ||
अंतर समीकरण से पुनर्निर्मित आउटपुट संकेत की तुलना करना, <math>V_n = \beta V_{n-1} + (1-\beta)v_n</math>, चरण इनपुट प्रतिक्रिया के लिए, <math>v_{\text{out}}(t) = V_i (1 - e^{-\omega_0 t})</math>, हम पाते हैं कि एक सटीक पुनर्निर्माण में (0% त्रुटि) है। यह एक समय अपरिवर्तनीय इनपुट के लिए पुनर्निर्मित आउटपुट है। हालाँकि, यदि इनपुट समय संस्करण है, जैसे <math>v_{\text{in}}(t) = V_i \sin(\omega t)</math>, यह प्रतिरूप अवधि के साथ चरण कार्यों की एक श्रृंखला के रूप में इनपुट संकेत का अनुमान लगाता है, <math>T</math> पुनर्निर्मित आउटपुट संकेत में त्रुटि उत्पन्न करता है। | अंतर समीकरण से पुनर्निर्मित आउटपुट संकेत की तुलना करना, <math>V_n = \beta V_{n-1} + (1-\beta)v_n</math>, चरण इनपुट प्रतिक्रिया के लिए, <math>v_{\text{out}}(t) = V_i (1 - e^{-\omega_0 t})</math>, हम पाते हैं कि एक सटीक पुनर्निर्माण में (0% त्रुटि) है। यह एक समय अपरिवर्तनीय इनपुट के लिए पुनर्निर्मित आउटपुट है। हालाँकि, यदि इनपुट समय संस्करण है, जैसे <math>v_{\text{in}}(t) = V_i \sin(\omega t)</math>, यह प्रतिरूप अवधि के साथ चरण कार्यों की एक श्रृंखला के रूप में इनपुट संकेत का अनुमान लगाता है, <math>T</math> पुनर्निर्मित आउटपुट संकेत में त्रुटि उत्पन्न करता है। समय वेरिएंट इनपुट्स से उत्पन्न त्रुटि को निर्धारित करना कठिन है,{{cn|date=अगस्त 2020}} परन्तु <math>T\rightarrow0</math> के रूप में घट जाती है। | ||
== असतत-समय की प्राप्ति == | == असतत-समय की प्राप्ति == | ||
{{For|निरंतर-से असतत-समय में रूपांतरण की एक और विधि|बिलिनियर रूपांतरण}} | {{For|निरंतर-से असतत-समय में रूपांतरण की एक और विधि|बिलिनियर रूपांतरण}} | ||
कई अंकीय निस्यंदक | कई अंकीय निस्यंदक लो-पास विशेषताओं को देने के लिए प्रारुप किए गए हैं। दोनों [[अनंत आवेग प्रतिक्रिया]] और परिमित आवेग प्रतिक्रिया लो-पास निस्यंदक के साथ-साथ [[फूरियर रूपांतरण]] का उपयोग करने वाले निस्यंदक व्यापक रूप से उपयोग किए जाते हैं। | ||
=== सरल अनंत आवेग प्रतिक्रिया निस्यंदक === | === सरल अनंत आवेग प्रतिक्रिया निस्यंदक === | ||
एक अनंत आवेग प्रतिक्रिया | एक अनंत आवेग प्रतिक्रिया लो-पास निस्यंदक का प्रभाव समय क्षेत्र में आरसी निस्यंदक के व्यवहार का विश्लेषण करके और उसके बाद प्रारुप को अलग करके अभिकलक पर अनुकरण किया जा सकता है। | ||
[[File:1st Order Lowpass Filter RC.svg|right| एक साधारण | [[File:1st Order Lowpass Filter RC.svg|right| एक साधारण लो-पास आरसी परिपथ]]किरचॉफ के नियमों और [[समाई|संधारित्र]] की परिभाषा के अनुसार परिपथ आरेख से दाईं ओर है: | ||
{{NumBlk|::|<math>v_{\text{in}}(t) - v_{\text{out}}(t) = R \; मैं(टी)</गणित>|{{EquationRef|V}}}} | {{NumBlk|::|<math>v_{\text{in}}(t) - v_{\text{out}}(t) = R \; मैं(टी)</गणित>|{{EquationRef|V}}}} | ||
{{NumBlk|::|<math>Q_c(t) = C \, v_{\text{out}}(टी) </ गणित> |{{EquationRef|Q}}}} | {{NumBlk|::|<math>Q_c(t) = C \, v_{\text{out}}(टी) </ गणित> |{{EquationRef|Q}}}} | ||
Line 110: | Line 110: | ||
पदों को पुनर्व्यवस्थित करने से [[पुनरावृत्ति संबंध]] प्राप्त होता है: | पदों को पुनर्व्यवस्थित करने से [[पुनरावृत्ति संबंध]] प्राप्त होता है: | ||
:<math>y_i = \overbrace{x_i \left( \frac{\Delta_T}{RC + \Delta_T} \right)}^{\text{Input contribution}} + \overbrace{y_{i-1} \left( \frac{RC}{RC + \Delta_T} \right)}^{\text{Inertia from previous output}}.</math> | :<math>y_i = \overbrace{x_i \left( \frac{\Delta_T}{RC + \Delta_T} \right)}^{\text{Input contribution}} + \overbrace{y_{i-1} \left( \frac{RC}{RC + \Delta_T} \right)}^{\text{Inertia from previous output}}.</math> | ||
यही है, एक साधारण आरसी | यही है, एक साधारण आरसी लो-पास निस्यंदक का असतत-समय कार्यान्वयन घातीय रूप से भारित प्रगामी औसत है; | ||
:<math>y_i = \alpha x_i + (1 - \alpha) y_{i-1} \qquad \text{where} \qquad \alpha := \frac{\Delta_T}{RC + \Delta_T} .</math> | :<math>y_i = \alpha x_i + (1 - \alpha) y_{i-1} \qquad \text{where} \qquad \alpha := \frac{\Delta_T}{RC + \Delta_T} .</math> | ||
परिभाषा के अनुसार, सपाट कारक सीमा <math> 0 \;\leq\; \alpha \;\leq\; 1</math> के भीतर है,{{mvar| α}} के लिए अभिव्यक्ति प्रारूप अवधि के संदर्भ में <math>\Delta_T</math> और सपाट कारक{{mvar| α}} ,के संदर्भ में समतुल्य समय स्थिर {{math|''RC''}} प्राप्त होती है; | परिभाषा के अनुसार, सपाट कारक सीमा <math> 0 \;\leq\; \alpha \;\leq\; 1</math> के भीतर है,{{mvar| α}} के लिए अभिव्यक्ति प्रारूप अवधि के संदर्भ में <math>\Delta_T</math> और सपाट कारक{{mvar| α}} ,के संदर्भ में समतुल्य समय स्थिर {{math|''RC''}} प्राप्त होती है; | ||
Line 122: | Line 122: | ||
यदि{{mvar| α}}= 0.5, तो आरसी समय स्थिर प्रारूप अवधि के बराबर है, और <math>\Delta_T \;\approx\; \alpha RC</math> , यदि <math>\alpha \;\ll\; 0.5</math> हो, तो आरसी प्रारूप अंतराल से काफी अधिक है। | यदि{{mvar| α}}= 0.5, तो आरसी समय स्थिर प्रारूप अवधि के बराबर है, और <math>\Delta_T \;\approx\; \alpha RC</math> , यदि <math>\alpha \;\ll\; 0.5</math> हो, तो आरसी प्रारूप अंतराल से काफी अधिक है। | ||
निस्यंदक पुनरावृत्ति संबंध इनपुट प्रारूपों और पूर्ववर्ती आउटपुट के संदर्भ में आउटपुट प्रारूपों को निर्धारित करने का एक माध्यम प्रदान करता है। | निस्यंदक पुनरावृत्ति संबंध इनपुट प्रारूपों और पूर्ववर्ती आउटपुट के संदर्भ में आउटपुट प्रारूपों को निर्धारित करने का एक माध्यम प्रदान करता है। लोलिखित [[स्यूडोकोड]] कलन विधि अंकीय प्रारूपों की एक श्रृंखला पर लो-पास निस्यंदक के प्रभाव का अनुकरण करता है: | ||
// आरसी | // आरसी लो-पास निस्यंदक आउटपुट प्रारूप लौटाएं,और इनपुट प्रारूप दिए गए हैं, | ||
// समय अंतराल डीटी, और समय निरंतर आरसी | // समय अंतराल डीटी, और समय निरंतर आरसी | ||
'प्रकार्य' | 'प्रकार्य' लोपास (वास्तविक [1..n] x, वास्तविक dt, वास्तविक RC) | ||
'वर' वास्तविक [1..''n''] वाई | 'वर' वास्तविक [1..''n''] वाई | ||
'वर' वास्तविक α�:= dt / (RC + dt) | 'वर' वास्तविक α�:= dt / (RC + dt) | ||
वाई [1]�:= α * x [1] | वाई [1]�:= α * x [1] | ||
आई 2 से एन के लिए | आई 2 से एन के लिए | ||
y[i] := α * x[i] + (1-α) * y[i-1] | y[i]y:= α * x[i] + (1-α) * y[i-1] | ||
पुनरावृत्ति वाई | पुनरावृत्ति वाई | ||
Line 139: | Line 139: | ||
y[i]]:= y[i-1] + α * (x[i] - y[i-1]) | y[i]]:= y[i-1] + α * (x[i] - y[i-1]) | ||
अर्थात्, एक निस्यंदक आउटपुट से आगामी में परिवर्तन अंतिम आउटपुट और आगामी इनपुट के मध्य के अंतर के समानुपाती होता है। यह घातीय सपाट गुण निरंतर-समय प्रणाली में देखे गए घातीय कार्य क्षय | अर्थात्, एक निस्यंदक आउटपुट से आगामी में परिवर्तन अंतिम आउटपुट और आगामी इनपुट के मध्य के अंतर के समानुपाती होता है। यह घातीय सपाट गुण निरंतर-समय प्रणाली में देखे गए घातीय कार्य क्षय के अनुकूल है। जैसा कि अपेक्षित था, जैसे-जैसे समय स्थिर आरसी बढ़ता है, असतत-समय घातीय पैरामीटर <math> \alpha</math> घटता है, और आउटपुट प्रारूपों <math> (y_1,\, y_2,\, \ldots,\, y_n)</math> इनपुट प्रारूपों में परिवर्तन के लिए अधिक धीरे-धीरे प्रतिक्रिया देती है, <math> (x_1,\, x_2,\, \ldots,\, x_n)</math> प्रणाली में अधिक [[जड़ता]] है। यह निस्यंदक एक [[अनंत-आवेग-प्रतिक्रिया]] (IIR) सिंगल-पोल लो-पास निस्यंदक है। | ||
=== परिमित आवेग प्रतिक्रिया === | === परिमित आवेग प्रतिक्रिया === | ||
परिमित-आवेग-प्रतिक्रिया निस्यंदक बनाए जा सकते हैं जो एक आदर्श शार्प-कटऑफ़ | परिमित-आवेग-प्रतिक्रिया निस्यंदक बनाए जा सकते हैं जो एक आदर्श शार्प-कटऑफ़ लो-पास निस्यंदक के सीन्स प्रकार्य समय-क्षेत्र प्रतिक्रिया के अनुमानित हैं। न्यूनतम विरूपण के लिए परिमित आवेग प्रतिक्रिया निस्यंदक में असीमित संख्या में गुणांक एक असीमित संकेत पर कार्य कर रहे हैं। व्यवहार में, समय-क्षेत्र प्रतिक्रिया का समय छोटा होना चाहिए और प्रायः एक सरलीकृत आकार का होता है; सबसे सरल स्थितियों में, एक [[औसत चल रहा है|औसत चलन]] का उपयोग किया जा सकता है, जो वर्ग समय की प्रतिक्रिया देता है।<ref>Whilmshurst, T H (1990) ''Signal recovery from noise in electronic instrumentation.'' {{ISBN|9780750300582}} </ref> | ||
=== फूरियर रूपांतरण === | === फूरियर रूपांतरण === | ||
{{unreferenced section|date= | {{unreferenced section|date=मार्च 2015}} | ||
गैर- | गैर-वास्तविक समय निस्यंदक के लिए, लो-पास निस्यंदक प्राप्त करने के लिए, सम्पूर्ण संकेतो को सामान्यतः लूप संकेतो के रूप में फूरियर रूपांतरण को लिया जाता है, जिन्हें आवृत्ति क्षेत्र में निस्यंदक किया जाता है, इसके पश्चात एक व्युत्क्रम फूरियर रूपांतरण होता है। समय क्षेत्र निस्यंदक कलनविधि के लिए O(n<sup>2</sup>) की तुलना में केवल O(n log(n)) संचालन आवश्यक हैं)। | ||
यह कभी-कभी वास्तविक समय में भी किया जा सकता है, जहां छोटे, अतिव्यापी ब्लॉकों पर फूरियर रूपांतरण करने के लिए | यह कभी-कभी वास्तविक समय में भी किया जा सकता है, जहां छोटे, अतिव्यापी ब्लॉकों पर फूरियर रूपांतरण करने के लिए संकेतो काफी विलम्ब हो जाता है। | ||
== निरंतर-समय की प्राप्ति == | == निरंतर-समय की प्राप्ति == | ||
[[File:Butterworth Filter Orders.svg|thumb|350px|कटऑफ आवृत्ति के साथ ऑर्डर 1 से 5 के बटरवर्थ | [[File:Butterworth Filter Orders.svg|thumb|350px|कटऑफ आवृत्ति के साथ ऑर्डर 1 से 5 के बटरवर्थ लो-पास निस्यंदक के लाभ का प्लॉट <math>\omega_0 = 1</math>. ध्यान दें कि ढलान 20n dB/दशक है जहां n निस्यंदक क्रम है।]]परिवर्तित आवृत्ति के लिए विभिन्न प्रतिक्रियाओं के साथ कई अलग-अलग प्रकार के निस्यंदक परिपथ हैं। एक निस्यंदक की आवृत्ति प्रतिक्रिया सामान्यतः एक [[बोडे प्लॉट]] का उपयोग करके प्रदर्शित की जाती है, और निस्यंदक को इसकी कटऑफ आवृत्ति और आवृत्ति [[धड़ल्ले से बोलना]] की दर से चित्रित किया जाता है। सभी स्थितियों में, कटऑफ़ आवृत्ति पर, निस्यंदक इनपुट पावर को आधे या 3 dB तक कम कर देता है। तो निस्यंदक का 'आदेश' कटऑफ आवृत्ति से अधिक आवृत्तियों के लिए अतिरिक्त क्षीणन की मात्रा निर्धारित करता है। | ||
* एक 'प्रथम-क्रम निस्यंदक', उदाहरण के लिए, संकेत आयाम को आधे से कम कर देता है (इसलिए शक्ति 4 के कारक से कम हो जाती है, या {{nowrap|6 dB)}}, हर बार आवृत्ति दोगुनी हो जाती है (एक सप्तक ऊपर जाती है); अधिक सटीक रूप से, उच्च आवृत्ति की सीमा में पावर रोलऑफ़ 20 dB प्रति [[दशक (लॉग स्केल)]] तक पहुंचता है। पूर्व क्रम के निस्यंदक के लिए परिमाण बोड प्लॉट कटऑफ आवृत्ति के नीचे एक क्षैतिज रेखा और कटऑफ आवृत्ति के ऊपर एक विकर्ण रेखा की तरह दिखता है। दोनों के बीच की सीमा पर एक घुटने का वक्र भी है, जो दो सीधी रेखा वाले क्षेत्रों के बीच सुचारू रूप से संक्रमण करता है। यदि प्रथम-क्रम | * एक 'प्रथम-क्रम निस्यंदक', उदाहरण के लिए, संकेत आयाम को आधे से कम कर देता है (इसलिए शक्ति 4 के कारक से कम हो जाती है, या {{nowrap|6 dB)}}, हर बार आवृत्ति दोगुनी हो जाती है (एक सप्तक ऊपर जाती है); अधिक सटीक रूप से, उच्च आवृत्ति की सीमा में पावर रोलऑफ़ 20 dB प्रति [[दशक (लॉग स्केल)]] तक पहुंचता है। पूर्व क्रम के निस्यंदक के लिए परिमाण बोड प्लॉट कटऑफ आवृत्ति के नीचे एक क्षैतिज रेखा और कटऑफ आवृत्ति के ऊपर एक विकर्ण रेखा की तरह दिखता है। दोनों के बीच की सीमा पर एक घुटने का वक्र भी है, जो दो सीधी रेखा वाले क्षेत्रों के बीच सुचारू रूप से संक्रमण करता है। यदि प्रथम-क्रम लो-पास निस्यंदक के स्थानांतरण कार्य में [[शून्य (जटिल विश्लेषण)]] के साथ-साथ ध्रुव (जटिल विश्लेषण) होता है, तो उच्च आवृत्तियों के कुछ अधिकतम क्षीणन पर, बोड प्लॉट फिर से समतल हो जाता है; इस तरह का प्रभाव उदाहरण के लिए एक-पोल निस्यंदक के आसपास थोड़ा सा इनपुट लीक होने के कारण होता है; यह एक-ध्रुव-एक-शून्य निस्यंदक अभी भी एक प्रथम-क्रम लो-पास है। पोल-जीरो प्लॉट और आरसी परिपथ देखें। | ||
* एक 'दूसरे क्रम का निस्यंदक' उच्च आवृत्तियों को अधिक | * एक 'दूसरे क्रम का निस्यंदक' उच्च आवृत्तियों को अधिक तीव्रता से क्षीण करता है। इस प्रकार के निस्यंदक के लिए बोड प्लॉट प्रथम-क्रम निस्यंदक जैसा दिखता है, सिवाय इसके कि यह अधिक तीव्रता से गिर जाता है। उदाहरण के लिए, एक दूसरे क्रम का [[बटरवर्थ फिल्टर|बटरवर्थ निस्यंदक]] संकेत के आयाम को उसके मूल स्तर के एक चौथाई तक कम कर देता है, हर बार आवृत्ति दोगुनी हो जाती है (इसलिए बिजली 12 dB प्रति सप्तक, या 40 dB प्रति दशक कम हो जाती है)। अन्य ऑल-पोल सेकंड-ऑर्डर निस्यंदक प्रारम्भ में उनके [[क्यू कारक]] के आधार पर अलग-अलग दरों पर रोल ऑफ हो सकते हैं, लेकिन 12 dB प्रति [[सप्टक]] की समान अंतिम दर तक पहुंच सकते हैं; प्रथम-क्रम निस्यंदक के साथ, स्थानांतरण कार्य में शून्य उच्च-आवृत्ति स्पर्शोन्मुख को बदल सकते हैं। [[आरएलसी सर्किट|आरएलसी परिपथ]] देखें। | ||
* तीसरा- और उच्च-क्रम निस्यंदक समान रूप से परिभाषित किए गए हैं। | * तीसरा- और उच्च-क्रम निस्यंदक समान रूप से परिभाषित किए गए हैं। सामान्यतः, ऑर्डर के लिए पावर रोलऑफ़ की अंतिम दर-{{mvar| n}} ऑल-पोल निस्यंदक 6 है{{mvar|n}} डीबी प्रति सप्तक (20{{mvar|n}} डीबी प्रति दशक)। | ||
किसी भी बटरवर्थ निस्यंदक पर, यदि कोई क्षैतिज रेखा को दाईं ओर और तिरछी रेखा को ऊपरी-बाएँ (कार्य के स्पर्शोन्मुख) तक बढ़ाता है, तो वे कटऑफ़ आवृत्ति, क्षैतिज रेखा के नीचे 3 dB पर प्रतिच्छेद करते हैं। विभिन्न प्रकार के निस्यंदक (बटरवर्थ निस्यंदक, [[चेबिशेव फिल्टर|चेबिशेव निस्यंदक]], [[बेसल फिल्टर|बेसल निस्यंदक]], आदि) सभी में अलग-अलग दिखने वाले घुटने के मोड़ होते हैं। कई दूसरे क्रम के निस्यंदक में पीकिंग या इलेक्ट्रिकल अनुनाद होता है जो इस चोटी पर क्षैतिज रेखा के ऊपर अपनी आवृत्ति प्रतिक्रिया डालता है। | किसी भी बटरवर्थ निस्यंदक पर, यदि कोई क्षैतिज रेखा को दाईं ओर और तिरछी रेखा को ऊपरी-बाएँ (कार्य के स्पर्शोन्मुख) तक बढ़ाता है, तो वे कटऑफ़ आवृत्ति, क्षैतिज रेखा के नीचे 3 dB पर प्रतिच्छेद करते हैं। विभिन्न प्रकार के निस्यंदक (बटरवर्थ निस्यंदक, [[चेबिशेव फिल्टर|चेबिशेव निस्यंदक]], [[बेसल फिल्टर|बेसल निस्यंदक]], आदि) सभी में अलग-अलग दिखने वाले घुटने के मोड़ होते हैं। कई दूसरे क्रम के निस्यंदक में पीकिंग या इलेक्ट्रिकल अनुनाद होता है जो इस चोटी पर क्षैतिज रेखा के ऊपर अपनी आवृत्ति प्रतिक्रिया डालता है। | ||
' | 'लो' और 'उच्च' के अर्थ—अर्थात् कटऑफ़ आवृत्ति—निस्यंदक की विशेषताओं पर निर्भर करती है। लो-पास निस्यंदक शब्द केवल निस्यंदक की प्रतिक्रिया के आकार को संदर्भित करता है; एक उच्च-पास निस्यंदक बनाया जा सकता है जो किसी भी लो-पास निस्यंदक की तुलना में कम आवृत्ति पर कट ऑफ करता है—यह उनकी प्रतिक्रियाएं हैं जो उन्हें अलग करती हैं। किसी भी वांछित आवृत्ति रेंज के लिए विद्युत परिपथ तैयार किए जा सकते हैं, सीधे माइक्रोवेव आवृत्ति (1 GHz से ऊपर) और उच्चतर के माध्यम से। | ||
=== लाप्लास अंकन === | === लाप्लास अंकन === | ||
निरंतर-समय के निस्यंदक को उनके आवेग प्रतिक्रिया के लाप्लास परिवर्तन के संदर्भ में भी वर्णित किया जा सकता है, जिससे निस्यंदक की सभी विशेषताओं को ध्रुवों के | निरंतर-समय के निस्यंदक को उनके आवेग प्रतिक्रिया के लाप्लास परिवर्तन के संदर्भ में भी वर्णित किया जा सकता है, जिससे निस्यंदक की सभी विशेषताओं को ध्रुवों के प्रतिरूपो और लाप्लास के शून्य को जटिल विमान में परिवर्तित होने पर विचार करके सरली से विश्लेषण किया जा सकता है। (असतत समय में, इसी तरह आवेग प्रतिक्रिया के जेड-रूपांतरण पर विचार कर सकते हैं।) | ||
उदाहरण के लिए, प्रथम-क्रम | उदाहरण के लिए, प्रथम-क्रम लो-पास निस्यंदक को लाप्लास नोटेशन में वर्णित किया जा सकता है: | ||
:<math> | :<math> | ||
\frac{\text{Output}}{\text{Input}} = K \frac{1}{\tau s + 1} | \frac{\text{Output}}{\text{Input}} = K \frac{1}{\tau s + 1} | ||
Line 171: | Line 171: | ||
जहाँ s लाप्लास परिवर्तन चर है, τ निस्यंदक समय स्थिरांक है, और K [[पासबैंड]] में निस्यंदक का [[लाभ (इलेक्ट्रॉनिक्स)|लाभ (विद्युत्)]] है। | जहाँ s लाप्लास परिवर्तन चर है, τ निस्यंदक समय स्थिरांक है, और K [[पासबैंड]] में निस्यंदक का [[लाभ (इलेक्ट्रॉनिक्स)|लाभ (विद्युत्)]] है। | ||
== विद्युत | == विद्युत लो-पास निस्यंदक == | ||
=== पहला आदेश === | === पहला आदेश === | ||
Line 177: | Line 177: | ||
==== आरसी निस्यंदक ==== | ==== आरसी निस्यंदक ==== | ||
{{Main|आरसी परिपथ#शृंखला परिपथ}} | {{Main|आरसी परिपथ#शृंखला परिपथ}} | ||
[[File:RC Divider.svg|thumb|200px|पैसिव, फर्स्ट ऑर्डर | [[File:RC Divider.svg|thumb|200px|पैसिव, फर्स्ट ऑर्डर लो-पास आरसी निस्यंदक]]एक साधारण लो-पास निस्यंदक विद्युत परिपथ में [[बाहरी विद्युत भार]] के साथ श्रृंखला में एक प्रतिरोधक होता है, और भार के साथ समानांतर में एक [[संधारित्र]] होता है। कैपेसिटर रिएक्शन (विद्युत्स) प्रदर्शित करता है, और कम आवृत्ति संकेतों को ब्लॉक करता है, इसके बजाय उन्हें लोड के माध्यम से मजबूर करता है। उच्च आवृत्तियों पर प्रतिक्रिया कम हो जाती है, और संधारित्र प्रभावी रूप से शॉर्ट परिपथ के रूप में कार्य करता है। [[अवरोध]] और कैपेसिटेंस का कॉम्बिनेशन निस्यंदक का समय कॉन्स्टेंट देता है <math> \tau \;=\; RC </math> (ग्रीक अक्षर ताऊ द्वारा दर्शाया गया)। ब्रेक आवृत्ति, जिसे टर्नओवर आवृत्ति, कॉर्नर आवृत्ति या कटऑफ़ आवृत्ति (हर्ट्ज़ में) भी कहा जाता है, समय स्थिर द्वारा निर्धारित किया जाता है: | ||
:<math> | :<math> | ||
Line 206: | Line 206: | ||
====आरएलसी निस्यंदक ==== | ====आरएलसी निस्यंदक ==== | ||
[[File:RLC_low-pass.svg|thumb| | [[File:RLC_low-pass.svg|thumb|लो-पास निस्यंदक के रूप में आरएलसी परिपथ]]एक आर[[एलसी सर्किट|एलसी परिपथ]] (अक्षर R, L और C एक अलग क्रम में हो सकते हैं) एक विद्युत परिपथ है जिसमें एक प्रतिरोधक, प्रारंभ करने वाला और एक संधारित्र होता है, जो श्रृंखला में या समानांतर में जुड़ा होता है। नाम का आरएलसी भाग उन अक्षरों के कारण है जो क्रमशः विद्युत प्रतिरोध, [[अधिष्ठापन]] और संधारित्र के लिए सामान्य विद्युत प्रतीक हैं। परिपथ धारा के लिए एक [[लयबद्ध दोलक|सरल आवर्ती दोलक]] बनाता है और एक एलसी परिपथ के समान तरीके से अनुनाद करेगा। प्रतिरोध की उपस्थिति का मुख्य अंतर यह है कि परिपथ में प्रेरित कोई भी दोलन समय के साथ समाप्त हो जाएगा यदि इसे किसी स्रोत द्वारा जारी नहीं रखा जाता है। प्रतिरोधक के इस प्रभाव को अवमंदन कहते हैं। प्रतिरोध की उपस्थिति भी शिखर गुंजयमान आवृत्ति को कुछ हद तक कम कर देती है। वास्तविक परिपथों में कुछ प्रतिरोध अपरिहार्य होते हैं, भले ही एक प्रतिरोधक विशेष रूप से एक घटक के रूप में सम्मिलित न हो। सिद्धांत के उद्देश्य के लिए एक आदर्श, शुद्ध एलसी परिपथ एक अमूर्त है। | ||
इस परिपथ के कई अनुप्रयोग हैं। उनका उपयोग कई अलग-अलग प्रकार के [[इलेक्ट्रॉनिक थरथरानवाला|विद्युत थरथरानवाला]] में किया जाता है। एक अन्य महत्वपूर्ण अनुप्रयोग [[ट्यूनर (इलेक्ट्रॉनिक्स)|ट्यूनर (विद्युत्स)]] के लिए है, जैसे कि [[रिसीवर (रेडियो)]] या [[टीवी सेट]] में, जहाँ उनका उपयोग परिवेशी रेडियो तरंगों से आवृत्तियों की एक संकीर्ण श्रेणी का चयन करने के लिए किया जाता है। इस भूमिका में परिपथ को प्रायः ट्यून्ड परिपथ कहा जाता है। एक RLC परिपथ का उपयोग बैंड-पास निस्यंदक, बैंड-स्टॉप निस्यंदक, | इस परिपथ के कई अनुप्रयोग हैं। उनका उपयोग कई अलग-अलग प्रकार के [[इलेक्ट्रॉनिक थरथरानवाला|विद्युत थरथरानवाला]] में किया जाता है। एक अन्य महत्वपूर्ण अनुप्रयोग [[ट्यूनर (इलेक्ट्रॉनिक्स)|ट्यूनर (विद्युत्स)]] के लिए है, जैसे कि [[रिसीवर (रेडियो)]] या [[टीवी सेट]] में, जहाँ उनका उपयोग परिवेशी रेडियो तरंगों से आवृत्तियों की एक संकीर्ण श्रेणी का चयन करने के लिए किया जाता है। इस भूमिका में परिपथ को प्रायः ट्यून्ड परिपथ कहा जाता है। एक RLC परिपथ का उपयोग बैंड-पास निस्यंदक, बैंड-स्टॉप निस्यंदक, लो-पास निस्यंदक या उच्च-पास निस्यंदक के रूप में किया जा सकता है। आरएलसी निस्यंदक को दूसरे क्रम के परिपथ के रूप में वर्णित किया गया है, जिसका अर्थ है कि परिपथ में किसी भी वोल्टता या करंट को परिपथ विश्लेषण में दूसरे क्रम के [[अंतर समीकरण]] द्वारा वर्णित किया जा सकता है। | ||
=== उच्च क्रम निष्क्रिय निस्यंदक === | === उच्च क्रम निष्क्रिय निस्यंदक === | ||
Line 217: | Line 217: | ||
=== सक्रिय विद्युत प्राप्ति === | === सक्रिय विद्युत प्राप्ति === | ||
[[File:Active Lowpass Filter RC.svg|thumb|right|300px|एक सक्रिय | [[File:Active Lowpass Filter RC.svg|thumb|right|300px|एक सक्रिय लो-पास निस्यंदक]]एक अन्य प्रकार का विद्युत परिपथ एक सक्रिय लो-पास निस्यंदक है। | ||
चित्र में दिखाए गए [[ऑपरेशनल एंप्लीफायर|परिचालन प्रवर्धक]] परिपथ में, कटऑफ आवृत्ति ([[हेटर्स]] में) को इस प्रकार परिभाषित किया गया है: | चित्र में दिखाए गए [[ऑपरेशनल एंप्लीफायर|परिचालन प्रवर्धक]] परिपथ में, कटऑफ आवृत्ति ([[हेटर्स]] में) को इस प्रकार परिभाषित किया गया है: |
Revision as of 12:34, 12 March 2023
एक उच्च पास निस्यंदक एक निस्यंदक है जो एक चयनित कटऑफ आवृत्ति से कम आवृत्ति के साथ संकेतों को पास करता है और कट ऑफ आवृत्ति से अधिक आवृत्तियों के साथ संकेतों को क्षीण करता है। निस्यंदक की सटीक आवृत्ति प्रतिक्रिया निस्यंदक प्रारुप पर निर्भर करती है। निस्यंदक को कभी-कभी श्रव्य अनुप्रयोगों में उच्च-कट निस्यंदक या ट्रेबल-कट निस्यंदक कहा जाता है। एक लो-पास निस्यंदक एक उच्च-पास निस्यंदक का पूरक है।
प्रकाशिकी में, उच्च-पास और लो-पास के अलग-अलग अर्थ हो सकते हैं, यह इस बात पर निर्भर करता है कि प्रकाश की आवृत्ति या तरंग दैर्ध्य से संबंधित है या नहीं, क्योंकि ये चर विपरीत रूप से संबंधित हैं। उच्च-पास आवृत्ति निस्यंदक लो-पास तरंग दैर्ध्य निस्यंदक के रूप में कार्य करेंगे, और इसके विपरीत इस कारण भ्रम से बचने के लिए तरंग दैर्ध्य निस्यंदक को 'शॉर्ट-पास' और 'लॉन्ग-पास' के रूप में संदर्भित करना एक उचित अभ्यास है, जो 'उच्च-पास' और 'लो-पास' आवृत्तियों के अनुरूप होगा।[1]
लो-पास निस्यंदक कई अलग-अलग रूपों में उपस्थित हैं, जिनमें विद्युत परिपथ जैसे श्रव्य में उपयोग किये जाने वाले हिस निस्यंदक, अनुरूप अंकीय रूपांतरण से पूर्व अनुकूलन संकेत के लिए उपघटन प्रतिरोधी निस्यंदक, डेटा के सपाट समूह के लिए अंकीय निस्यंदक, ध्वनिक बाधाएं, और इसी तरह छवियों का धुँधलापन भी सम्मिलित हैं। वित्त जैसे क्षेत्रों में उपयोग किये जाने वाले औसत चलन संचालन एक विशेष प्रकार का लो-पास निस्यंदक है, और उसी संकेत प्रक्रमन प्रविधियों के साथ इसका विश्लेषण किया जा सकता है, जैसा कि अन्य लो-पास निस्यंदक के लिए उपयोग किया जाता हैं। लो-पास निस्यंदक संकेत का एक सरल रूप प्रदान करते हैं, अल्पकालिक उतार-चढ़ाव को दूर करते हैं और लंबी अवधि की प्रवृत्ति को छोड़ते हैं।
निस्यंदक अभिकल्पक प्रायः प्रतिमान निस्यंदक के रूप में लो-पास विधि का उपयोग करते हैं। यही, एकता बैंड विस्तार और प्रतिबाधा वाला निस्यंदक है। वांछित बैंड विस्तार और प्रतिबाधा के लिए प्रवर्धन और वांछित बैंडफॉर्म (उच्च लो-पास, उच्च-पास, बैंड-पास या बैंड-स्टॉप) में परिवर्तित करके वांछित निस्यंदक को प्रतिमान से प्राप्त किया जाता है)।
उदाहरण
लो-पास निस्यंदक के उदाहरण ध्वनिकी, प्रकाशिकी और विद्युत् में पाए जाते हैं।
एक कठोर भौतिक बाधा उच्च ध्वनि आवृत्तियों को प्रतिबिंबित करती है, और इसलिए ध्वनि संचारित करने के लिए ध्वनिक लो-पास निस्यंदक के रूप में कार्य करती है। जब संगीत दूसरे कमरे में चल रहा होता है, तो लो स्वर सरलता से सुनाई देते हैं, जबकि उच्च स्वर क्षीण हो जाते हैं।
एक समान प्रकार्य वाले प्रकाशिकी निस्यंदक को शुद्ध रूप से लो-पास निस्यंदक कहा जा सकता है, लेकिन भ्रम से बचने के लिए पारंपरिक रूप से लॉन्गपास निस्यंदक (कम आवृत्ति लंबी तरंग दैर्ध्य) कहा जाता है।[2]
वोल्टता संकेतों के लिए एक विद्युत लो-पास आरसी निस्यंदक में, इनपुट संकेतों में उच्च आवृत्तियों को क्षीण किया जाता है, लेकिन निस्यंदक में आरसी समय स्थिरांक द्वारा निर्धारित कटऑफ आवृत्ति के नीचे थोड़ा क्षीण जाता होता है। वर्तमान संकेतों के लिए, एक समान परिपथ, समानांतर में एक प्रतिरोधक और संधारित्र का उपयोग करके, समान माध्यम से कार्य करता है (नीचे अधिक विस्तार से विचार विमर्श किए गए वर्तमान विभक्त को देखें)।
सबवूफ़र्स और अन्य प्रकार के ध्वनि-विस्तारक यंत्रो के इनपुट पर विद्युत लो-पास निस्यंदक का उपयोग किया जाता है, ताकि उच्च पिचों को अवरुद्ध किया जा सके जो कुशलता से पुनरुत्पादन नहीं कर सकते है। रेडियो संचारण समस्वरित उत्सर्जन को अवरुद्ध करने के लिए लो-पास निस्यंदक का उपयोग करते हैं जो अन्य संचारों में हस्तक्षेप कर सकते हैं। कई विद्युत गिटार पर ध्वनि नॉब एक लो-पास निस्यंदक है जिसका उपयोग ध्वनि में उच्च स्वर की मात्रा को कम करने के लिए किया जाता है। एक समाकलक एक और समय स्थिरांक है।[3]
डीएसएल विखंडक के साथ लगी दूरभाष श्रृंखलाएं डीएसएल को पॉट्स संकेतों (और उच्च-पास इसके विपरीत) से अलग करने के लिए लो-पास निस्यंदक का उपयोग करती हैं, जो तारों की एक ही जोड़ी (संचरण माध्यम) को साझा करती हैं।[4][5]
लो-पास निस्यंदक भी और आभासी अनुरूप संश्लेषित्र द्वारा बनाई गई ध्वनि की मूर्तिकला में महत्वपूर्ण भूमिका निभाते हैं। इसके लिए घटाव संश्लेषण को देखें।
प्रतिदर्श से पूर्व और अंकीय अनुरूप रूपांतरण में पुनर्निर्माण के लिए एक लो-पास निस्यंदक का उपयोग उपघटन प्रतिरोधी निस्यंदक के रूप में किया जाता है।
आदर्श और वास्तविक निस्यंदक
एक आदर्श लो-पास निस्यंदक कटऑफ़ आवृत्ति से ऊपर की सभी आवृत्ति को पूर्णतया पदच्युत कर देता है जबकि नीचे की आवृत्ति अपरिवर्तित रहती है; इसकी आवृत्ति प्रतिक्रिया एक आयताकार प्रकार्य है और एक ईंट-दीवार निस्यंदक है। व्यावहारिक निस्यंदक में उपस्थित संक्रमण क्षेत्र एक आदर्श निस्यंदक में उपस्थित नहीं होता है। एक आदर्श लो-पास निस्यंदक को गणितीय रूप से (सैद्धांतिक रूप से) आवृत्ति क्षेत्र में आयताकार प्रकार्य द्वारा एक संकेत को गुणा करके या समतुल्य रूप से, इसके आवेग प्रतिक्रिया के साथ संवलन, समय क्षेत्र में एक सीन्स प्रकार्य द्वारा ज्ञात किया जा सकता है।
हालांकि, समय में अनंत सीमा के संकेतों के बिना भी आदर्श निस्यंदक का अनुभव करना असंभव है, और इसलिए सामान्यतः वास्तविक चल रहे संकेतों के लिए अनुमानित होने की आवश्यकता होती है, क्योंकि सीन्स प्रकार्य का समर्थन क्षेत्र सभी भूतकाल और भविष्य के समय तक विस्तारित है। इसलिए संवलन करने के लिए निस्यंदक को अनंत विलंब, या अनंत भविष्य और भूतकाल का ज्ञान होना चाहिए। यह भूतकाल और भविष्य में शून्य के विस्तार को मानकर पूर्व अभिलेखित किए गए अंकीय संकेतों, या सामान्यतः संकेतों को पुनरावृत्तीय बनाकर और फूरियर विश्लेषण का उपयोग करके प्रभावी रूप से कार्यान्वित होने योग्य है।
वास्तविक समय अनुप्रयोगों के लिए वास्तविक निस्यंदक सीमित आवेग प्रतिक्रिया बनाने के लिए अनंत आवेग प्रतिक्रिया को ट्रंकिंग और विंडोिंग करके आदर्श निस्यंदक का अनुमान लगाते हैं; उस निस्यंदक को प्रयुक्त करने के लिए संकेत को मध्यम अवधि के लिए विलंबित करने की आवश्यकता होती है, जिससे गणना को भविष्य में थोड़ा सा देखने की अनुमति मिलती है। यह विलंब चरण परिवर्तन के रूप में प्रकट होती है। सन्निकटन में अधिक सटीकता के लिए अधिक विलंब की आवश्यकता होती है।
गिब्स घटना के माध्यम से वलयन कलाकृतियों में आदर्श लो-पास निस्यंदक का परिणाम होता है। विंडोिंग प्रकार्य के चयन से इन्हें कम या नष्ट किया जा सकता है, और वास्तविक निस्यंदक के प्रारुप और विकल्प में इन कलाकृतियों को समझना और कम करना सम्मिलित है। उदाहरण के लिए, "साधारण खंडन [सिंक का] अनलंकृत वलयन कलाकृतियों का कारण बनता है," संकेत पुनर्निर्माण में, और इन कलाकृतियों को कम करने के लिए विंडोिंग प्रकार्य का उपयोग किया जाता है जो किनारों पर अधिक सरलता से गिरते हैं।[6]
व्हिटेकर-शैनन प्रक्षेप सूत्र वर्णन करता है कि प्रारूप अंकीय संकेतों से निरंतर संकेतों का पुनर्निर्माण करने के लिए एक आदर्श लो-पास निस्यंदक का उपयोग कैसे किया जाए। इसलिये वास्तविक अंकीय अनुरूप रूपांतरण वास्तविक निस्यंदक सन्निकटन का उपयोग करते हैं।
समय प्रतिक्रिया
सरल लो-पास RC निस्यंदक की प्रतिक्रिया को हल करके एक लो-पास निस्यंदक की समय प्रतिक्रिया पायी जाती है।
किरचॉफ के परिपथ नियमों का उपयोग करके हम अवकल समीकरण पर पहुंचते हैं।[7]
चरण इनपुट प्रतिक्रिया उदाहरण
अगर हम माने कि परिमाण का एक चरण प्रकार्य हो ,तो अवकल समीकरण का हल है।[8]
जहां निस्यंदक की कटऑफ आवृत्ति है।
आवृत्ति प्रतिक्रिया
एक परिपथ की आवृत्ति प्रतिक्रिया को चिह्नित करने का सबसे सरल माध्यम इसका लाप्लास रूपांतरण [7]स्थानांतरण प्रकार्य खोजना है, , हमारे अवकल समीकरण के लाप्लास रूपांतरण को
लेकर और हल करके हम पाते हैं:
असतत समय प्रतिचयन के माध्यम से अंतर समीकरण
प्रतिचयन के नियमित अंतराल पर उपरोक्त चरण इनपुट प्रतिक्रिया का प्रारूप लेकर एक असतत अंतर समीकरण सरलता से प्राप्त किया जाता है: जहां और प्रारूपों के बीच का समय है। हमारे पास लगातार दो प्रारूपों के बीच का अंतर है।
प्रतिचयन के लिए हल करना , और हम पाते हैं:
जहां
अंकन का उपयोग करना और , और हमारे प्रारूप मूल्य को प्रतिस्थापित करते हुए, , हमें अंतर समीकरण मिलता है:
त्रुटि विश्लेषण
अंतर समीकरण से पुनर्निर्मित आउटपुट संकेत की तुलना करना, , चरण इनपुट प्रतिक्रिया के लिए, , हम पाते हैं कि एक सटीक पुनर्निर्माण में (0% त्रुटि) है। यह एक समय अपरिवर्तनीय इनपुट के लिए पुनर्निर्मित आउटपुट है। हालाँकि, यदि इनपुट समय संस्करण है, जैसे , यह प्रतिरूप अवधि के साथ चरण कार्यों की एक श्रृंखला के रूप में इनपुट संकेत का अनुमान लगाता है, पुनर्निर्मित आउटपुट संकेत में त्रुटि उत्पन्न करता है। समय वेरिएंट इनपुट्स से उत्पन्न त्रुटि को निर्धारित करना कठिन है,[citation needed] परन्तु के रूप में घट जाती है।
असतत-समय की प्राप्ति
कई अंकीय निस्यंदक लो-पास विशेषताओं को देने के लिए प्रारुप किए गए हैं। दोनों अनंत आवेग प्रतिक्रिया और परिमित आवेग प्रतिक्रिया लो-पास निस्यंदक के साथ-साथ फूरियर रूपांतरण का उपयोग करने वाले निस्यंदक व्यापक रूप से उपयोग किए जाते हैं।
सरल अनंत आवेग प्रतिक्रिया निस्यंदक
एक अनंत आवेग प्रतिक्रिया लो-पास निस्यंदक का प्रभाव समय क्षेत्र में आरसी निस्यंदक के व्यवहार का विश्लेषण करके और उसके बाद प्रारुप को अलग करके अभिकलक पर अनुकरण किया जा सकता है।
किरचॉफ के नियमों और संधारित्र की परिभाषा के अनुसार परिपथ आरेख से दाईं ओर है:
-
Failed to parse (Conversion error. Server ("cli") reported: "SyntaxError: Expected "-", "[", "\\", "\\begin", "\\begin{", "]", "^", "_", "{", "}", [ \t\n\r], [%$], [().], [,:;?!'], [/|], [0-9], [><~], [\-+*=], or [a-zA-Z] but "म" found.in 1:60"): {\displaystyle v_{\text{in}}(t) - v_{\text{out}}(t) = R \; मैं(टी)</गणित>|{{EquationRef|V}}}} {{NumBlk|::|<math>Q_c(t) = C \, v_{\text{out}}(टी) </ गणित> |{{EquationRef|Q}}}} {{NumBlk|::|<math>i(t) = \frac{\operatorname{d} Q_c}{\operatorname{d} t}}
-
जहां समय t पर संधारित्र में संग्रहित आवेश है। प्रतिस्थापन समीकरण Q समीकरण में I देता है,इसलिए , जिसे समीकरण V में प्रतिस्थापित किया जा सकता है:
इस समीकरण को अलग किया जा सकता है। सादगी के लिए, मान लें कि इनपुट और आउटपुट के प्रारूप समान रूप से दूरी वाले बिंदुओं पर अलग किए गए समय में लिए जाते हैं। प्रारूपों लिए को अनुक्रम , और मान लें को अनुक्रम द्वारा दर्शाया जाए, इन प्रतिस्थापनों को बनाना, जो समय में समान बिंदुओं के अनुरूप हैं।
पदों को पुनर्व्यवस्थित करने से पुनरावृत्ति संबंध प्राप्त होता है:
यही है, एक साधारण आरसी लो-पास निस्यंदक का असतत-समय कार्यान्वयन घातीय रूप से भारित प्रगामी औसत है;
परिभाषा के अनुसार, सपाट कारक सीमा के भीतर है, α के लिए अभिव्यक्ति प्रारूप अवधि के संदर्भ में और सपाट कारक α ,के संदर्भ में समतुल्य समय स्थिर RC प्राप्त होती है;
स्मरण करते हुए,
- इसलिए
टिप्पणी α और से संबंधित हैं,
और
यदि α= 0.5, तो आरसी समय स्थिर प्रारूप अवधि के बराबर है, और , यदि हो, तो आरसी प्रारूप अंतराल से काफी अधिक है।
निस्यंदक पुनरावृत्ति संबंध इनपुट प्रारूपों और पूर्ववर्ती आउटपुट के संदर्भ में आउटपुट प्रारूपों को निर्धारित करने का एक माध्यम प्रदान करता है। लोलिखित स्यूडोकोड कलन विधि अंकीय प्रारूपों की एक श्रृंखला पर लो-पास निस्यंदक के प्रभाव का अनुकरण करता है:
// आरसी लो-पास निस्यंदक आउटपुट प्रारूप लौटाएं,और इनपुट प्रारूप दिए गए हैं, // समय अंतराल डीटी, और समय निरंतर आरसी 'प्रकार्य' लोपास (वास्तविक [1..n] x, वास्तविक dt, वास्तविक RC) 'वर' वास्तविक [1..n] वाई 'वर' वास्तविक α�:= dt / (RC + dt) वाई [1]�:= α * x [1] आई 2 से एन के लिए y[i]y:= α * x[i] + (1-α) * y[i-1] पुनरावृत्ति वाई
लूप जो प्रत्येक एन आउटपुट की गणना करता है, उसे समतुल्य में पुन: सक्रिय किया जा सकता है::
आई 2 से एन के लिए y[i]]:= y[i-1] + α * (x[i] - y[i-1])
अर्थात्, एक निस्यंदक आउटपुट से आगामी में परिवर्तन अंतिम आउटपुट और आगामी इनपुट के मध्य के अंतर के समानुपाती होता है। यह घातीय सपाट गुण निरंतर-समय प्रणाली में देखे गए घातीय कार्य क्षय के अनुकूल है। जैसा कि अपेक्षित था, जैसे-जैसे समय स्थिर आरसी बढ़ता है, असतत-समय घातीय पैरामीटर घटता है, और आउटपुट प्रारूपों इनपुट प्रारूपों में परिवर्तन के लिए अधिक धीरे-धीरे प्रतिक्रिया देती है, प्रणाली में अधिक जड़ता है। यह निस्यंदक एक अनंत-आवेग-प्रतिक्रिया (IIR) सिंगल-पोल लो-पास निस्यंदक है।
परिमित आवेग प्रतिक्रिया
परिमित-आवेग-प्रतिक्रिया निस्यंदक बनाए जा सकते हैं जो एक आदर्श शार्प-कटऑफ़ लो-पास निस्यंदक के सीन्स प्रकार्य समय-क्षेत्र प्रतिक्रिया के अनुमानित हैं। न्यूनतम विरूपण के लिए परिमित आवेग प्रतिक्रिया निस्यंदक में असीमित संख्या में गुणांक एक असीमित संकेत पर कार्य कर रहे हैं। व्यवहार में, समय-क्षेत्र प्रतिक्रिया का समय छोटा होना चाहिए और प्रायः एक सरलीकृत आकार का होता है; सबसे सरल स्थितियों में, एक औसत चलन का उपयोग किया जा सकता है, जो वर्ग समय की प्रतिक्रिया देता है।[9]
फूरियर रूपांतरण
This section does not cite any sources. (मार्च 2015) (Learn how and when to remove this template message) |
गैर-वास्तविक समय निस्यंदक के लिए, लो-पास निस्यंदक प्राप्त करने के लिए, सम्पूर्ण संकेतो को सामान्यतः लूप संकेतो के रूप में फूरियर रूपांतरण को लिया जाता है, जिन्हें आवृत्ति क्षेत्र में निस्यंदक किया जाता है, इसके पश्चात एक व्युत्क्रम फूरियर रूपांतरण होता है। समय क्षेत्र निस्यंदक कलनविधि के लिए O(n2) की तुलना में केवल O(n log(n)) संचालन आवश्यक हैं)।
यह कभी-कभी वास्तविक समय में भी किया जा सकता है, जहां छोटे, अतिव्यापी ब्लॉकों पर फूरियर रूपांतरण करने के लिए संकेतो काफी विलम्ब हो जाता है।
निरंतर-समय की प्राप्ति
परिवर्तित आवृत्ति के लिए विभिन्न प्रतिक्रियाओं के साथ कई अलग-अलग प्रकार के निस्यंदक परिपथ हैं। एक निस्यंदक की आवृत्ति प्रतिक्रिया सामान्यतः एक बोडे प्लॉट का उपयोग करके प्रदर्शित की जाती है, और निस्यंदक को इसकी कटऑफ आवृत्ति और आवृत्ति धड़ल्ले से बोलना की दर से चित्रित किया जाता है। सभी स्थितियों में, कटऑफ़ आवृत्ति पर, निस्यंदक इनपुट पावर को आधे या 3 dB तक कम कर देता है। तो निस्यंदक का 'आदेश' कटऑफ आवृत्ति से अधिक आवृत्तियों के लिए अतिरिक्त क्षीणन की मात्रा निर्धारित करता है।
- एक 'प्रथम-क्रम निस्यंदक', उदाहरण के लिए, संकेत आयाम को आधे से कम कर देता है (इसलिए शक्ति 4 के कारक से कम हो जाती है, या 6 dB), हर बार आवृत्ति दोगुनी हो जाती है (एक सप्तक ऊपर जाती है); अधिक सटीक रूप से, उच्च आवृत्ति की सीमा में पावर रोलऑफ़ 20 dB प्रति दशक (लॉग स्केल) तक पहुंचता है। पूर्व क्रम के निस्यंदक के लिए परिमाण बोड प्लॉट कटऑफ आवृत्ति के नीचे एक क्षैतिज रेखा और कटऑफ आवृत्ति के ऊपर एक विकर्ण रेखा की तरह दिखता है। दोनों के बीच की सीमा पर एक घुटने का वक्र भी है, जो दो सीधी रेखा वाले क्षेत्रों के बीच सुचारू रूप से संक्रमण करता है। यदि प्रथम-क्रम लो-पास निस्यंदक के स्थानांतरण कार्य में शून्य (जटिल विश्लेषण) के साथ-साथ ध्रुव (जटिल विश्लेषण) होता है, तो उच्च आवृत्तियों के कुछ अधिकतम क्षीणन पर, बोड प्लॉट फिर से समतल हो जाता है; इस तरह का प्रभाव उदाहरण के लिए एक-पोल निस्यंदक के आसपास थोड़ा सा इनपुट लीक होने के कारण होता है; यह एक-ध्रुव-एक-शून्य निस्यंदक अभी भी एक प्रथम-क्रम लो-पास है। पोल-जीरो प्लॉट और आरसी परिपथ देखें।
- एक 'दूसरे क्रम का निस्यंदक' उच्च आवृत्तियों को अधिक तीव्रता से क्षीण करता है। इस प्रकार के निस्यंदक के लिए बोड प्लॉट प्रथम-क्रम निस्यंदक जैसा दिखता है, सिवाय इसके कि यह अधिक तीव्रता से गिर जाता है। उदाहरण के लिए, एक दूसरे क्रम का बटरवर्थ निस्यंदक संकेत के आयाम को उसके मूल स्तर के एक चौथाई तक कम कर देता है, हर बार आवृत्ति दोगुनी हो जाती है (इसलिए बिजली 12 dB प्रति सप्तक, या 40 dB प्रति दशक कम हो जाती है)। अन्य ऑल-पोल सेकंड-ऑर्डर निस्यंदक प्रारम्भ में उनके क्यू कारक के आधार पर अलग-अलग दरों पर रोल ऑफ हो सकते हैं, लेकिन 12 dB प्रति सप्टक की समान अंतिम दर तक पहुंच सकते हैं; प्रथम-क्रम निस्यंदक के साथ, स्थानांतरण कार्य में शून्य उच्च-आवृत्ति स्पर्शोन्मुख को बदल सकते हैं। आरएलसी परिपथ देखें।
- तीसरा- और उच्च-क्रम निस्यंदक समान रूप से परिभाषित किए गए हैं। सामान्यतः, ऑर्डर के लिए पावर रोलऑफ़ की अंतिम दर- n ऑल-पोल निस्यंदक 6 हैn डीबी प्रति सप्तक (20n डीबी प्रति दशक)।
किसी भी बटरवर्थ निस्यंदक पर, यदि कोई क्षैतिज रेखा को दाईं ओर और तिरछी रेखा को ऊपरी-बाएँ (कार्य के स्पर्शोन्मुख) तक बढ़ाता है, तो वे कटऑफ़ आवृत्ति, क्षैतिज रेखा के नीचे 3 dB पर प्रतिच्छेद करते हैं। विभिन्न प्रकार के निस्यंदक (बटरवर्थ निस्यंदक, चेबिशेव निस्यंदक, बेसल निस्यंदक, आदि) सभी में अलग-अलग दिखने वाले घुटने के मोड़ होते हैं। कई दूसरे क्रम के निस्यंदक में पीकिंग या इलेक्ट्रिकल अनुनाद होता है जो इस चोटी पर क्षैतिज रेखा के ऊपर अपनी आवृत्ति प्रतिक्रिया डालता है।
'लो' और 'उच्च' के अर्थ—अर्थात् कटऑफ़ आवृत्ति—निस्यंदक की विशेषताओं पर निर्भर करती है। लो-पास निस्यंदक शब्द केवल निस्यंदक की प्रतिक्रिया के आकार को संदर्भित करता है; एक उच्च-पास निस्यंदक बनाया जा सकता है जो किसी भी लो-पास निस्यंदक की तुलना में कम आवृत्ति पर कट ऑफ करता है—यह उनकी प्रतिक्रियाएं हैं जो उन्हें अलग करती हैं। किसी भी वांछित आवृत्ति रेंज के लिए विद्युत परिपथ तैयार किए जा सकते हैं, सीधे माइक्रोवेव आवृत्ति (1 GHz से ऊपर) और उच्चतर के माध्यम से।
लाप्लास अंकन
निरंतर-समय के निस्यंदक को उनके आवेग प्रतिक्रिया के लाप्लास परिवर्तन के संदर्भ में भी वर्णित किया जा सकता है, जिससे निस्यंदक की सभी विशेषताओं को ध्रुवों के प्रतिरूपो और लाप्लास के शून्य को जटिल विमान में परिवर्तित होने पर विचार करके सरली से विश्लेषण किया जा सकता है। (असतत समय में, इसी तरह आवेग प्रतिक्रिया के जेड-रूपांतरण पर विचार कर सकते हैं।)
उदाहरण के लिए, प्रथम-क्रम लो-पास निस्यंदक को लाप्लास नोटेशन में वर्णित किया जा सकता है:
जहाँ s लाप्लास परिवर्तन चर है, τ निस्यंदक समय स्थिरांक है, और K पासबैंड में निस्यंदक का लाभ (विद्युत्) है।
विद्युत लो-पास निस्यंदक
पहला आदेश
आरसी निस्यंदक
एक साधारण लो-पास निस्यंदक विद्युत परिपथ में बाहरी विद्युत भार के साथ श्रृंखला में एक प्रतिरोधक होता है, और भार के साथ समानांतर में एक संधारित्र होता है। कैपेसिटर रिएक्शन (विद्युत्स) प्रदर्शित करता है, और कम आवृत्ति संकेतों को ब्लॉक करता है, इसके बजाय उन्हें लोड के माध्यम से मजबूर करता है। उच्च आवृत्तियों पर प्रतिक्रिया कम हो जाती है, और संधारित्र प्रभावी रूप से शॉर्ट परिपथ के रूप में कार्य करता है। अवरोध और कैपेसिटेंस का कॉम्बिनेशन निस्यंदक का समय कॉन्स्टेंट देता है (ग्रीक अक्षर ताऊ द्वारा दर्शाया गया)। ब्रेक आवृत्ति, जिसे टर्नओवर आवृत्ति, कॉर्नर आवृत्ति या कटऑफ़ आवृत्ति (हर्ट्ज़ में) भी कहा जाता है, समय स्थिर द्वारा निर्धारित किया जाता है:
या समकक्ष (कांति प्रति सेकंड में):
इस परिपथ को उस समय पर विचार करके समझा जा सकता है जब संधारित्र को प्रतिरोधक के माध्यम से चार्ज या डिस्चार्ज करने की आवश्यकता होती है:
- कम आवृत्तियों पर, संधारित्र के लिए व्यावहारिक रूप से इनपुट वोल्टता के समान वोल्टता तक चार्ज करने के लिए बहुत समय होता है।
- उच्च आवृत्तियों पर, इनपुट स्विच की दिशा बदलने से पूर्व संधारित्र के पास केवल थोड़ी मात्रा में चार्ज करने का समय होता है। इनपुट ऊपर और नीचे जाने वाली राशि का केवल एक छोटा सा अंश आउटपुट ऊपर और नीचे जाता है। दोगुनी आवृत्ति पर, इसके पास केवल आधी राशि चार्ज करने का समय होता है।
इस परिपथ को समझने का दूसरा तरीका एक विशेष आवृत्ति पर रिएक्शन (विद्युत्) की अवधारणा के माध्यम से है:
- चूँकि दिष्टधारा (DC) संधारित्र के माध्यम से प्रवाहित नहीं हो सकती है, DC इनपुट को चिह्नित पथ से बाहर प्रवाहित होना चाहिए (संधारित्र को हटाने के समान)।
- चूँकि प्रत्यावर्ती धारा (AC) संधारित्र के माध्यम से बहुत अच्छी तरह से बहती है, लगभग साथ ही साथ यह ठोस तार के माध्यम से बहती है, AC इनपुट संधारित्र के माध्यम से बहता है, प्रभावी रूप से जमीन पर शार्ट परिपथ (केवल एक तार के साथ संधारित्र को बदलने के अनुरूप)।
कैपेसिटर ऑन/ऑफ ऑब्जेक्ट नहीं है (जैसे ब्लॉक या पास फ्लुइडिक स्पष्टीकरण ऊपर)। संधारित्र इन दो चरम सीमाओं के बीच परिवर्तनशील रूप से कार्य करता है। यह बोड प्लॉट और आवृत्ति प्रतिक्रिया है जो इस परिवर्तनशीलता को दर्शाती है।
आरएल निस्यंदक
एक रोकनेवाला-प्रारंभ करनेवाला परिपथ या आरएल निस्यंदक एक विद्युत परिपथ है जो वोल्टता स्रोत या वर्तमान स्रोत द्वारा संचालित प्रतिरोधों और प्रेरकों से बना होता है। प्रथम श्रेणी का RL परिपथ एक प्रतिरोधक और एक प्रेरक से बना होता है और यह RL परिपथ का सबसे सरल प्रकार है।
पहला ऑर्डर आरएल परिपथ सबसे सरल एनालॉग निस्यंदक अनंत आवेग प्रतिक्रिया विद्युत निस्यंदक में से एक है। इसमें एक रोकनेवाला और एक प्रारंभ करनेवाला होता है, या तो श्रृंखला और समानांतर परिपथ में # श्रृंखला परिपथ एक वोल्टता स्रोत द्वारा संचालित होता है या श्रृंखला और समानांतर परिपथ में होता है वर्तमान स्रोत द्वारा संचालित समानांतर परिपथ।
द्वितीय क्रम
आरएलसी निस्यंदक
एक आरएलसी परिपथ (अक्षर R, L और C एक अलग क्रम में हो सकते हैं) एक विद्युत परिपथ है जिसमें एक प्रतिरोधक, प्रारंभ करने वाला और एक संधारित्र होता है, जो श्रृंखला में या समानांतर में जुड़ा होता है। नाम का आरएलसी भाग उन अक्षरों के कारण है जो क्रमशः विद्युत प्रतिरोध, अधिष्ठापन और संधारित्र के लिए सामान्य विद्युत प्रतीक हैं। परिपथ धारा के लिए एक सरल आवर्ती दोलक बनाता है और एक एलसी परिपथ के समान तरीके से अनुनाद करेगा। प्रतिरोध की उपस्थिति का मुख्य अंतर यह है कि परिपथ में प्रेरित कोई भी दोलन समय के साथ समाप्त हो जाएगा यदि इसे किसी स्रोत द्वारा जारी नहीं रखा जाता है। प्रतिरोधक के इस प्रभाव को अवमंदन कहते हैं। प्रतिरोध की उपस्थिति भी शिखर गुंजयमान आवृत्ति को कुछ हद तक कम कर देती है। वास्तविक परिपथों में कुछ प्रतिरोध अपरिहार्य होते हैं, भले ही एक प्रतिरोधक विशेष रूप से एक घटक के रूप में सम्मिलित न हो। सिद्धांत के उद्देश्य के लिए एक आदर्श, शुद्ध एलसी परिपथ एक अमूर्त है।
इस परिपथ के कई अनुप्रयोग हैं। उनका उपयोग कई अलग-अलग प्रकार के विद्युत थरथरानवाला में किया जाता है। एक अन्य महत्वपूर्ण अनुप्रयोग ट्यूनर (विद्युत्स) के लिए है, जैसे कि रिसीवर (रेडियो) या टीवी सेट में, जहाँ उनका उपयोग परिवेशी रेडियो तरंगों से आवृत्तियों की एक संकीर्ण श्रेणी का चयन करने के लिए किया जाता है। इस भूमिका में परिपथ को प्रायः ट्यून्ड परिपथ कहा जाता है। एक RLC परिपथ का उपयोग बैंड-पास निस्यंदक, बैंड-स्टॉप निस्यंदक, लो-पास निस्यंदक या उच्च-पास निस्यंदक के रूप में किया जा सकता है। आरएलसी निस्यंदक को दूसरे क्रम के परिपथ के रूप में वर्णित किया गया है, जिसका अर्थ है कि परिपथ में किसी भी वोल्टता या करंट को परिपथ विश्लेषण में दूसरे क्रम के अंतर समीकरण द्वारा वर्णित किया जा सकता है।
उच्च क्रम निष्क्रिय निस्यंदक
उच्च क्रम के निष्क्रिय निस्यंदक भी बनाए जा सकते हैं (तृतीय क्रम के उदाहरण के लिए आरेख देखें)।
सक्रिय विद्युत प्राप्ति
एक अन्य प्रकार का विद्युत परिपथ एक सक्रिय लो-पास निस्यंदक है।
चित्र में दिखाए गए परिचालन प्रवर्धक परिपथ में, कटऑफ आवृत्ति (हेटर्स में) को इस प्रकार परिभाषित किया गया है:
या समकक्ष (रेडियन प्रति सेकंड में):
पासबैंड में लाभ -R2/R है, और स्टॉपबैंड -6 dB प्रति सप्तक (अर्थात -20 dB प्रति दशक) पर बंद हो जाता है क्योंकि यह एक प्रथम-क्रम निस्यंदक है।
यह भी देखें
संदर्भ
- ↑ Long Pass Filters and Short Pass Filters Information, retrieved 2017-10-04
- ↑ Long Pass Filters and Short Pass Filters Information, retrieved 2017-10-04
- ↑ Sedra, Adel; Smith, Kenneth C. (1991). Microelectronic Circuits, 3 ed. Saunders College Publishing. p. 60. ISBN 0-03-051648-X.
- ↑ "ADSL filters explained". Epanorama.net. Retrieved 2013-09-24.
- ↑ "Home Networking – Local Area Network". Pcweenie.com. 2009-04-12. Archived from the original on 2013-09-27. Retrieved 2013-09-24.
- ↑ Mastering Windows: Improving Reconstruction
- ↑ 7.0 7.1 Hayt, William H., Jr. and Kemmerly, Jack E. (1978). Engineering Circuit Analysis. New York: McGRAW-HILL BOOK COMPANY. pp. 211–224, 684–729.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - ↑ Boyce, William and DiPrima, Richard (1965). Elementary Differential Equations and Boundary Value Problems. New York: JOHN WILEY & SONS. pp. 11–24.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - ↑ Whilmshurst, T H (1990) Signal recovery from noise in electronic instrumentation. ISBN 9780750300582
बाहरी संबंध
- Low Pass Filter java simulator
- ECE 209: Review of Circuits as LTI Systems, a short primer on the mathematical analysis of (electrical) LTI systems.
- ECE 209: Sources of Phase Shift, an intuitive explanation of the source of phase shift in a low-pass filter. Also verifies simple passive LPF transfer function by means of trigonometric identity.