विद्युत भार: Difference between revisions

From Vigyanwiki
mNo edit summary
mNo edit summary
Line 19: Line 19:
   | isbn = 978-9048194421}}</ref> जैसे कि घर के अंदर बिजली के उपकरण की रोशनी। यह शब्द एक सर्किट द्वारा [[ बिजली की खपत ]] को भी संदर्भित कर सकता है। यह बैटरी, या [[जनित्र]] जैसे बिजली के स्रोत के विपरीत है, जो बिजली पैदा करता है।<ref name="Glisson" />  
   | isbn = 978-9048194421}}</ref> जैसे कि घर के अंदर बिजली के उपकरण की रोशनी। यह शब्द एक सर्किट द्वारा [[ बिजली की खपत ]] को भी संदर्भित कर सकता है। यह बैटरी, या [[जनित्र]] जैसे बिजली के स्रोत के विपरीत है, जो बिजली पैदा करता है।<ref name="Glisson" />  


विद्युत सिग्नल स्रोत से जुड़े उपकरण के लिए [[ इलेक्ट्रानिक्स | इलेक्ट्रानिक्स]] में इस शब्द का अधिक व्यापक रूप से उपयोग किया जाता है, चाहे वह बिजली की खपत करता हो या नहीं।<ref name="Glisson" />  यदि किसी विद्युत परिपथ में एक उत्पादन [[ पोर्ट (सर्किट सिद्धांत) |सिरा]] है, तो अंतिम सिरे की एक जोड़ी जो विद्युत संकेत उत्पन्न करती है, इस सिरे से जुड़ा सर्किट (या इसके निविष्ट [[ विद्युत प्रतिबाधा | प्रतिबाधा]] ) भार है। उदाहरण के लिए, यदि एक [[ सीडी प्लेयर | CD प्लेयर]] एक [[ एम्पलीफायर | प्रवर्धक]] से जुड़ा है, तो CD प्लेयर स्रोत है और प्रवर्धक लोड है।<ref name="Glisson" />
विद्युत सिग्नल स्रोत से जुड़े उपकरण के लिए [[ इलेक्ट्रानिक्स | इलेक्ट्रानिक्स]] में इस शब्द का अधिक व्यापक रूप से उपयोग किया जाता है, चाहे वह बिजली की खपत करता हो या नहीं।<ref name="Glisson" />  यदि किसी विद्युत परिपथ में एक उत्पादन [[ पोर्ट (सर्किट सिद्धांत) |सिरा]] है, तो अंतिम सिरे की एक जोड़ी जो विद्युत संकेत उत्पन्न करती है, इस सिरे से जुड़ा सर्किट (या इसके निविष्ट [[ विद्युत प्रतिबाधा |विद्युत प्रतिबाधा]] ) भार है। उदाहरण के लिए, यदि एक [[ सीडी प्लेयर | CD प्लेयर]] एक [[ एम्पलीफायर | प्रवर्धक]] से जुड़ा है, तो CD प्लेयर स्रोत है और प्रवर्धक भार है।<ref name="Glisson" />


लोड आउटपुट [[ वाल्ट | वाल्ट]] ेज या करंट (बिजली) के संबंध में सर्किट के प्रदर्शन को प्रभावित करता है, जैसे [[ सेंसर | सेंसर]] , [[ वोल्टेज स्रोत | वोल्टेज स्रोत]] और प्रवर्धकों में। मुख्य बिजली [[ घरेलू एसी पावर प्लग और सॉकेट | घरेलू एसी पावर प्लग और सॉकेट]] एक आसान उदाहरण प्रदान करते हैं: वे निरंतर वोल्टेज पर बिजली की आपूर्ति करते हैं, बिजली के सर्किट से जुड़े विद्युत उपकरण सामूहिक रूप से लोड बनाते हैं। जब एक उच्च-शक्ति उपकरण चालू होता है, तो यह नाटकीय रूप से लोड विद्युत प्रतिबाधा को कम करता है।
भार उत्पादन  [[वोल्टेज]] या करंट के संबंध में सर्किट के प्रदर्शन को प्रभावित करता है, जैसे [[ सेंसर | संवेदक]] , [[ वोल्टेज स्रोत | वोल्टेज स्रोत]] और प्रवर्धकों में। मुख्य बिजली [[विसर्जन केंद्र]] एक आसान उदाहरण प्रदान करते हैं: वे निरंतर वोल्टेज पर बिजली की आपूर्ति करते हैं, बिजली के सर्किट से जुड़े विद्युत उपकरण सामूहिक रूप से भार बनाते हैं। जब एक उच्च-शक्ति उपकरण चालू होता है, तो यह नाटकीय रूप से भार [[विद्युत प्रतिबाधा]] को कम करता है।


यदि लोड प्रतिबाधा बिजली आपूर्ति प्रतिबाधा से बहुत अधिक नहीं है, तो वोल्टेज गिर जाएगा। घरेलू वातावरण में, हीटिंग उपकरण पर स्विच करने से गरमागरम रोशनी काफ़ी कम हो सकती है।
यदि भार प्रतिबाधा बिजली आपूर्ति प्रतिबाधा से बहुत अधिक नहीं है, तो वोल्टेज गिर जाएगा। घरेलू वातावरण में, हीटिंग उपकरण पर स्विचन करने से गरमागरम रोशनी काफ़ी कम हो सकती है।


==एक अधिक तकनीकी दृष्टिकोण ==
==एक अधिक तकनीकी दृष्टिकोण ==
{{unreferenced section|date=February 2015}}
{{unreferenced section|date=February 2015}}
सर्किट पर लोड के प्रभाव पर चर्चा करते समय, सर्किट के वास्तविक डिजाइन की अवहेलना करना और केवल थेवेनिन समकक्ष पर विचार करना सहायक होता है। (इसके बजाय नॉर्टन के प्रमेय का उपयोग उसी परिणाम के साथ किया जा सकता है।) सर्किट के बराबर थेवेनिन इस तरह दिखता है:
सर्किट पर भार के प्रभाव पर चर्चा करते समय, सर्किट के वास्तविक डिजाइन की अवहेलना करना और केवल थेवेनिन समकक्ष पर विचार करना सहायक होता है। (इसके बजाय नॉर्टन के प्रमेय का उपयोग उसी परिणाम के साथ किया जा सकता है।) सर्किट के बराबर थेवेनिन इस तरह दिखता है:


[[image:Electric load0.png|center|thumb|322px|सर्किट को एक आदर्श वोल्टेज स्रोत बनाम श्रृंखला में [[ आंतरिक प्रतिरोध ]] रुपये के साथ दर्शाया जाता है।
[[image:Electric load0.png|center|thumb|322px|सर्किट को एक आदर्श वोल्टेज स्रोत बनाम श्रृंखला में [[ आंतरिक प्रतिरोध ]] रुपये के साथ दर्शाया जाता है।


बिना लोड (ओपन-सर्कुलेटेड टर्मिनल) के साथ, सभी <math>V_S</math> आउटपुट भर में गिर जाता है; आउटपुट वोल्टेज है <math>V_S</math>. हालांकि, यदि लोड जोड़ा जाता है तो सर्किट अलग तरह से व्यवहार करेगा। हम लोड सर्किट के विवरण को अनदेखा करना चाहते हैं, जैसा कि हमने बिजली आपूर्ति के लिए किया था, और इसे यथासंभव सरल रूप से प्रस्तुत करना चाहते हैं। यदि हम लोड का प्रतिनिधित्व करने के लिए इनपुट प्रतिबाधा का उपयोग करते हैं, तो पूरा सर्किट इस तरह दिखता है:
बिना भार (ओपन-सर्कुलेटेड टर्मिनल) के साथ, सभी <math>V_S</math> आउटपुट भर में गिर जाता है; आउटपुट वोल्टेज है <math>V_S</math>. हालांकि, यदि भार जोड़ा जाता है तो सर्किट अलग तरह से व्यवहार करेगा। हम भार सर्किट के विवरण को अनदेखा करना चाहते हैं, जैसा कि हमने बिजली आपूर्ति के लिए किया था, और इसे यथासंभव सरल रूप से प्रस्तुत करना चाहते हैं। यदि हम भार का प्रतिनिधित्व करने के लिए इनपुट प्रतिबाधा का उपयोग करते हैं, तो पूरा सर्किट इस तरह दिखता है:


[[image:Electric load1.png|center|322px|thumb|भार का इनपुट प्रतिरोध रुपये के साथ श्रृंखला में खड़ा है।
[[image:Electric load1.png|center|322px|thumb|भार का इनपुट प्रतिरोध रुपये के साथ श्रृंखला में खड़ा है।


जबकि वोल्टेज स्रोत अपने आप में एक विकट था: ओपन सर्किट, लोड जोड़ने से एक विकट: क्लोज्ड सर्किट बनता है और चार्ज प्रवाहित होता है। यह करंट एक वोल्टेज ड्रॉप को पार करता है <math>R_S</math>, इसलिए आउटपुट टर्मिनल पर वोल्टेज अब नहीं है <math>V_S</math>. आउटपुट वोल्टेज [[ वोल्टेज विभक्त नियम ]] नियम द्वारा निर्धारित किया जा सकता है:
जबकि वोल्टेज स्रोत अपने आप में एक विकट था: ओपन सर्किट, भार जोड़ने से एक विकट: क्लोज्ड सर्किट बनता है और चार्ज प्रवाहित होता है। यह करंट एक वोल्टेज ड्रॉप को पार करता है <math>R_S</math>, इसलिए आउटपुट टर्मिनल पर वोल्टेज अब नहीं है <math>V_S</math>. आउटपुट वोल्टेज [[ वोल्टेज विभक्त नियम ]] नियम द्वारा निर्धारित किया जा सकता है:


:<math>V_{OUT} = V_S \cdot \frac{R_{L}}{R_{L} + R_S}</math>
:<math>V_{OUT} = V_S \cdot \frac{R_{L}}{R_{L} + R_S}</math>
यदि लोड प्रतिबाधा की तुलना में स्रोत प्रतिरोध नगण्य रूप से छोटा नहीं है, तो आउटपुट वोल्टेज गिर जाएगा।
यदि भार प्रतिबाधा की तुलना में स्रोत प्रतिरोध नगण्य रूप से छोटा नहीं है, तो आउटपुट वोल्टेज गिर जाएगा।


यह दृष्टांत सरल विद्युत प्रतिरोध का उपयोग करता है, लेकिन इसी तरह की चर्चा प्रतिरोधक, कैपेसिटिव और आगमनात्मक तत्वों का उपयोग करके चालू सर्किटों में वैकल्पिक रूप से लागू की जा सकती है।
यह दृष्टांत सरल विद्युत प्रतिरोध का उपयोग करता है, लेकिन इसी तरह की चर्चा प्रतिरोधक, कैपेसिटिव और आगमनात्मक तत्वों का उपयोग करके चालू सर्किटों में वैकल्पिक रूप से लागू की जा सकती है।

Revision as of 18:13, 17 March 2023

विद्युत भार एक विद्युत घटक या विद्युत परिपथ का भाग है जो (सक्रिय) विद्युत शक्ति का उपभोग करता है,[1][2] जैसे कि घर के अंदर बिजली के उपकरण की रोशनी। यह शब्द एक सर्किट द्वारा बिजली की खपत को भी संदर्भित कर सकता है। यह बैटरी, या जनित्र जैसे बिजली के स्रोत के विपरीत है, जो बिजली पैदा करता है।[2]

विद्युत सिग्नल स्रोत से जुड़े उपकरण के लिए इलेक्ट्रानिक्स में इस शब्द का अधिक व्यापक रूप से उपयोग किया जाता है, चाहे वह बिजली की खपत करता हो या नहीं।[2] यदि किसी विद्युत परिपथ में एक उत्पादन सिरा है, तो अंतिम सिरे की एक जोड़ी जो विद्युत संकेत उत्पन्न करती है, इस सिरे से जुड़ा सर्किट (या इसके निविष्ट विद्युत प्रतिबाधा ) भार है। उदाहरण के लिए, यदि एक CD प्लेयर एक प्रवर्धक से जुड़ा है, तो CD प्लेयर स्रोत है और प्रवर्धक भार है।[2]

भार उत्पादन वोल्टेज या करंट के संबंध में सर्किट के प्रदर्शन को प्रभावित करता है, जैसे संवेदक , वोल्टेज स्रोत और प्रवर्धकों में। मुख्य बिजली विसर्जन केंद्र एक आसान उदाहरण प्रदान करते हैं: वे निरंतर वोल्टेज पर बिजली की आपूर्ति करते हैं, बिजली के सर्किट से जुड़े विद्युत उपकरण सामूहिक रूप से भार बनाते हैं। जब एक उच्च-शक्ति उपकरण चालू होता है, तो यह नाटकीय रूप से भार विद्युत प्रतिबाधा को कम करता है।

यदि भार प्रतिबाधा बिजली आपूर्ति प्रतिबाधा से बहुत अधिक नहीं है, तो वोल्टेज गिर जाएगा। घरेलू वातावरण में, हीटिंग उपकरण पर स्विचन करने से गरमागरम रोशनी काफ़ी कम हो सकती है।

एक अधिक तकनीकी दृष्टिकोण

सर्किट पर भार के प्रभाव पर चर्चा करते समय, सर्किट के वास्तविक डिजाइन की अवहेलना करना और केवल थेवेनिन समकक्ष पर विचार करना सहायक होता है। (इसके बजाय नॉर्टन के प्रमेय का उपयोग उसी परिणाम के साथ किया जा सकता है।) सर्किट के बराबर थेवेनिन इस तरह दिखता है:

[[image:Electric load0.png|center|thumb|322px|सर्किट को एक आदर्श वोल्टेज स्रोत बनाम श्रृंखला में आंतरिक प्रतिरोध रुपये के साथ दर्शाया जाता है।

बिना भार (ओपन-सर्कुलेटेड टर्मिनल) के साथ, सभी आउटपुट भर में गिर जाता है; आउटपुट वोल्टेज है . हालांकि, यदि भार जोड़ा जाता है तो सर्किट अलग तरह से व्यवहार करेगा। हम भार सर्किट के विवरण को अनदेखा करना चाहते हैं, जैसा कि हमने बिजली आपूर्ति के लिए किया था, और इसे यथासंभव सरल रूप से प्रस्तुत करना चाहते हैं। यदि हम भार का प्रतिनिधित्व करने के लिए इनपुट प्रतिबाधा का उपयोग करते हैं, तो पूरा सर्किट इस तरह दिखता है:

[[image:Electric load1.png|center|322px|thumb|भार का इनपुट प्रतिरोध रुपये के साथ श्रृंखला में खड़ा है।

जबकि वोल्टेज स्रोत अपने आप में एक विकट था: ओपन सर्किट, भार जोड़ने से एक विकट: क्लोज्ड सर्किट बनता है और चार्ज प्रवाहित होता है। यह करंट एक वोल्टेज ड्रॉप को पार करता है , इसलिए आउटपुट टर्मिनल पर वोल्टेज अब नहीं है . आउटपुट वोल्टेज वोल्टेज विभक्त नियम नियम द्वारा निर्धारित किया जा सकता है:

यदि भार प्रतिबाधा की तुलना में स्रोत प्रतिरोध नगण्य रूप से छोटा नहीं है, तो आउटपुट वोल्टेज गिर जाएगा।

यह दृष्टांत सरल विद्युत प्रतिरोध का उपयोग करता है, लेकिन इसी तरह की चर्चा प्रतिरोधक, कैपेसिटिव और आगमनात्मक तत्वों का उपयोग करके चालू सर्किटों में वैकल्पिक रूप से लागू की जा सकती है।

यह भी देखें

संदर्भ

  1. Karady, George G.; Holbert, Keith E. (2013-05-03). Electrical Energy Conversion and Transport: An Interactive Computer-Based Approach. ISBN 1118498038.
  2. 2.0 2.1 2.2 2.3 Glisson, Tildon H. (2011). Introduction to Circuit Analysis and Design. USA: Springer. pp. 114–116. ISBN 978-9048194421.


==