रैखिक चरण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Filter whose phase response is proportional to frequency}}
{{Short description|Filter whose phase response is proportional to frequency}}


[[ संकेत आगे बढ़ाना |सिग्नल प्रोसेसिंग]] में, रैखिक चरण [[ फ़िल्टर (सिग्नल प्रोसेसिंग) |फ़िल्टर]] की एक संपत्ति है जहां फ़िल्टर की [[चरण प्रतिक्रिया]] [[आवृत्ति]] का एक रैखिक कार्य है। परिणाम यह है कि इनपुट सिग्नल के सभी आवृत्ति घटकों को एक ही स्थिर राशि (रैखिक फ़ंक्शन की ढलान) द्वारा समय (आमतौर पर विलंबित) में स्थानांतरित किया जाता है, जिसे [[समूह विलंब]] कहा जाता है। नतीजतन, एक दूसरे के सापेक्ष आवृत्तियों की देरी के कारण कोई चरण विरूपण नहीं होता है।
[[ संकेत आगे बढ़ाना |सिग्नल प्रोसेसिंग]] में, '''रैखिक चरण''' [[ फ़िल्टर (सिग्नल प्रोसेसिंग) |फ़िल्टर]] की एक संपत्ति है जहां फ़िल्टर की [[चरण प्रतिक्रिया]] [[आवृत्ति]] का एक रैखिक कार्य होती है। परिणाम यह है कि इनपुट सिग्नल के सभी आवृत्ति घटकों को एक साथ स्थानांतरित किया जाता है, जिसे [[समूह विलंब]] कहा जाता है। नतीजतन, एक दूसरे के सापेक्ष आवृत्तियों की देरी के कारण कोई चरण विरूपण नहीं होता है।


असतत-समय के संकेतों के लिए, एक [[परिमित आवेग प्रतिक्रिया]] (एफआईआर) फिल्टर के साथ सही रैखिक चरण आसानी से प्राप्त किया जाता है, जिसमें गुणांक होते हैं जो सममित या विरोधी-सममित होते हैं।<ref>{{cite web|last=Selesnick|first=Ivan|title=रैखिक-चरण एफआईआर फ़िल्टर के चार प्रकार|url=http://cnx.org/content/m10706/latest/|work=Openstax CNX|publisher=Rice University|accessdate=27 April 2014}}</ref> असीमित आवेग प्रतिक्रिया (आईआईआर) डिजाइनों के साथ अनुमान प्राप्त किए जा सकते हैं, जो अधिक कम्प्यूटेशनल रूप से कुशल हैं। कई तकनीकें हैं:
असतत-समय के संकेतों के लिए, एक [[परिमित आवेग प्रतिक्रिया]] (एफआईआर) फिल्टर के साथ सही रैखिक चरण आसानी से प्राप्त किया जाता है, जिसमें गुणांक होते हैं जो सममित या विरोधी-सममित होते हैं।<ref>{{cite web|last=Selesnick|first=Ivan|title=रैखिक-चरण एफआईआर फ़िल्टर के चार प्रकार|url=http://cnx.org/content/m10706/latest/|work=Openstax CNX|publisher=Rice University|accessdate=27 April 2014}}</ref> असीमित आवेग प्रतिक्रिया (आईआईआर) डिजाइनों के साथ अनुमान प्राप्त किए जा सकते हैं, जो अधिक कम्प्यूटेशनल रूप से कुशल होते है। कई तकनीकें हैं:
* एक[[ बेसल फिल्टर ]]ट्रांसफर फ़ंक्शन जिसमें एक अधिकतम फ्लैट समूह विलंब सन्निकटन फ़ंक्शन होता है
* एक[[ बेसल फिल्टर ]]ट्रांसफर फ़ंक्शन जिसमें एक अधिकतम फ्लैट समूह विलंब सन्निकटन फ़ंक्शन होता है
* एक चरण तुल्यकारक
* एक चरण तुल्यकारक


== परिभाषा ==
== परिभाषा ==
एक फिल्टर को रैखिक चरण फिल्टर कहा जाता है यदि आवृत्ति प्रतिक्रिया का चरण घटक आवृत्ति का एक रैखिक कार्य है। निरंतर समय के आवेदन के लिए, फ़िल्टर की आवृत्ति प्रतिक्रिया फ़िल्टर के [[आवेग प्रतिक्रिया]] का [[फूरियर रूपांतरण]] है, और एक रैखिक चरण संस्करण का रूप है:
एक फिल्टर को रैखिक चरण फिल्टर कहा जाता है यदि आवृत्ति प्रतिक्रिया का चरण घटक आवृत्ति का एक रैखिक कार्य है। निरंतर समय के आवेदन के लिए, फ़िल्टर की आवृत्ति प्रतिक्रिया फ़िल्टर के [[आवेग प्रतिक्रिया]] का [[फूरियर रूपांतरण]] होता है, और एक रैखिक चरण संस्करण का रूप है:


:<math>H(\omega) = A(\omega)\ e^{-j \omega \tau},</math>
:<math>H(\omega) = A(\omega)\ e^{-j \omega \tau},</math>
Line 22: Line 22:
*k एक पूर्णांक है, और k/2 नमूनों की इकाइयों में समूह विलंब है।
*k एक पूर्णांक है, और k/2 नमूनों की इकाइयों में समूह विलंब है।


<math>H_{2\pi}(\omega)</math> एक फूरियर श्रृंखला है जिसे डिस्क्रीट-टाइम_फोरियर_ट्रांसफॉर्म#Relationship_to_the_Z-transform|जेड-ट्रांसफॉर्म ऑफ फिल्टर इम्पल्स रिस्पांस के संदर्भ में भी व्यक्त किया जा सकता है। अर्थात।:
<math>H_{2\pi}(\omega)</math> एक फूरियर श्रृंखला है जिसे फ़िल्टर आवेग प्रतिक्रिया के जेड-ट्रांसफॉर्म के संदर्भ में भी व्यक्त किया जा सकता है। अर्थात:


:<math>H_{2\pi}(\omega) = \left. \widehat H(z) \, \right|_{z = e^{j \omega}} = \widehat H(e^{j \omega}),</math>
:<math>H_{2\pi}(\omega) = \left. \widehat H(z) \, \right|_{z = e^{j \omega}} = \widehat H(e^{j \omega}),</math>
Line 28: Line 28:


== उदाहरण ==
== उदाहरण ==
जब एक साइनसॉइड<math>,\ \sin(\omega t + \theta),</math>निरंतर (आवृत्ति-स्वतंत्र) समूह विलंब वाले फ़िल्टर से गुजरता है <math>\tau,</math>परिणाम है:
जब एक साइनसॉइड<math>,\ \sin(\omega t + \theta),</math>निरंतर (आवृत्ति-स्वतंत्र) समूह विलंब वाले फ़िल्टर से गुजरता है <math>\tau,</math>परिणाम होता है:


:<math>A(\omega)\cdot \sin(\omega (t-\tau) + \theta) = A(\omega)\cdot \sin(\omega t + \theta - \omega \tau),</math>
:<math>A(\omega)\cdot \sin(\omega (t-\tau) + \theta) = A(\omega)\cdot \sin(\omega t + \theta - \omega \tau),</math>
Line 43: Line 43:
The multiplier <math>A(\omega) e^{-i\omega \tau}</math>, as a function of ω, is known as the filter's ''frequency response''.
The multiplier <math>A(\omega) e^{-i\omega \tau}</math>, as a function of ω, is known as the filter's ''frequency response''.
</ref>
</ref>
लगभग रैखिक चरण के लिए, उस संपत्ति को केवल फ़िल्टर के [[पासबैंड]] में रखना पर्याप्त है, जहां |A(ω)| अपेक्षाकृत बड़े मूल्य हैं। इसलिए, फ़िल्टर की रैखिकता की जांच करने के लिए परिमाण और चरण ग्राफ़ ([[बोड भूखंड]]) दोनों का उपयोग किया जाता है। एक रेखीय चरण ग्राफ में π और/या 2π रेडियंस की असंततता हो सकती है। छोटे होते हैं जहां A(ω) चिन्ह बदलता है। चूँकि |A(ω)| नकारात्मक नहीं हो सकता, परिवर्तन चरण प्लॉट में परिलक्षित होते हैं। 2π विच्छिन्नता का मूल मान प्लॉट करने के कारण होता है <math>\omega \tau,</math>वास्तविक मूल्य के बजाय।
लगभग रैखिक चरण के लिए, उस संपत्ति को केवल फ़िल्टर के [[पासबैंड]] में रखना पर्याप्त है, जहां |A(ω)| अपेक्षाकृत बड़े मूल्य हैं। इसलिए, फ़िल्टर की रैखिकता की जांच करने के लिए परिमाण और चरण ग्राफ़ ([[बोड भूखंड]]) दोनों का उपयोग किया जाता है। एक "रैखिक" चरण ग्राफ में π और/या 2π रेडियन की असंततता हो सकती है। छोटे होते हैं जहां A(ω) चिन्ह बदलता है। चूँकि |A(ω)| नकारात्मक नहीं हो सकता, परिवर्तन चरण प्लॉट में परिलक्षित होते हैं। 2π विच्छिन्नता का मूल मान प्लॉट करने के कारण होता है


असतत-समय के अनुप्रयोगों में, आवधिकता और समरूपता के कारण, केवल 0 और Nyquist आवृत्ति के बीच आवृत्तियों के क्षेत्र की जांच करता है। [[सामान्यीकृत आवृत्ति (डिजिटल सिग्नल प्रोसेसिंग)]] के आधार पर, Nyquist आवृत्ति वास्तविक नमूना-दर का 0.5, 1.0, π, या ½ हो सकती है। रैखिक और गैर-रैखिक चरण के कुछ उदाहरण नीचे दिखाए गए हैं।
असतत-समय के अनुप्रयोगों में, आवधिकता और समरूपता के कारण, केवल 0 और निक्विस्ट आवृत्ति के बीच आवृत्तियों के क्षेत्र की जांच करता है। [[सामान्यीकृत आवृत्ति (डिजिटल सिग्नल प्रोसेसिंग)|सामान्यीकृत आवृत्ति]] इकाइयों के आधार पर, निक्विस्ट आवृत्ति वास्तविक नमूना-दर का 0.5, 1.0, π, या ½ हो सकती है। रैखिक और गैर-रैखिक चरण के कुछ उदाहरण नीचे दिखाए गए हैं।


[[Image:Phase Plots.svg|thumb|400px|left|{{center|[[phase response]] vs [[Normalized frequency (digital signal processing)|normalized frequency]] (ω/π)}}]] {{multiple image
[[Image:Phase Plots.svg|thumb|400px|left|{{center|[[phase response]] vs [[Normalized frequency (digital signal processing)|normalized frequency]] (ω/π)}}]] {{multiple image
Line 58: Line 58:
  | caption2 = Phase discontinuities are removed by allowing negative amplitude.
  | caption2 = Phase discontinuities are removed by allowing negative amplitude.
  }}
  }}
{{clear}}
रेखीय चरण के साथ एक असतत-समय फ़िल्टर एक एफआईआर फ़िल्टर द्वारा प्राप्त किया जा सकता है जो या तो सममित या विरोधी-सममित है।<ref>{{cite web|last=Selesnick|first=Ivan|title=रैखिक-चरण एफआईआर फ़िल्टर के चार प्रकार|url=http://cnx.org/content/m10706/latest/|work=Openstax CNX|publisher=Rice University|accessdate=27 April 2014}}</ref>एक आवश्यक लेकिन पर्याप्त शर्त नहीं है:
रेखीय चरण के साथ एक असतत-समय फ़िल्टर एक एफआईआर फ़िल्टर द्वारा प्राप्त किया जा सकता है जो या तो सममित या विरोधी-सममित है।<ref>{{cite web|last=Selesnick|first=Ivan|title=रैखिक-चरण एफआईआर फ़िल्टर के चार प्रकार|url=http://cnx.org/content/m10706/latest/|work=Openstax CNX|publisher=Rice University|accessdate=27 April 2014}}</ref>एक आवश्यक लेकिन पर्याप्त शर्त नहीं है:
:<math>\sum_{n =-\infty}^\infty h[n] \cdot \sin(\omega \cdot (n - \alpha) + \beta)=0</math>
:<math>\sum_{n =-\infty}^\infty h[n] \cdot \sin(\omega \cdot (n - \alpha) + \beta)=0</math>
Line 70: Line 69:
:<math>H_{2\pi}(\omega) = A(\omega)\ e^{-j \omega k/2 + j \beta},</math>
:<math>H_{2\pi}(\omega) = A(\omega)\ e^{-j \omega k/2 + j \beta},</math>
:<math>\arg \left[ H_{2\pi}(\omega) \right] = \beta - \omega k/2 </math> के लिए <math> -\pi < \omega < \pi </math>
:<math>\arg \left[ H_{2\pi}(\omega) \right] = \beta - \omega k/2 </math> के लिए <math> -\pi < \omega < \pi </math>
इस स्थिरांक के कारण, प्रणाली का चरण आवृत्ति का कड़ाई से रैखिक कार्य नहीं है, लेकिन यह रैखिक चरण प्रणालियों के कई उपयोगी गुणों को बरकरार रखता है।<ref>{{cite book|last1=Oppenheim|first1=Alan V|author2=Ronald W Schafer|title=अंकीय संकेत प्रक्रिया|date=1975|publisher=Prentice Hall|isbn=0-13-214635-5|edition=1}}</ref>
इस स्थिरांक के कारण, प्रणाली का चरण आवृत्ति का एक कड़ाई से रैखिक कार्य नहीं है, लेकिन यह रैखिक चरण प्रणालियों के कई उपयोगी गुणों को बनाए रखता है।<ref>{{cite book|last1=Oppenheim|first1=Alan V|author2=Ronald W Schafer|title=अंकीय संकेत प्रक्रिया|date=1975|publisher=Prentice Hall|isbn=0-13-214635-5|edition=1}}</ref>
 
 
== यह भी देखें ==
== यह भी देखें ==
* [[न्यूनतम चरण]]
* [[न्यूनतम चरण]]

Revision as of 09:24, 16 March 2023

सिग्नल प्रोसेसिंग में, रैखिक चरण फ़िल्टर की एक संपत्ति है जहां फ़िल्टर की चरण प्रतिक्रिया आवृत्ति का एक रैखिक कार्य होती है। परिणाम यह है कि इनपुट सिग्नल के सभी आवृत्ति घटकों को एक साथ स्थानांतरित किया जाता है, जिसे समूह विलंब कहा जाता है। नतीजतन, एक दूसरे के सापेक्ष आवृत्तियों की देरी के कारण कोई चरण विरूपण नहीं होता है।

असतत-समय के संकेतों के लिए, एक परिमित आवेग प्रतिक्रिया (एफआईआर) फिल्टर के साथ सही रैखिक चरण आसानी से प्राप्त किया जाता है, जिसमें गुणांक होते हैं जो सममित या विरोधी-सममित होते हैं।[1] असीमित आवेग प्रतिक्रिया (आईआईआर) डिजाइनों के साथ अनुमान प्राप्त किए जा सकते हैं, जो अधिक कम्प्यूटेशनल रूप से कुशल होते है। कई तकनीकें हैं:

  • एकबेसल फिल्टर ट्रांसफर फ़ंक्शन जिसमें एक अधिकतम फ्लैट समूह विलंब सन्निकटन फ़ंक्शन होता है
  • एक चरण तुल्यकारक

परिभाषा

एक फिल्टर को रैखिक चरण फिल्टर कहा जाता है यदि आवृत्ति प्रतिक्रिया का चरण घटक आवृत्ति का एक रैखिक कार्य है। निरंतर समय के आवेदन के लिए, फ़िल्टर की आवृत्ति प्रतिक्रिया फ़िल्टर के आवेग प्रतिक्रिया का फूरियर रूपांतरण होता है, और एक रैखिक चरण संस्करण का रूप है:

जहाँ:

  • A(ω) एक वास्तविक-मूल्यवान फलन है।
  • समूह विलंब है।

असतत-समय के अनुप्रयोग के लिए, रैखिक चरण आवेग प्रतिक्रिया के असतत-समय फूरियर परिवर्तन का रूप है:

जहाँ:

  • A(ω) 2π आवर्तता वाला एक वास्तविक-मूल्यवान फलन है।
  • k एक पूर्णांक है, और k/2 नमूनों की इकाइयों में समूह विलंब है।

एक फूरियर श्रृंखला है जिसे फ़िल्टर आवेग प्रतिक्रिया के जेड-ट्रांसफॉर्म के संदर्भ में भी व्यक्त किया जा सकता है। अर्थात:

जहां संकेतन जेड-ट्रांसफॉर्म को फूरियर ट्रांसफॉर्म से अलग करता है।

उदाहरण

जब एक साइनसॉइडनिरंतर (आवृत्ति-स्वतंत्र) समूह विलंब वाले फ़िल्टर से गुजरता है परिणाम होता है:

जहाँ:

  • एक आवृत्ति-निर्भर आयाम गुणक है।
  • चरण बदलाव कोणीय आवृत्ति का एक रैखिक कार्य है , और ढाल है।

यह इस प्रकार है कि एक जटिल घातीय कार्य:

में परिवर्तित हो जाता है:

[note 1]

लगभग रैखिक चरण के लिए, उस संपत्ति को केवल फ़िल्टर के पासबैंड में रखना पर्याप्त है, जहां |A(ω)| अपेक्षाकृत बड़े मूल्य हैं। इसलिए, फ़िल्टर की रैखिकता की जांच करने के लिए परिमाण और चरण ग्राफ़ (बोड भूखंड) दोनों का उपयोग किया जाता है। एक "रैखिक" चरण ग्राफ में π और/या 2π रेडियन की असंततता हो सकती है। छोटे होते हैं जहां A(ω) चिन्ह बदलता है। चूँकि |A(ω)| नकारात्मक नहीं हो सकता, परिवर्तन चरण प्लॉट में परिलक्षित होते हैं। 2π विच्छिन्नता का मूल मान प्लॉट करने के कारण होता है

असतत-समय के अनुप्रयोगों में, आवधिकता और समरूपता के कारण, केवल 0 और निक्विस्ट आवृत्ति के बीच आवृत्तियों के क्षेत्र की जांच करता है। सामान्यीकृत आवृत्ति इकाइयों के आधार पर, निक्विस्ट आवृत्ति वास्तविक नमूना-दर का 0.5, 1.0, π, या ½ हो सकती है। रैखिक और गैर-रैखिक चरण के कुछ उदाहरण नीचे दिखाए गए हैं।

Bode plots. Phase discontinuities are π radians, indicating a sign reversal.
Phase discontinuities are removed by allowing negative amplitude.
Two depictions of the frequency response of a simple FIR filter

रेखीय चरण के साथ एक असतत-समय फ़िल्टर एक एफआईआर फ़िल्टर द्वारा प्राप्त किया जा सकता है जो या तो सममित या विरोधी-सममित है।[2]एक आवश्यक लेकिन पर्याप्त शर्त नहीं है:

कुछ के लिए .[3]


सामान्यीकृत रैखिक चरण

सामान्यीकृत रेखीय चरण वाले सिस्टम में एक अतिरिक्त आवृत्ति-स्वतंत्र स्थिरांक होता है चरण में जोड़ा गया। असतत समय के मामले में, उदाहरण के लिए, आवृत्ति प्रतिक्रिया का रूप है:

के लिए

इस स्थिरांक के कारण, प्रणाली का चरण आवृत्ति का एक कड़ाई से रैखिक कार्य नहीं है, लेकिन यह रैखिक चरण प्रणालियों के कई उपयोगी गुणों को बनाए रखता है।[4]

यह भी देखें

टिप्पणियाँ

  1. The multiplier , as a function of ω, is known as the filter's frequency response.


उद्धरण

  1. Selesnick, Ivan. "रैखिक-चरण एफआईआर फ़िल्टर के चार प्रकार". Openstax CNX. Rice University. Retrieved 27 April 2014.
  2. Selesnick, Ivan. "रैखिक-चरण एफआईआर फ़िल्टर के चार प्रकार". Openstax CNX. Rice University. Retrieved 27 April 2014.
  3. Oppenheim, Alan V; Ronald W Schafer (1975). अंकीय संकेत प्रक्रिया (3 ed.). Prentice Hall. ISBN 0-13-214635-5.
  4. Oppenheim, Alan V; Ronald W Schafer (1975). अंकीय संकेत प्रक्रिया (1 ed.). Prentice Hall. ISBN 0-13-214635-5.