लो पास फिल्टर: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 4: Line 4:
प्रकाशिकी में, उच्च-पारक और निम्न-पारक के अलग-अलग अर्थ हो सकते हैं, यह इस बात पर निर्भर करता है कि प्रकाश की आवृत्ति या तरंग दैर्ध्य से संबंधित है या नहीं है, क्योंकि ये चर व्युत्क्रमानुपाती होते हैं। उच्च-पारक आवृत्ति निस्यंदक निम्न-पारक तरंग दैर्ध्य निस्यंदक के रूप में कार्य करेंगे, और इसके विपरीत इस सम्भ्रम से बचने के लिए तरंग दैर्ध्य निस्यंदक को 'लघु-पारक' और 'दीर्घ-पारक' के रूप में संदर्भित करना एक उचित अभ्यास है, जो 'उच्च-पारक' और 'निम्न-पारक' आवृत्तियों के सादृश्य होगा।''<ref>{{citation |url=http://www.globalspec.com/learnmore/optics_optical_components/optical_components/long_short_pass_filters |title=Long Pass Filters and Short Pass Filters Information |access-date=2017-10-04}}</ref>''
प्रकाशिकी में, उच्च-पारक और निम्न-पारक के अलग-अलग अर्थ हो सकते हैं, यह इस बात पर निर्भर करता है कि प्रकाश की आवृत्ति या तरंग दैर्ध्य से संबंधित है या नहीं है, क्योंकि ये चर व्युत्क्रमानुपाती होते हैं। उच्च-पारक आवृत्ति निस्यंदक निम्न-पारक तरंग दैर्ध्य निस्यंदक के रूप में कार्य करेंगे, और इसके विपरीत इस सम्भ्रम से बचने के लिए तरंग दैर्ध्य निस्यंदक को 'लघु-पारक' और 'दीर्घ-पारक' के रूप में संदर्भित करना एक उचित अभ्यास है, जो 'उच्च-पारक' और 'निम्न-पारक' आवृत्तियों के सादृश्य होगा।''<ref>{{citation |url=http://www.globalspec.com/learnmore/optics_optical_components/optical_components/long_short_pass_filters |title=Long Pass Filters and Short Pass Filters Information |access-date=2017-10-04}}</ref>''


निम्न-पारक निस्यंदक कई अलग-अलग रूपों में उपस्थित हैं, जिनमें विद्युत परिपथ जैसे [[ध्वनि मुद्रण|श्रव्य]] में उपयोग किये जाने वाले हिस निस्यंदक, [[एनालॉग-टू-डिजिटल रूपांतरण|सादृश्य अंकीय रूपांतरण]] से पूर्व प्रतिबंधन संकेत के लिए [[एंटी - एलियासिंग फ़िल्टर|उपघटन प्रतिरोधी निस्यंदक]], डेटा के समरेखण समूह के लिए [[डिजिटल फिल्टर|अंकीय निस्यंदक]], ध्वनिक बाधाएं, और इसी तरह छवियों की अस्पष्टता भी सम्मिलित हैं। वित्तीय क्षेत्रों में उपयोग किये जाने वाले [[मूविंग एवरेज (वित्त)|औसत चलन]] संचालन एक विशेष प्रकार का निम्न-पारक निस्यंदक है, और उसी [[संकेत आगे बढ़ाना|संकेत प्रक्रमन]] प्रविधियों के साथ इसका विश्लेषण किया जा सकता है, जैसा कि अन्य निम्न-पारक निस्यंदक के लिए उपयोग किया जाता हैं। निम्न-पारक निस्यंदक संकेत का एक सरल रूप प्रदान करते हैं, और अल्पकालिक अस्थिरता को दूर करते हैं और दीर्घ अवधि की प्रवृत्ति को अवशिष्‍ट करते हैं।
निम्न-पारक निस्यंदक कई अलग-अलग रूपों में उपस्थित हैं, जिनमें विद्युत परिपथ जैसे [[ध्वनि मुद्रण|श्रव्य]] में उपयोग किये जाने वाले हिस निस्यंदक, [[एनालॉग-टू-डिजिटल रूपांतरण|सादृश्य अंकीय रूपांतरण]] से पूर्व प्रतिबंधन संकेत के लिए [[एंटी - एलियासिंग फ़िल्टर|उपघटन प्रतिरोधी निस्यंदक]], डेटा के समरेखण समूह के लिए [[डिजिटल फिल्टर|अंकीय निस्यंदक]], ध्वनिक बाधाएं, और इसी तरह छवियों की दृष्टिमांद्य भी सम्मिलित हैं। वित्तीय क्षेत्रों में उपयोग किये जाने वाले [[मूविंग एवरेज (वित्त)|औसत चलन]] संचालन एक विशेष प्रकार का निम्न-पारक निस्यंदक है, और उसी [[संकेत आगे बढ़ाना|संकेत प्रक्रमन]] प्रविधियों के साथ इसका विश्लेषण किया जा सकता है, जैसा कि अन्य निम्न-पारक निस्यंदक के लिए उपयोग किया जाता हैं। निम्न-पारक निस्यंदक संकेत का एक सरल रूप प्रदान करते हैं, और अल्पकालिक अस्थिरता को दूर करते हैं और दीर्घ अवधि की प्रवृत्ति को अवशिष्‍ट करते हैं।


निस्यंदक अभिकल्पक प्रायः [[प्रोटोटाइप फ़िल्टर|प्रतिमान निस्यंदक]] के रूप में निम्न-पारक विधि का उपयोग करते हैं। यही, एकता बैंड विस्तार और प्रतिबाधा वाला निस्यंदक है। अभीष्ट बैंड विस्तार और प्रतिबाधा के लिए प्रवर्धन और अभीष्ट बैंडफॉर्म (उच्च निम्न-पारक, उच्च-पारक, बैंड-पारक या बैंड-रोधक) में परिवर्तित करके अभीष्ट निस्यंदक को आद्यरूप से प्राप्त किया जाता है)।
निस्यंदक अभिकल्पक प्रायः [[प्रोटोटाइप फ़िल्टर|प्रतिमान निस्यंदक]] के रूप में निम्न-पारक विधि का उपयोग करते हैं। यही, एकता बैंड विस्तार और प्रतिबाधा वाला निस्यंदक है। अभीष्ट बैंड विस्तार और प्रतिबाधा के लिए प्रवर्धन और अभीष्ट बैंडफॉर्म (उच्च निम्न-पारक, उच्च-पारक, बैंड-पारक या बैंड-रोधक) में परिवर्तित करके अभीष्ट निस्यंदक को आद्यरूप से प्राप्त किया जाता है)।
Line 63: Line 63:


== आवृत्ति प्रतिक्रिया ==
== आवृत्ति प्रतिक्रिया ==
एक परिपथ की आवृत्ति प्रतिक्रिया को चिह्नित करने का सबसे सरल माध्यम इसका लाप्लास रूपांतरण <ref name=":0" />स्थानांतरण अभिलक्षक, <math>H(s) = {V_{\rm out}(s) \over V_{\rm in}(s)}</math> खोजना है, हमारे अवकल समीकरण के लाप्लास रूपांतरण को  
एक परिपथ की आवृत्ति प्रतिक्रिया को चिह्नित करने का सबसे सरल माध्यम इसका लाप्लास रूपांतरण <ref name=":0" />स्थानांतरण अभिलक्षक, <math>H(s) = {V_{\rm out}(s) \over V_{\rm in}(s)}</math> खोजना है, हमारे अवकल समीकरण के लाप्लास रूपांतरण को हल कर हमें ''H(s)'' प्राप्त होता हैं:  
 
लेकर और हल करके हम पाते हैं:
:<math>H(s) = {V_{\rm out}(s) \over V_{\rm in}(s)} = {\omega_0 \over (s + \omega_0)}</math>
:<math>H(s) = {V_{\rm out}(s) \over V_{\rm in}(s)} = {\omega_0 \over (s + \omega_0)}</math>




== असतत समय प्रतिचयन के माध्यम से अंतर समीकरण ==
== असतत समय प्रतिचयन के माध्यम से अवकल समीकरण ==
प्रतिचयन के नियमित अंतराल पर उपरोक्त चरण निविष्टि प्रतिक्रिया का प्रारूप लेकर एक असतत अंतर समीकरण सरलता से प्राप्त किया जाता है: <math>nT</math> जहां <math>n = 0, 1, ...</math> और <math>T</math> प्रारूपों के मध्य का समय है। हमारे पारक लगातार दो प्रारूपों के मध्य का अंतर है।
प्रतिचयन के नियमित अंतराल पर उपरोक्त चरण निविष्टि प्रतिक्रिया का प्रारूप लेकर एक असतत अवकल समीकरण सरलता से प्राप्त किया जाता है: <math>nT</math> जहां <math>n = 0, 1, ...</math> और <math>T</math> प्रारूपों के मध्य का समय है। हमारे पास लगातार दो प्रारूपों के मध्य का अंतर है।


:<math>v_{\rm out}(nT) - v_{\rm out}((n-1)T) = V_i (1 - e^{-\omega_0 nT}) - V_i (1 - e^{-\omega_0 ((n-1)T)}) </math>
:<math>v_{\rm out}(nT) - v_{\rm out}((n-1)T) = V_i (1 - e^{-\omega_0 nT}) - V_i (1 - e^{-\omega_0 ((n-1)T)}) </math>
Line 78: Line 76:
जहां <math>\beta = e^{-\omega_0 T}</math>
जहां <math>\beta = e^{-\omega_0 T}</math>


अंकन <math>V_n = v_{\rm out}(nT)</math> और <math>v_n = v_{\rm in}(nT)</math> का उपयोग करना, और हमारे प्रारूप मूल्य <math>v_n = V_i</math> को प्रतिस्थापित करते हुए, हमें अंतर समीकरण प्राप्त होता है:
अंकन <math>V_n = v_{\rm out}(nT)</math> और <math>v_n = v_{\rm in}(nT)</math> का उपयोग करना, और हमारे प्रारूप मूल्य <math>v_n = V_i</math> को प्रतिस्थापित करते हुए, हमें अवकल समीकरण प्राप्त होता है:


:<math>V_n = \beta V_{n-1} + (1-\beta)v_n</math>
:<math>V_n = \beta V_{n-1} + (1-\beta)v_n</math>
Line 84: Line 82:


=== त्रुटि विश्लेषण ===
=== त्रुटि विश्लेषण ===
अंतर समीकरण, <math>V_n = \beta V_{n-1} + (1-\beta)v_n</math> से पुनर्निर्मित आउटपुट संकेत की तुलना करना, चरण निविष्टि प्रतिक्रिया के लिए, <math>v_{\text{out}}(t) = V_i (1 - e^{-\omega_0 t})</math>, तो हम पाते हैं कि एक सटीक पुनर्निर्माण में (0% त्रुटि) है। यह एक समय अपरिवर्तनीय निविष्टि के लिए पुनर्निर्मित आउटपुट है। हालाँकि, यदि निविष्टि समय संस्करण है, जैसे <math>v_{\text{in}}(t) = V_i \sin(\omega t)</math>, यह प्रतिरूप अवधि के साथ चरण कार्यों की एक श्रृंखला के रूप में निविष्टि संकेत का अनुमान लगाता है, <math>T</math> पुनर्निर्मित आउटपुट संकेत में त्रुटि उत्पन्न करता है। समयांतर निविष्टि से उत्पन्न त्रुटि को निर्धारित करना कठिन है,{{cn|date=अगस्त 2020}} परन्तु <math>T\rightarrow0</math> के रूप में घट जाती है।
अवकल समीकरण, <math>V_n = \beta V_{n-1} + (1-\beta)v_n</math> से पुनर्निर्मित बहिर्वेश संकेत की तुलना करना, चरण निविष्टि प्रतिक्रिया के लिए, <math>v_{\text{out}}(t) = V_i (1 - e^{-\omega_0 t})</math>, तो हम पाते हैं कि एक सटीक पुनर्निर्माण में (0% त्रुटि) है। यह एक समय अपरिवर्तनीय निविष्टि के लिए पुनर्निर्मित बहिर्वेश है। हालाँकि, यदि निविष्टि समय संस्करण है, जैसे <math>v_{\text{in}}(t) = V_i \sin(\omega t)</math>, यह प्रतिरूप अवधि के साथ चरण कार्यों की एक श्रृंखला के रूप में निविष्टि संकेत का अनुमान लगाता है, जहां <math>T</math> पुनर्निर्मित बहिर्वेश संकेत में त्रुटि उत्पन्न करता है। समयांतर निविष्टि से उत्पन्न त्रुटि को निर्धारित करना कठिन है,{{cn|date=अगस्त 2020}} लेकिन <math>T\rightarrow0</math> के रूप में घट जाती है।


== असतत-समय की प्राप्ति ==
== असतत-समय की प्राप्ति ==
{{For|निरंतर-से असतत-समय में रूपांतरण की एक और विधि|बिलिनियर रूपांतरण}}
{{For|निरंतर-से असतत-समय में रूपांतरण की एक और विधि|बिलिनियर रूपांतरण}}
कई अंकीय निस्यंदक निम्न-पारक विशेषताओं को देने के लिए प्रारुप किए गए हैं। दोनों [[अनंत आवेग प्रतिक्रिया]] और परिमित आवेग प्रतिक्रिया निम्न-पारक निस्यंदक के साथ-साथ [[फूरियर रूपांतरण]] का उपयोग करने वाले निस्यंदक व्यापक रूप से उपयोग किए जाते हैं।
कई अंकीय निस्यंदक निम्न-पारक विशेषताओं को प्रदान करने के लिए प्रारुप किए गए हैं। दोनों [[अनंत आवेग प्रतिक्रिया]] और परिमित आवेग प्रतिक्रिया निम्न-पारक निस्यंदक के साथ-साथ [[फूरियर रूपांतरण]] का उपयोग करने वाले निस्यंदक व्यापक रूप से उपयोग किए जाते हैं।


=== सरल अनंत आवेग प्रतिक्रिया निस्यंदक ===
=== सरल अनंत आवेग प्रतिक्रिया निस्यंदक ===


एक अनंत आवेग प्रतिक्रिया निम्न-पारक निस्यंदक का प्रभाव समय क्षेत्र में आरसी निस्यंदक के व्यवहार का विश्लेषण करके और उसके पश्चात प्रारुप को विभाजित करके अभिकलक पर अनुकरण किया जा सकता है।   
एक अनंत आवेग प्रतिक्रिया निम्न-पारक निस्यंदक का प्रभाव समय क्षेत्र में आरसी निस्यंदक के व्यवहार का विश्लेषण करके और पुनः प्रारुप को विभाजित करके परिकलक पर अनुकरण किया जा सकता है।   
[[File:1st Order Lowpass Filter RC.svg|right|framed|A simple low-pass [[RC circuit|RC filter]]]]
[[File:1st Order Lowpass Filter RC.svg|right|framed|A simple low-pass [[RC circuit|RC filter]]]]
किरचॉफ के नियमों और समाई की परिभाषा के अनुसार सर्किट आरेख से दाईं ओर:
किरचॉफ के नियमों और संधारित्र की परिभाषा के अनुसार परिपथ आरेख से दाईं ओर है:
{{NumBlk|::|<math>v_{\text{in}}(t) - v_{\text{out}}(t) = R \; i(t)</math>|{{EquationRef|V}}}}
{{NumBlk|::|<math>v_{\text{in}}(t) - v_{\text{out}}(t) = R \; i(t)</math>|{{EquationRef|V}}}}
{{NumBlk|::|<math>Q_c(t) = C \, v_{\text{out}}(t)</math>|{{EquationRef|Q}}}}
{{NumBlk|::|<math>Q_c(t) = C \, v_{\text{out}}(t)</math>|{{EquationRef|Q}}}}
Line 102: Line 100:
:<math>v_{\text{in}}(t) - v_{\text{out}}(t) = RC \frac{\operatorname{d}v_{\text{out}}}{\operatorname{d}t}.</math>
:<math>v_{\text{in}}(t) - v_{\text{out}}(t) = RC \frac{\operatorname{d}v_{\text{out}}}{\operatorname{d}t}.</math>


इस समीकरण को अलग किया जा सकता है। सादगी के लिए, मान लें कि इनपुट और आउटपुट के प्रारुप समान रूप से दूरी वाले बिंदुओं पर अलग किए गए समय में लिए जाते हैं <math>\Delta_T</math> समय। के प्रारुप लिए
इस समीकरण को अलग किया जा सकता है। सादगी के लिए, मान लें कि इनपुट और बहिर्वेश के प्रारुप समान रूप से दूरी वाले बिंदुओं पर अलग किए गए समय में लिए जाते हैं <math>\Delta_T</math> समय। के प्रारुप लिए


क्रम से प्रदर्शित करे of <math> v_{\text{in}}</math> be represented by the sequence <math>(x_1,\, x_2,\, \ldots,\, x_n)</math>, and let <math>v_{\text{out}}</math> be represented by the sequence <math> (y_1,\, y_2,\, \ldots,\, y_n)</math>, which correspond to the same points in time.    <!--
क्रम से प्रदर्शित करे of <math> v_{\text{in}}</math> be represented by the sequence <math>(x_1,\, x_2,\, \ldots,\, x_n)</math>, and let <math>v_{\text{out}}</math> be represented by the sequence <math> (y_1,\, y_2,\, \ldots,\, y_n)</math>, which correspond to the same points in time.    <!--
Line 128: Line 126:
अगर  {{mvar| α}}=0.5,  तो आरसी समय स्थिर नमूना अवधि के बराबर है. अगरf <math>\alpha \;\ll\; 0.5</math>, तो आरसी नमूना अंतराल से काफी बड़ा है, और <math>\Delta_T \;\approx\; \alpha RC</math>.
अगर  {{mvar| α}}=0.5,  तो आरसी समय स्थिर नमूना अवधि के बराबर है. अगरf <math>\alpha \;\ll\; 0.5</math>, तो आरसी नमूना अंतराल से काफी बड़ा है, और <math>\Delta_T \;\approx\; \alpha RC</math>.


फ़िल्टर पुनरावृत्ति संबंध इनपुट प्रारुप और पूर्ववर्ती आउटपुट के संदर्भ में आउटपुट प्रारुप निर्धारित करने का एक तरीका प्रदान करता है। निम्नलिखित स्यूडोकोड एल्गोरिथम डिजिटल नमूनों की एक श्रृंखला पर एक कम-पास फिल्टर के प्रभाव का अनुकरण करता है:
फ़िल्टर पुनरावृत्ति संबंध इनपुट प्रारुप और पूर्ववर्ती बहिर्वेश के संदर्भ में बहिर्वेश प्रारुप निर्धारित करने का एक तरीका प्रदान करता है। निम्नलिखित स्यूडोकोड एल्गोरिथम डिजिटल नमूनों की एक श्रृंखला पर एक कम-पास फिल्टर के प्रभाव का अनुकरण करता है:


  // आरसी लो-पास फिल्टर आउटपुट सैंपल लौटाएं, इनपुट सैंपल दिए गए हैं,
  // आरसी लो-पास फिल्टर बहिर्वेश सैंपल लौटाएं, इनपुट सैंपल दिए गए हैं,
  // समय अंतराल डीटी, और समय सतत आरसी
  // समय अंतराल डीटी, और समय सतत आरसी
  '''अभिलक्षक''' निम्न-पारक(''वास्तविक[1..n]'' x, ''वास्तविक'' dt, ''वास्तविक'' RC)
  '''अभिलक्षक''' निम्न-पारक(''वास्तविक[1..n]'' x, ''वास्तविक'' dt, ''वास्तविक'' RC)
     '''वर''' ''वास्तविक[1..n]'' y
     '''वर''' ''वास्तविक[1..n]'' y
     '''वर''' ''वास्तविक'' α := dt / (RC + dt)
     '''वर''' ''वास्तविक'' α := dt / (RC + dt)
     y[1] := α * x[1]
     y[1]]:= α * x[1]
     i 2 से एन के लिए
     i 2 से एन के लिए
         y[i] := α * x[i] + (1-α) * y[i-1]
         y[i][:= α * x[i] + (1-α) * y[i-1]
     '''return''' y
     '''return''' y


लूप जो प्रत्येक n आउटपुट की गणना करता है, उसे समतुल्य में पुन: सक्रिय किया जा सकता है:
लूप जो प्रत्येक n बहिर्वेश की गणना करता है, उसे समतुल्य में पुन: सक्रिय किया जा सकता है:


     i 2 से एन के लिए
     i 2 से एन के लिए
         y[i] := y[i-1] + α * (x[i] - y[i-1])
         y[i] := y[i-1] + α * (x[i] - y[i-1])


 
अर्थात्, एक निस्यंदक बहिर्वेश से आगामी में परिवर्तन अंतिम बहिर्वेश और आगामी निविष्टि के मध्य के अंतर के समानुपाती होता है। यह घातीय सपाट गुण सतत-समय प्रणाली में देखे गए घातीय कार्य क्षय के अनुकूल है। जैसा कि अपेक्षित था, जैसे-जैसे समय स्थिर आरसी बढ़ता है, असतत-समय घातीय पैरामीटर <math>  \alpha</math> घटता है, और बहिर्वेश प्रारूपों <math> (y_1,\, y_2,\, \ldots,\, y_n)</math> निविष्टि प्रारूपों में परिवर्तन के लिए अधिक धीरे-धीरे प्रतिक्रिया देता है, <math>  (x_1,\, x_2,\, \ldots,\, x_n)</math> प्रणाली में अधिक [[जड़ता]] है। यह निस्यंदक एक [[अनंत-आवेग-प्रतिक्रिया]] (IIR) एकल-पोल निम्न-पारक निस्यंदक है।
अर्थात्, एक निस्यंदक आउटपुट से आगामी में परिवर्तन अंतिम आउटपुट और आगामी निविष्टि के मध्य के अंतर के समानुपाती होता है। यह घातीय सपाट गुण सतत-समय प्रणाली में देखे गए घातीय कार्य क्षय के अनुकूल है। जैसा कि अपेक्षित था, जैसे-जैसे समय स्थिर आरसी बढ़ता है, असतत-समय घातीय पैरामीटर <math>  \alpha</math> घटता है, और आउटपुट प्रारूपों <math> (y_1,\, y_2,\, \ldots,\, y_n)</math> निविष्टि प्रारूपों में परिवर्तन के लिए अधिक धीरे-धीरे प्रतिक्रिया देता है, <math>  (x_1,\, x_2,\, \ldots,\, x_n)</math> प्रणाली में अधिक [[जड़ता]] है। यह निस्यंदक एक [[अनंत-आवेग-प्रतिक्रिया]] (IIR) एकल-पोल निम्न-पारक निस्यंदक है।


[[Category:All articles with unsourced statements|Low-Pass Filter]]
[[Category:All articles with unsourced statements|Low-Pass Filter]]
Line 205: Line 202:
इस परिपथ को उस समय पर विचार करके समझा जा सकता है जब संधारित्र को प्रतिरोधक के माध्यम से चार्ज या डिस्चार्ज करने की आवश्यकता होती है:
इस परिपथ को उस समय पर विचार करके समझा जा सकता है जब संधारित्र को प्रतिरोधक के माध्यम से चार्ज या डिस्चार्ज करने की आवश्यकता होती है:
* कम आवृत्तियों पर, संधारित्र के लिए निविष्टि वोल्टता के समान व्यावहारिक रूप से समान वोल्टता तक चार्ज करने के लिए बहुत समय होता है।
* कम आवृत्तियों पर, संधारित्र के लिए निविष्टि वोल्टता के समान व्यावहारिक रूप से समान वोल्टता तक चार्ज करने के लिए बहुत समय होता है।
* उच्च आवृत्तियों पर, संधारित्र के पारक निविष्टि स्विच दिशा से पूर्व केवल थोड़ी मात्रा में चार्ज करने का समय होता है। निविष्टि ऊपर और नीचे जाने वाली राशि का केवल एक छोटा सा अंश आउटपुट ऊपर और नीचे जाता है। दोगुनी आवृत्ति पर, इसके पारक केवल आधी राशि पर चार्ज करने का समय होता है।
* उच्च आवृत्तियों पर, संधारित्र के पारक निविष्टि स्विच दिशा से पूर्व केवल थोड़ी मात्रा में चार्ज करने का समय होता है। निविष्टि ऊपर और नीचे जाने वाली राशि का केवल एक छोटा सा अंश बहिर्वेश ऊपर और नीचे जाता है। दोगुनी आवृत्ति पर, इसके पारक केवल आधी राशि पर चार्ज करने का समय होता है।


इस परिपथ को समझने का दूसरा माध्यम एक विशेष आवृत्ति पर प्रतिक्रिया की अवधारणा के माध्यम से होता है:
इस परिपथ को समझने का दूसरा माध्यम एक विशेष आवृत्ति पर प्रतिक्रिया की अवधारणा के माध्यम से होता है:

Revision as of 22:11, 13 March 2023

एक उच्च पारक निस्यंदक एक निस्यंदक है जो एक चयनित कटऑफ आवृत्ति से कम आवृत्ति के साथ संकेतों को गुजरता है और कट ऑफ आवृत्ति से अधिक आवृत्तियों के साथ संकेतों को क्षीण करता है। निस्यंदक की सटीक आवृत्ति प्रतिक्रिया निस्यंदक प्रारुप पर निर्भर करती है। निस्यंदक को कभी-कभी श्रव्य अनुप्रयोगों में उच्च अंतक निस्यंदक या तिहरा-अंतक निस्यंदक कहा जाता है। एक निम्न-पारक निस्यंदक एक उच्च-पारक निस्यंदक का पूरक है।

प्रकाशिकी में, उच्च-पारक और निम्न-पारक के अलग-अलग अर्थ हो सकते हैं, यह इस बात पर निर्भर करता है कि प्रकाश की आवृत्ति या तरंग दैर्ध्य से संबंधित है या नहीं है, क्योंकि ये चर व्युत्क्रमानुपाती होते हैं। उच्च-पारक आवृत्ति निस्यंदक निम्न-पारक तरंग दैर्ध्य निस्यंदक के रूप में कार्य करेंगे, और इसके विपरीत इस सम्भ्रम से बचने के लिए तरंग दैर्ध्य निस्यंदक को 'लघु-पारक' और 'दीर्घ-पारक' के रूप में संदर्भित करना एक उचित अभ्यास है, जो 'उच्च-पारक' और 'निम्न-पारक' आवृत्तियों के सादृश्य होगा।[1]

निम्न-पारक निस्यंदक कई अलग-अलग रूपों में उपस्थित हैं, जिनमें विद्युत परिपथ जैसे श्रव्य में उपयोग किये जाने वाले हिस निस्यंदक, सादृश्य अंकीय रूपांतरण से पूर्व प्रतिबंधन संकेत के लिए उपघटन प्रतिरोधी निस्यंदक, डेटा के समरेखण समूह के लिए अंकीय निस्यंदक, ध्वनिक बाधाएं, और इसी तरह छवियों की दृष्टिमांद्य भी सम्मिलित हैं। वित्तीय क्षेत्रों में उपयोग किये जाने वाले औसत चलन संचालन एक विशेष प्रकार का निम्न-पारक निस्यंदक है, और उसी संकेत प्रक्रमन प्रविधियों के साथ इसका विश्लेषण किया जा सकता है, जैसा कि अन्य निम्न-पारक निस्यंदक के लिए उपयोग किया जाता हैं। निम्न-पारक निस्यंदक संकेत का एक सरल रूप प्रदान करते हैं, और अल्पकालिक अस्थिरता को दूर करते हैं और दीर्घ अवधि की प्रवृत्ति को अवशिष्‍ट करते हैं।

निस्यंदक अभिकल्पक प्रायः प्रतिमान निस्यंदक के रूप में निम्न-पारक विधि का उपयोग करते हैं। यही, एकता बैंड विस्तार और प्रतिबाधा वाला निस्यंदक है। अभीष्ट बैंड विस्तार और प्रतिबाधा के लिए प्रवर्धन और अभीष्ट बैंडफॉर्म (उच्च निम्न-पारक, उच्च-पारक, बैंड-पारक या बैंड-रोधक) में परिवर्तित करके अभीष्ट निस्यंदक को आद्यरूप से प्राप्त किया जाता है)।

उदाहरण

निम्न-पारक निस्यंदक के उदाहरण ध्वनिकी, प्रकाशिकी और विद्युत् में पाए जाते हैं।

एक कठोर भौतिक बाधा उच्च ध्वनि आवृत्तियों को प्रतिबिंबित करती है, और इसलिए ध्वनि संचारित करने के लिए ध्वनि निम्न-पारक निस्यंदक के रूप में कार्य करती है। जब संगीत दूसरे कक्ष में चल रहा होता है, तो निम्न स्वर सरलता से सुनाई देते हैं, जबकि उच्च स्वर क्षीण हो जाते हैं।

एक समान अभिलक्षक वाले प्रकाशिकी निस्यंदक को शुद्ध रूप से निम्न-पारक निस्यंदक कहा जा सकता है, परन्तु सम्भ्रम से बचने के लिए पारंपरिक रूप से दीर्घ पारक निस्यंदक (कम आवृत्ति दीर्घ तरंग दैर्ध्य) कहा जाता है।[2]

वोल्टता संकेतों के लिए एक विद्युत निम्न-पारक आरसी निस्यंदक में, निविष्टि संकेतों में उच्च आवृत्तियों को क्षीण किया जाता है, परन्तु निस्यंदक में आरसी समय स्थिरांक द्वारा निर्धारित कटऑफ आवृत्ति के नीचे अल्प क्षीणता होती है। वर्तमान संकेतों के लिए, एक समान परिपथ, समानांतर में एक प्रतिरोधक और संधारित्र का उपयोग करके, समान माध्यम से कार्य करता है (नीचे अधिक विस्तार से विचार विमर्श किए गए वर्तमान विभक्त को देखें)।

सबवूफ़र्स और अन्य प्रकार के ध्वनि-विस्तारक यंत्रो के निविष्टि पर विद्युत निम्न-पारक निस्यंदक का उपयोग किया जाता है, ताकि उच्च पिचों को अवरुद्ध किया जा सके जो कुशलता से पुनरुत्पादन नहीं कर सकते है। रेडियो संचारण समस्वरित उत्सर्जन को अवरुद्ध करने के लिए निम्न-पारक निस्यंदक का उपयोग करते हैं जो अन्य संचारों में हस्तक्षेप कर सकते हैं। कई विद्युत सारंगी पर ध्वनि नॉब एक ​​निम्न-पारक निस्यंदक है जिसका उपयोग ध्वनि में उच्च स्वर की मात्रा को कम करने के लिए किया जाता है। एक समाकलक और समय स्थिरांक निम्न-पारक निस्यंदक है।[3]

डीएसएल विखंडक के साथ जुड़ी दूरभाष श्रृंखलाएं डीएसएल को पॉट्स संकेतों (और उच्च-पारक इसके विपरीत) से विभाजित करने के लिए निम्न-पारक निस्यंदक का उपयोग करती हैं, जो तारों के युग्म (संचरण माध्यम) के साथ अनुकरण करती हैं।[4][5]

निम्न-पारक निस्यंदक और वास्तविक सादृश्य संश्लेषित्र द्वारा बनाई गई ध्वनि की मूर्तिकला में महत्वपूर्ण भूमिका निभाती हैं। इसके लिए घटाव संश्लेषण को देखें।

प्रतिदर्श से पूर्व और अंकीय सादृश्य रूपांतरण में पुनर्निर्माण के लिए एक निम्न-पारक निस्यंदक का उपयोग उपघटन प्रतिरोधी निस्यंदक के रूप में किया जाता है।

आदर्श और वास्तविक निस्यंदक

सिंक कार्य, एक आदर्श निम्न-पारक निस्यंदक की समय-क्षेत्र आवेग प्रतिक्रिया है
प्रथम-क्रम (एक-ध्रुव) निम्न-पारक निस्यंदक की वृद्धि-परिमाण आवृत्ति प्रतिक्रिया हैं। ऊर्जा वृद्धि डेसिबल में दर्शाया गया है (अर्थात, एक 3 डेसिबल क्षय एक अतिरिक्त अर्ध-ऊर्जा क्षीणन को दर्शाती है)। कोणीय आवृत्ति प्रति सेकंड रेडियन की इकाइयों में एक लघु गणकीय पैमाने पर दिखाई जाती है।

एक आदर्श निम्न-पारक निस्यंदक कटऑफ़ आवृत्ति से ऊपरी सभी आवृत्तियो को पूर्णतया पदच्युत कर देता है जबकि नीचे की आवृत्ति अपरिवर्तित रहती है; इसकी आवृत्ति प्रतिक्रिया एक आयताकार अभिलक्षक है और एक ब्रिक-वाल निस्यंदक है। व्यावहारिक निस्यंदक में उपस्थित परिवर्तन क्षेत्र एक आदर्श निस्यंदक में उपस्थित नहीं होते है। एक आदर्श निम्न-पारक निस्यंदक को गणितीय रूप से (सैद्धांतिक रूप से) आवृत्ति क्षेत्र में आयताकार अभिलक्षक द्वारा संकेतों को गुणा करके या समतुल्य रूप से, इसके आवेग प्रतिक्रिया के साथ संवलयी, और समय क्षेत्र में सिंक अभिलक्षक द्वारा ज्ञात किया जा सकता है।

हालांकि, समय में अनंत सीमा के संकेतों के बिना भी आदर्श निस्यंदक का अनुभव करना असंभव है, और इसलिए सामान्यतः वास्तविक चलन संकेतों के लिए अनुमानित होने की आवश्यकता होती है, क्योंकि सिंक अभिलक्षक का समर्थन क्षेत्र सभी भूतकाल और भविष्य के समय तक विस्तारित है। इसलिए संवलयी करने के लिए निस्यंदक को अनंत विलंब, या अनंत भविष्य और भूतकाल का ज्ञान होना चाहिए। यह भूतकाल और भविष्य में शून्य के विस्तार को अनुमानित कर पूर्व अभिलेखित किए गए अंकीय संकेतों, या सामान्यतः संकेतों को पुनरावर्ती बनाकर और फूरियर विश्लेषण का उपयोग करके प्रभावी रूप से कार्यान्वित होने योग्य है।

वास्तविक समय अनुप्रयोगों के लिए वास्तविक निस्यंदक सीमित आवेग प्रतिक्रिया बनाने के लिए अनंत आवेग प्रतिक्रिया को रुंडन और गवाक्षन करके आदर्श निस्यंदक का अनुमान लगाते हैं; उस निस्यंदक को प्रयुक्त करने के लिए संकेत को मध्यम अवधि के लिए विलंबित करने की आवश्यकता होती है, जिससे गणना को भविष्य में देखने की अनुमति मिलती है। यह विलंब चरण परिवर्तन के रूप में प्रकट होती है। सन्निकटन में अधिक सटीकता के लिए अधिक विलंब की आवश्यकता होती है।

गिब्स घटना के माध्यम से वलयन कलाकृतियों में आदर्श निम्न-पारक निस्यंदक का परिणाम होता है। गवाक्षन अभिलक्षक के चयन से इन्हें कम या नष्ट किया जा सकता है, और वास्तविक निस्यंदक के प्रारुप और विकल्प में इन कलाकृतियों को समझना और कम करना सम्मिलित है। उदाहरण के लिए, "साधारण खंडन [सिंक का] अनलंकृत वलयन कलाकृतियों का कारण बनता है," संकेत पुनर्निर्माण में, और इन कलाकृतियों को कम करने के लिए गवाक्षन अभिलक्षक का उपयोग किया जाता है जो सीमाओं पर अधिक सरलता से गिरते हैं।[6]

व्हिटेकर-शैनन प्रक्षेप सूत्र वर्णन करता है कि प्रारूप अंकीय संकेतों से सतत संकेतों का पुनर्निर्माण करने के लिए एक आदर्श निम्न-पारक निस्यंदक का उपयोग कैसे किया जाए। इसलिये वास्तविक अंकीय सादृश्य रूपांतरण वास्तविक निस्यंदक सन्निकटन का उपयोग करते हैं।

समय प्रतिक्रिया

सरल निम्न-पारक आरसी निस्यंदक की प्रतिक्रिया को हल करके एक निम्न-पारक निस्यंदक की समय प्रतिक्रिया प्राप्त की जाती है।

एक साधारण निम्न-पारक आरसी परिपथ

किरचॉफ के परिपथ नियमों का उपयोग करके हम अवकल समीकरण पर पहुंचते हैं।[7]


चरण निविष्टि प्रतिक्रिया उदाहरण

अगर हम माने कि परिमाण का एक चरण अभिलक्षक हो,तो अवकल समीकरण का हल है।[8]

जहां निस्यंदक की कटऑफ आवृत्ति है।

आवृत्ति प्रतिक्रिया

एक परिपथ की आवृत्ति प्रतिक्रिया को चिह्नित करने का सबसे सरल माध्यम इसका लाप्लास रूपांतरण [7]स्थानांतरण अभिलक्षक, खोजना है, हमारे अवकल समीकरण के लाप्लास रूपांतरण को हल कर हमें H(s) प्राप्त होता हैं:


असतत समय प्रतिचयन के माध्यम से अवकल समीकरण

प्रतिचयन के नियमित अंतराल पर उपरोक्त चरण निविष्टि प्रतिक्रिया का प्रारूप लेकर एक असतत अवकल समीकरण सरलता से प्राप्त किया जाता है: जहां और प्रारूपों के मध्य का समय है। हमारे पास लगातार दो प्रारूपों के मध्य का अंतर है।

प्रतिचयन के लिए को हल करके, और हम पाते हैं:

जहां

अंकन और का उपयोग करना, और हमारे प्रारूप मूल्य को प्रतिस्थापित करते हुए, हमें अवकल समीकरण प्राप्त होता है:


त्रुटि विश्लेषण

अवकल समीकरण, से पुनर्निर्मित बहिर्वेश संकेत की तुलना करना, चरण निविष्टि प्रतिक्रिया के लिए, , तो हम पाते हैं कि एक सटीक पुनर्निर्माण में (0% त्रुटि) है। यह एक समय अपरिवर्तनीय निविष्टि के लिए पुनर्निर्मित बहिर्वेश है। हालाँकि, यदि निविष्टि समय संस्करण है, जैसे , यह प्रतिरूप अवधि के साथ चरण कार्यों की एक श्रृंखला के रूप में निविष्टि संकेत का अनुमान लगाता है, जहां पुनर्निर्मित बहिर्वेश संकेत में त्रुटि उत्पन्न करता है। समयांतर निविष्टि से उत्पन्न त्रुटि को निर्धारित करना कठिन है,[citation needed] लेकिन के रूप में घट जाती है।

असतत-समय की प्राप्ति

कई अंकीय निस्यंदक निम्न-पारक विशेषताओं को प्रदान करने के लिए प्रारुप किए गए हैं। दोनों अनंत आवेग प्रतिक्रिया और परिमित आवेग प्रतिक्रिया निम्न-पारक निस्यंदक के साथ-साथ फूरियर रूपांतरण का उपयोग करने वाले निस्यंदक व्यापक रूप से उपयोग किए जाते हैं।

सरल अनंत आवेग प्रतिक्रिया निस्यंदक

एक अनंत आवेग प्रतिक्रिया निम्न-पारक निस्यंदक का प्रभाव समय क्षेत्र में आरसी निस्यंदक के व्यवहार का विश्लेषण करके और पुनः प्रारुप को विभाजित करके परिकलक पर अनुकरण किया जा सकता है।

A simple low-pass RC filter

किरचॉफ के नियमों और संधारित्र की परिभाषा के अनुसार परिपथ आरेख से दाईं ओर है:

 

 

 

 

(V)

 

 

 

 

(Q)

 

 

 

 

(I)

जहां समय t पर संधारित्र में संचित आवेश है। समीकरण Q को समीकरण I में प्रतिस्थापित करना , जिसे समीकरण V में प्रतिस्थापित किया जा सकता है ताकि

इस समीकरण को अलग किया जा सकता है। सादगी के लिए, मान लें कि इनपुट और बहिर्वेश के प्रारुप समान रूप से दूरी वाले बिंदुओं पर अलग किए गए समय में लिए जाते हैं समय। के प्रारुप लिए

क्रम से प्रदर्शित करे of be represented by the sequence , and let be represented by the sequence , which correspond to the same points in time. Making these substitutions,

पदों को पुनर्व्यवस्थित करने से पुनरावृत्ति संबंध प्राप्त होता है

यही है, एक साधारण आरसी लो-पास फिल्टर का यह असतत-समय कार्यान्वयन घातीय रूप से भारित चलती औसत है

परिभाषा के अनुसार, चौरसाई कारक सीमा के भीतर है . α के लिए अभिव्यक्ति नमूना अवधि के संदर्भ में समतुल्य समय स्थिर RC प्राप्त करती है और चौरसाई कारक α,

याद करते हुए

so

नोट α और से संबंधित हैं,

और

अगर α=0.5, तो आरसी समय स्थिर नमूना अवधि के बराबर है. अगरf , तो आरसी नमूना अंतराल से काफी बड़ा है, और .

फ़िल्टर पुनरावृत्ति संबंध इनपुट प्रारुप और पूर्ववर्ती बहिर्वेश के संदर्भ में बहिर्वेश प्रारुप निर्धारित करने का एक तरीका प्रदान करता है। निम्नलिखित स्यूडोकोड एल्गोरिथम डिजिटल नमूनों की एक श्रृंखला पर एक कम-पास फिल्टर के प्रभाव का अनुकरण करता है:

// आरसी लो-पास फिल्टर बहिर्वेश सैंपल लौटाएं, इनपुट सैंपल दिए गए हैं,
// समय अंतराल डीटी, और समय सतत आरसी
अभिलक्षक निम्न-पारक(वास्तविक[1..n] x, वास्तविक dt, वास्तविक RC)
    वर वास्तविक[1..n] y
    वर वास्तविक α := dt / (RC + dt)
    y[1]]:= α * x[1]
    i 2 से एन के लिए
        y[i][:= α * x[i] + (1-α) * y[i-1]
    return y

लूप जो प्रत्येक n बहिर्वेश की गणना करता है, उसे समतुल्य में पुन: सक्रिय किया जा सकता है:

   i 2 से एन के लिए
        y[i] := y[i-1] + α * (x[i] - y[i-1])

अर्थात्, एक निस्यंदक बहिर्वेश से आगामी में परिवर्तन अंतिम बहिर्वेश और आगामी निविष्टि के मध्य के अंतर के समानुपाती होता है। यह घातीय सपाट गुण सतत-समय प्रणाली में देखे गए घातीय कार्य क्षय के अनुकूल है। जैसा कि अपेक्षित था, जैसे-जैसे समय स्थिर आरसी बढ़ता है, असतत-समय घातीय पैरामीटर घटता है, और बहिर्वेश प्रारूपों निविष्टि प्रारूपों में परिवर्तन के लिए अधिक धीरे-धीरे प्रतिक्रिया देता है, प्रणाली में अधिक जड़ता है। यह निस्यंदक एक अनंत-आवेग-प्रतिक्रिया (IIR) एकल-पोल निम्न-पारक निस्यंदक है।

परिमित आवेग प्रतिक्रिया

एक परिमित-आवेग-प्रतिक्रिया निस्यंदक बनाए जा सकते हैं जो एक आदर्श तीव्र-कटऑफ़ निम्न-पारक निस्यंदक के सिंक अभिलक्षक समय-क्षेत्र प्रतिक्रिया के अनुमानित हैं। न्यूनतम विरूपण के लिए परिमित आवेग प्रतिक्रिया निस्यंदक में असीमित संख्या में गुणांक एक असीमित संकेत पर कार्य कर रहे हैं। व्यवहार में, समय-क्षेत्र प्रतिक्रिया का समय खंडित होना चाहिए और प्रायः एक सरलीकृत आकार का होता है; सबसे सरल स्थितियों में, एक औसत चलन का उपयोग किया जा सकता है, जो वर्ग समय की प्रतिक्रिया देता है।[9]


फूरियर रूपांतरण

गैर-वास्तविक समय निस्यंदक के लिए, निम्न-पारक निस्यंदक प्राप्त करने के लिए, सम्पूर्ण संकेतो को सामान्यतः लूप संकेतो के रूप में फूरियर रूपांतरण को लिया जाता है, जिन्हें आवृत्ति क्षेत्र में निस्यंदक किया जाता है, इसके पश्चात एक व्युत्क्रम फूरियर रूपांतरण होता है। समय क्षेत्र निस्यंदक कलनविधि के लिए O(n2) की तुलना में केवल O(n log(n)) संचालन आवश्यक हैं)।

यह कभी-कभी वास्तविक समय में भी किया जा सकता है, जहां छोटे, अतिव्यापी ब्लॉकों पर फूरियर रूपांतरण करने के लिए संकेतो को काफी विलम्ब हो जाता है।

सतत-समय की प्राप्ति

कटऑफ आवृत्ति के साथ क्रम 1 से 5 के बटरवर्थ निम्न-पारक निस्यंदक के वृद्धि का प्लॉट , ध्यान दें कि ढाल 20n dB/दशक है, जहां n निस्यंदक क्रम है।

परिवर्तित आवृत्ति के लिए विभिन्न प्रतिक्रियाओं के साथ कई अलग-अलग प्रकार के निस्यंदक परिपथ हैं। एक निस्यंदक की आवृत्ति प्रतिक्रिया सामान्यतः एक बोड प्लॉट का उपयोग करके प्रदर्शित की जाती है, और निस्यंदक को इसकी कटऑफ आवृत्ति और आवृत्ति रोलऑफ़ की दर से चित्रित किया जाता है। सभी स्थितियों में, कटऑफ़ आवृत्ति पर, निस्यंदक निविष्टि ऊर्जा को आधा या 3 dB तक कम कर देता है, तो निस्यंदक का 'क्रम' कटऑफ आवृत्ति से अधिक आवृत्तियों के लिए अतिरिक्त क्षीणन की मात्रा निर्धारित करता है।

  • एक 'प्रथम-क्रम निस्यंदक', उदाहरण के लिए, संकेत आयाम को आधे से कम कर देता है (इसलिए ऊर्जा 4 या 6 dB के कारक से कम हो जाती है), प्रत्येक बार आवृत्ति दोगुनी हो जाती है (एक सप्तक बढ़ जाती है); अधिक सटीक रूप से, उच्च आवृत्ति की सीमा में ऊर्जा रोलऑफ़ प्रति दशक 20 dB तक पहुंचता है। प्रथम क्रम के निस्यंदक के लिए परिमाण बोड प्लॉट कटऑफ आवृत्ति के नीचे एक क्षैतिज रेखा और कटऑफ आवृत्ति के ऊपर एक विकर्ण रेखा की भांति दिखती है। दोनों के मध्य की सीमा पर एक "कनी वक्र" भी है, जो दो सीधी रेखा वाले क्षेत्रों के मध्य सुचारू रूप से परिवर्तन करता है। यदि प्रथम-क्रम निम्न-पारक निस्यंदक के स्थानांतरण अभिलक्षक में शून्य के साथ-साथ ध्रुव भी है, तो बोड प्लॉट उच्च आवृत्तियों के कुछ अधिकतम क्षीणन पर, पुनः से समतल हो जाता है; इस तरह का प्रभाव उदाहरण के लिए एक-पोल निस्यंदक के आसपास थोड़ा सा निविष्टि लीक होने के कारण होता है; यह एक-ध्रुव-शून्य निस्यंदक अभी भी एक प्रथम-क्रम निम्न-पारक है। पोल-शून्य प्लॉट और आरसी परिपथ देखें।
  • एक 'दूसरे क्रम का निस्यंदक' उच्च आवृत्तियों को अधिक तीव्रता से क्षीण करता है। इस प्रकार के निस्यंदक के लिए बोड प्लॉट प्रथम-क्रम निस्यंदक की भांति दिखता है, अतिरिक्त इसके कि यह अधिक तीव्रता से गिर जाता है। उदाहरण के लिए, एक दूसरे क्रम का बटरवर्थ निस्यंदक संकेत के आयामों को उसके मूल स्तर के एक चौथाई तक कम कर देता है, और प्रत्येक बार आवृत्ति दोगुनी हो जाती है (इसलिए ऊर्जा 12 dB प्रति सप्तक, या 40 dB प्रति दशक कम हो जाती है)। अन्य ऑल-पोल सेकंड-क्रम निस्यंदक प्रारम्भ में उनके क्यू कारक के आधार पर अलग-अलग दरों पर रोल ऑफ हो सकते हैं, परन्तु 12 dB प्रति अष्टक की समान अंतिम दर तक पहुंच सकते हैं; और प्रथम-क्रम निस्यंदक के साथ, स्थानांतरण कार्य में शून्य उच्च-आवृत्ति स्पर्शोन्मुख को परिवर्तित कर सकते हैं। इसके लिए आरएलसी परिपथ देखें।
  • तृतीय और उच्च-क्रम निस्यंदक समान रूप से परिभाषित किए गए हैं। सामान्यतः, एक क्रम - n ऑल-पोल निस्यंदक के लिए ऊर्जा रोलऑफ़ की अंतिम दर 6n dB प्रति अष्टक (20n dB प्रति दशक) है।

किसी भी बटरवर्थ निस्यंदक पर, यदि कोई क्षैतिज रेखा को दाईं ओर और विकर्ण रेखा को ऊपरी-बाएँ (अभिलक्षक के स्पर्शोन्मुख) तक बढ़ाता है, तो वे क्षैतिज रेखा के नीचे 3 dB कटऑफ़ आवृत्ति पर प्रतिच्छेद करते हैं। विभिन्न प्रकार के निस्यंदक (बटरवर्थ निस्यंदक, चेबिशेव निस्यंदक, बेसल निस्यंदक, आदि) सभी में अलग-अलग दिखने वाले कनी वक्र होते हैं। कई दूसरे क्रम के निस्यंदक में शिखरण या अनुनाद होता है जो इस उत्कर्ष पर क्षैतिज रेखा के ऊपर अपनी आवृत्ति प्रतिक्रिया डालता है।

'निम्न' और 'उच्च' के अर्थ—अर्थात् कटऑफ़ आवृत्ति—निस्यंदक की विशेषताओं पर निर्भर करती है। शब्द निम्न-पारक निस्यंदक केवल निस्यंदक की प्रतिक्रिया के आकार को संदर्भित करता है; और एक उच्च-पारक निस्यंदक बनाया जा सकता है जो किसी भी निम्न-पारक निस्यंदक की तुलना में कम आवृत्ति पर कट ऑफ करता है। यह उनकी प्रतिक्रियाएं हैं जो उन्हें विभाजित करती हैं। विद्युत परिपथ को किसी भी अभीष्ट आवृत्ति सीमा के लिए सीधे सूक्ष्म तरंग आवृत्ति (1 GHz से ऊपर) और उच्चतर के माध्यम से तैयार किया जा सकता है।

लाप्लास अंकन

सतत-समय के निस्यंदक को उनके आवेग प्रतिक्रिया के लाप्लास परिवर्तन के संदर्भ में भी वर्णित किया जा सकता है, जिससे निस्यंदक की सभी विशेषताओं को ध्रुवों के प्रतिरूपो और लाप्लास के शून्य को जटिल विमान में परिवर्तित होने पर विचार करके सरलता से विश्लेषण किया जा सकता है, (असतत समय में, इसी प्रकार आवेग प्रतिक्रिया के Z-रूपांतरण पर विचार कर सकते हैं)।

उदाहरण के लिए, प्रथम-क्रम निम्न-पारक निस्यंदक को लाप्लास प्रतीकांकन में वर्णित किया जा सकता है:

जहाँ s लाप्लास परिवर्तन चर है, τ निस्यंदक समय स्थिरांक, और K पारकबैंड में निस्यंदक की वृद्धि है।

विद्युत निम्न-पारक निस्यंदक

प्रथम अनुक्रम

आरसी निस्यंदक

निष्क्रिय, प्रथम अनुक्रम निम्न-पारक आरसी निस्यंदक।

एक साधारण निम्न-पारक निस्यंदक विद्युत परिपथ में विद्युत भार के साथ श्रृंखला में एक अवरोधक होता है, और विद्युत भार के साथ समानांतर में एक संधारित्र होता है। जो संधारित्र प्रतिक्रिया प्रदर्शित करता है, और कम आवृत्ति संकेतों को ब्लॉक करता है, इसके अतिरिक्त उन्हें विद्युत भार के माध्यम से विवश है। उच्च आवृत्तियों पर प्रतिक्रिया कम हो जाती है, और संधारित्र प्रभावी रूप से लघु परिपथ के रूप में कार्य करता है। प्रतिरोध और संधारित्र का संयोजन निस्यंदक का समय स्थिरांक , (ग्रीक अक्षर ताऊ द्वारा दर्शाया गया) देता है। ब्रेक आवृत्ति या टर्नओवर आवृत्ति, कॉर्नर आवृत्ति या कटऑफ़ आवृत्ति (हर्ट्ज़ में) भी कहा जाता है, इन्हे समय स्थिर द्वारा निर्धारित किया जाता है:

या समकक्ष (रेडियन प्रति सेकंड में):

इस परिपथ को उस समय पर विचार करके समझा जा सकता है जब संधारित्र को प्रतिरोधक के माध्यम से चार्ज या डिस्चार्ज करने की आवश्यकता होती है:

  • कम आवृत्तियों पर, संधारित्र के लिए निविष्टि वोल्टता के समान व्यावहारिक रूप से समान वोल्टता तक चार्ज करने के लिए बहुत समय होता है।
  • उच्च आवृत्तियों पर, संधारित्र के पारक निविष्टि स्विच दिशा से पूर्व केवल थोड़ी मात्रा में चार्ज करने का समय होता है। निविष्टि ऊपर और नीचे जाने वाली राशि का केवल एक छोटा सा अंश बहिर्वेश ऊपर और नीचे जाता है। दोगुनी आवृत्ति पर, इसके पारक केवल आधी राशि पर चार्ज करने का समय होता है।

इस परिपथ को समझने का दूसरा माध्यम एक विशेष आवृत्ति पर प्रतिक्रिया की अवधारणा के माध्यम से होता है:

  • चूँकि दिष्टधारा (DC) संधारित्र के माध्यम से प्रवाहित नहीं हो सकती है, डीसी निविष्टि को चिह्नित पथ (संधारित्र को हटाने के सादृश्य) से बाहर प्रवाहित होना चाहिए।
  • चूँकि प्रत्यावर्ती धारा (AC) संधारित्र के माध्यम से बहुत अच्छी तरह से प्रवाहित होती है, लगभग साथ ही साथ यह ठोस तार के माध्यम से, AC निविष्टि संधारित्र के माध्यम से, और प्रभावी रूप से भूमि पर शार्ट परिपथ (केवल एक तार के साथ संधारित्र को परिवर्तित करने के सादृश्य) के माध्यम से प्रवाहित होती है।

संधारित्र एक ऑन/ऑफ वस्तु (जैसे ब्लॉक या ऊपर दिए गए फ्लुइडिक स्पष्टीकरण) नहीं है। संधारित्र इन दो चरम सीमाओं के मध्य परिवर्तनशील रूप से कार्य करता है। यह बोड प्लॉट आवृत्ति प्रतिक्रिया है जो इस परिवर्तनशीलता को दर्शाती है।

आरएल निस्यंदक

एक प्रतिरोधक-विप्रेरक परिपथ या आरएल निस्यंदक एक विद्युत परिपथ है जो वोल्टता स्रोत या वर्तमान स्रोत द्वारा संचालित प्रतिरोधों और प्रेरकों से बना होता है। प्रथम श्रेणी का आरएल परिपथ एक प्रतिरोधक और एक प्रेरक से बना होता है और यह आरएल परिपथ का सबसे सरल प्रकार है।

प्रथम क्रम आरएल परिपथ सबसे सरल सादृश्य निस्यंदक अनंत आवेग प्रतिक्रिया विद्युत निस्यंदक में से एक है। इसमें एक प्रतिरोधक और एक विप्रेरक होता है, या तो वोल्टता स्रोत द्वारा संचालित श्रृंखला में और वर्तमान स्रोत द्वारा संचालित समानांतर परिपथ में होता है।

द्वितीय अनुक्रम

आरएलसी निस्यंदक

निम्न-पारक निस्यंदक के रूप में आरएलसी परिपथ।

एक आरएलसी परिपथ (अक्षर R, L और C एक अलग क्रम में हो सकते हैं) एक विद्युत परिपथ है जिसमें एक प्रतिरोधक, विप्रेरक और एक संधारित्र होता है, जो श्रृंखला में या समानांतर में जुड़े होते है। नाम का आरएलसी भाग उन अक्षरों के कारण है जो क्रमशः विद्युत प्रतिरोध, अधिष्ठापन और संधारित्र के लिए सामान्य विद्युत प्रतीक हैं। परिपथ धारा के लिए एक सरल आवर्ती दोलक बनाता है, जो एलसी परिपथ के समान ही प्रतिध्वनित होगा। प्रतिरोध की उपस्थिति का मुख्य अंतर यह है कि परिपथ में प्रेरित कोई भी दोलन समय के साथ समाप्त हो जाएगा यदि इसे किसी स्रोत द्वारा जारी नहीं रखा जाता है, तो प्रतिरोधक के इस प्रभाव को अवमन्‍दक कहते हैं। प्रतिरोध की उपस्थिति भी उत्कर्ष अनुनादी आवृत्ति को कुछ स्थिति तक कम कर देती है। वास्तविक परिपथों में कुछ प्रतिरोध अपरिहार्य होते हैं, तथापि, एक प्रतिरोधक विशेष रूप से एक घटक के रूप में सम्मिलित न हो। सिद्धांत के उद्देश्य के लिए एक आदर्श, शुद्ध एलसी परिपथ एक अमूर्त है।

इस परिपथ के कई अनुप्रयोग हैं। उनका उपयोग कई अलग-अलग प्रकार के दोलन परिपथ में किया जाता है। एक अन्य महत्वपूर्ण अनुप्रयोग समस्वरण के लिए है, जैसे कि रेडियो प्राप्तकर्ता या दूरदर्शन संग्रह में, जहाँ उनका उपयोग परिवेशी रेडियो तरंगों से आवृत्तियों की एक संकीर्ण श्रेणी का चयन करने के लिए किया जाता है। इस भूमिका में परिपथ को प्रायः समस्वरित परिपथ कहा जाता है। एक आरएलसी परिपथ का उपयोग बैंड-पारक निस्यंदक, बैंड-रोधक निस्यंदक, निम्न-पारक निस्यंदक या उच्च-पारक निस्यंदक के रूप में किया जा सकता है। आरएलसी निस्यंदक को दूसरे क्रम के परिपथ के रूप में वर्णित किया गया है, जिसका अर्थ है कि परिपथ में किसी भी वोल्टता या धारा को परिपथ विश्लेषण में दूसरे क्रम के अंतर समीकरण द्वारा वर्णित किया जा सकता है।

उच्च क्रम निष्क्रिय निस्यंदक

उच्च क्रम के निष्क्रिय निस्यंदक भी बनाए जा सकते हैं (तृतीय क्रम के उदाहरण के लिए आरेख देखें)। तीसरा क्रम निम्न-पास फ़िल्टर (कायर टोपोलॉजी)। फिल्टर कटऑफ फ्रीक्वेंसी ω के साथ बटरवर्थ फिल्टर बन जाता हैc=1 जब (उदाहरण के लिए) सी2= 4/पी व्यक्तिगत, टी4=1 ओम, एल1=3/2 हेनरी और एल3= 1/2 हेनरी।


सक्रिय विद्युत प्राप्ति

एक सक्रिय निम्न-पारक निस्यंदक।

एक अन्य प्रकार का विद्युत परिपथ एक सक्रिय निम्न-पारक निस्यंदक है।

चित्र में दिखाए गए परिचालन प्रवर्धक परिपथ में, कटऑफ आवृत्ति (हेटर्स में) को इस प्रकार परिभाषित किया गया है:

या समकक्ष (रेडियन प्रति सेकंड में):

पारण बैंड में वृद्धि -R2/R है, और रोधकबैंड -6 dB प्रति सप्तक (अर्थात -20 dB प्रति दशक) पर बंद हो जाता है क्योंकि यह एक प्रथम-क्रम निस्यंदक है।

यह भी देखें

संदर्भ

  1. Long Pass Filters and Short Pass Filters Information, retrieved 2017-10-04
  2. Long Pass Filters and Short Pass Filters Information, retrieved 2017-10-04
  3. Sedra, Adel; Smith, Kenneth C. (1991). Microelectronic Circuits, 3 ed. Saunders College Publishing. p. 60. ISBN 0-03-051648-X.
  4. "ADSL filters explained". Epanorama.net. Retrieved 2013-09-24.
  5. "Home Networking – Local Area Network". Pcweenie.com. 2009-04-12. Archived from the original on 2013-09-27. Retrieved 2013-09-24.
  6. Mastering Windows: Improving Reconstruction
  7. 7.0 7.1 Hayt, William H., Jr. and Kemmerly, Jack E. (1978). Engineering Circuit Analysis. New York: McGRAW-HILL BOOK COMPANY. pp. 211–224, 684–729.{{cite book}}: CS1 maint: multiple names: authors list (link)
  8. Boyce, William and DiPrima, Richard (1965). Elementary Differential Equations and Boundary Value Problems. New York: JOHN WILEY & SONS. pp. 11–24.{{cite book}}: CS1 maint: multiple names: authors list (link)
  9. Whilmshurst, T H (1990) Signal recovery from noise in electronic instrumentation. ISBN 9780750300582


बाहरी संबंध