विद्युत प्रतिबाधा

From Vigyanwiki

विद्युत अभियन्त्रण में, प्रतिबाधा एक विद्युत परिपथ में प्रतिरोध और प्रतिक्रिया के संयुक्त प्रभाव द्वारा प्रस्तुत प्रत्यावर्ती धारा का विरोध है।[1] मात्रात्मक रूप से, दो-टर्मिनल विद्युत तत्व का प्रतिबाधा इसके टर्मिनलों के बीच साइन तरंग वोल्टेज के स्थितिबद्ध प्रतिनिधित्व का अनुपात है, इसके माध्यम से प्रवाह के सम्मिश्र प्रतिनिधित्व के लिए।[2] सामान्य तौर पर यह साइनसोइडल वोल्टेज की आवृत्ति पर निर्भर करता है।

प्रतिबाधा प्रतिरोध की अवधारणा को प्रत्यावर्ती धारा (एसी) परिपथों तक विस्तारित करती है, और प्रतिरोध के विपरीत, जिसमें परिमाण और स्थिति दोनों होते हैं,जब कि प्रतिरोध में केवल परिमाण होता है।

प्रतिबाधा एक सम्मिश्र संख्या है, जिसमें प्रतिरोध के समान इकाइयाँ हैं, जिसके लिए मानक इकाई ओम (Ω) है। इसका प्रतीक सामान्यतः Z, है और इसे ध्रुवीय समन्वय प्रणाली के रूप में इसकी परिमाण और स्थिति लिखकर प्रतिनिधित्व किया जा सकता है |Z|∠θ. हालांकि, सम्मिश्र संख्या प्रायः सर्किट विश्लेषण उद्देश्यों के लिए अधिक शक्तिशाली होता है।

प्रतिबाधा की धारणा विद्युत नेटवर्क के एसी विश्लेषण करने के लिए उपयोगी है, क्योंकि यह एक साधारण रैखिक कानून द्वारा साइनसोइडल वोल्टेज और धाराओं से संबंधित होने की अनुमति देता है। कई संद्वार(परिपथ सिद्धांत) नेटवर्क पोर्ट में, प्रतिबाधा की दो-टर्मिनल परिभाषा अपर्याप्त है, लेकिन पोर्ट पर सम्मिश्र वोल्टेज और उनके माध्यम से बहने वाली धाराएं अभी भी प्रतिबाधा मापदंडों द्वारा रैखिक संबंध हैं।[3] प्रतिबाधा का व्युत्क्रमप्रवेश है, जिसकी मानक इकाई (एसआई) सीमेंस है, जिसे पहले एमएचओ कहा जाता है।

विद्युत प्रतिबाधा को मापने के लिए उपयोग किए जाने वाले उपकरणों को प्रतिबाधा विश्लेषक कहा जाता है।

परिचय

जुलाई 1886 में ओलिवर हेविसाइड द्वारा प्रतिबाधा शब्द को गढ़ा गया था।[4][5] आर्थर केनेली 1893 में सम्मिश्र संख्याओं के साथ प्रतिबाधा का प्रतिनिधित्व करने वाले पहले व्यक्ति थे।[6]डीसी सर्किट में देखे गए प्रतिरोध के अलावा, एसी (AC) सर्किट में प्रतिबाधा में चुंबकीय क्षेत्र (इंडक्शन) द्वारा कंडक्टरों में वोल्टेज के प्रेरण के प्रभाव और कंडक्टर (कैपेसिटेंस) के बीच वोल्टेज द्वारा प्रेरित आवेश के इलेक्ट्रोस्टैटिक भंडारण के प्रभाव सम्मिलित हैं। इन दो प्रभावों के कारण होने वाले प्रतिबाधा को सामूहिक रूप से विद्युत प्रतिक्रिया के रूप में संदर्भित किया जाता है और सम्मिश्र प्रतिबाधा का काल्पनिक संख्या भाग बनाता है जबकि प्रतिरोध वास्तविक संख्या भाग बनाता है।

सम्मिश्र प्रतिबाधा

सम्मिश्र विमान का एक चित्रमय प्रतिनिधित्व

दो-टर्मिनल सर्किट तत्व के प्रतिबाधा को एक सम्मिश्र संख्या मात्रा के रूप में दर्शाया गया है। ध्रुवीय निर्देशांक आसानी से परिमाण और स्थिति विशेषताओं दोनों को पकड़ लेता हैl

जहां परिमाण धारा आयाम के लिए वोल्टेज अंतर आयाम के अनुपात का प्रतिनिधित्व करता है, जबकि तर्क (सामान्यतः प्रतीक दिया जाता है ) वोल्टेज और करंट के बीच स्थिति का अंतर देता है। काल्पनिक इकाई है इस संदर्भ में एम्पेयर के चिन्ह के साथ भ्रम से बचने के लिए इसके बजाय उपयोग किया जाता है ।[7]: 21  कार्टेशियन विमान में, प्रतिबाधा को परिभाषित किया गया है

जहां प्रतिबाधा का वास्तविक हिस्सा प्रतिरोध है और काल्पनिक हिस्सा प्रतिक्रिया (इलेक्ट्रॉनिक्स) है।

जहां प्रतिबाधा जोड़ने या घटाने के लिए इसकी आवश्यकता होती है, कार्टेशियन रूप अधिक सुविधाजनक है,लेकिन जब मात्रा को गुणा या विभाजित किया जाता है, तो ध्रुवीय रूप का उपयोग करने पर गणना सरल हो जाती है। एक सर्किट गणना, जैसे कि समानांतर में दो प्रतिबाधाओं के कुल प्रतिबाधा को खोजने के लिए, गणना के दौरान कई बार रूपों के बीच रूपांतरण की आवश्यकता हो सकती है। रूपों के बीच रूपांतरण सामान्य ध्रुवीय रूप का अनुसरण करता है।

सम्मिश्र वोल्टेज और वर्तमान

एक सर्किट में सामान्यीकृत प्रतिबाधा एक रोकनेवाला (यूएस एएनएसआई या दीन यूरो) या लेबल वाले बॉक्स के साथ एक ही प्रतीक के साथ खींचा जा सकता है।

गणना को सरल बनाने के लिए, साइनसॉइडल वोल्टेज और धारा तरंगों को सामान्यतः समय के सम्मिश्र-मूल्यवान कार्यों के रूप में दर्शाया जाता है तथा .[8][9]

एक द्विध्रुवी सर्किट के प्रतिबाधा को इन मात्राओं के अनुपात के रूप में परिभाषित किया गया है:

इसलिए, निरूपित करना , अपने पास

परिमाण समीकरण वोल्टेज और धारा आयामों पर लागू परिचित ओम का नियम है, जबकि दूसरा समीकरण स्थिति संबंध को परिभाषित करता है।

सम्मिश्र प्रतिनिधित्व की वैधता

सम्मिश्र घातांक का उपयोग करने वाले इस प्रतिनिधित्व को यह देखते हुए उचित ठहराया जा सकता है (यूलर के सूत्र द्वारा):

या तो वोल्टेज या धारा का प्रतिनिधित्व करने वाले वास्तविक-मूल्यवान साइनसोइडल फ़ंक्शन को दो सम्मिश्र-मूल्यवान कार्यों में तोड़ा जा सकता है। सुपरपोज़िशन सिद्धांत के सिद्धांत द्वारा, हम दाहिने हाथ की तरफ दो सम्मिश्र शब्दों के व्यवहार का विश्लेषण करके बाएं हाथ की तरफ साइनसॉइड के व्यवहार का विश्लेषण कर सकते हैं। समरूपता को देखते हुए, हमें केवल एक दाहिने हाथ की अवधि के लिए विश्लेषण करने की आवश्यकता है। परिणाम दूसरे के लिए समान हैं। किसी भी गणना के अंत में, हम आगे ध्यान देकर वास्तविक-मूल्यवान साइनसोइड्स पर लौट सकते हैं

ओम का नियम

एक वोल्टेज लागू करने वाला एक एसी आपूर्ति , एक विद्युत भार के पार , एक धारा ड्राइविंग

विद्युत प्रतिबाधा के अर्थ को ओम के नियम में प्रतिस्थापित करके समझा जा सकता है।[10][11] प्रतिबाधा के साथ दो-टर्मिनल सर्किट तत्व मानते हुए एक साइनसोइडल वोल्टेज या धारा के रूप में धारा द्वारा संचालित है, वहाँ धारण करता हैl

प्रतिबाधा का परिमाण प्रतिरोध की तरह ही कार्य करता है, एक प्रतिबाधा में किसी दिए गए करंट के लिए वोल्टेज आयाम में गिरावट देता है। स्थिति कारक हमे वोल्टेज को एक स्थिति द्वारा धारा अंतराल बताता है (यानी, समय डोमेन में, धारा सिग्नल को स्थानांतरित कर दिया जाता है बाद में वोल्टेज सिग्नल के संबंध में)।

जिस तरह प्रतिबाधा एसी सर्किट को कवर करने के लिए ओम के नियम का विस्तार करता है, डीसी सर्किट विश्लेषण से अन्य परिणाम, जैसे कि वोल्टेज विभक्त , धारा डिवाइडर, थिवेनिन के प्रमेय और नॉर्टन के प्रमेय को भी प्रतिबाधा के साथ प्रतिरोध को दोहराकर एसी सर्किट तक बढ़ाया जा सकता है।

फेसर

एक स्थिति को एक निरंतर सम्मिश्र संख्या द्वारा दर्शाया जाता है, जो सामान्यतः घातीय रूप में व्यक्त किया जाता है, समय के एक साइनसोइडल फ़ंक्शन के सम्मिश्र आयाम (परिमाण और स्थिति) का प्रतिनिधित्व करता है। फेजर का उपयोग इलेक्ट्रिकल इंजीनियरों द्वारा साइनसोइड्स से जुड़े गणनाओं को सरल बनाने के लिए किया जाता है (जैसे एसी सर्किट में[7]: 53 ), जहां वे प्रायः एक बीजीय के लिए एक अंतर समीकरण समस्या को कम कर सकते हैं।

एक सर्किट तत्व के प्रतिबाधा को तत्व के माध्यम से फासोर करंट के लिए फासोर वोल्टेज के अनुपात के रूप में परिभाषित किया जा सकता है, जैसा कि वोल्टेज और करंट के सापेक्ष आयाम और स्थितिों द्वारा निर्धारित किया गया है। यह विद्युत प्रतिबाधा ओम के नियम से परिभाषा के समान है। ओम का कानून ऊपर दिया गया है, यह पहचानते हुए कि कारक रद्द करना।

डिवाइस उदाहरण

अवरोध

कैपेसिटर और इंडक्टर्स के प्रतिबाधा के लिए समीकरणों में स्थिति कोण यह दर्शाता है कि एक संधारित्र के पार वोल्टेज एक स्थिति के माध्यम से इसके माध्यम से धारा में पिछड़ जाता है , जबकि एक प्रेरित्र के पार वोल्टेज इसके माध्यम से धारा का नेतृत्व करता है ।समान वोल्टेज और धारा आयाम से संकेत मिलता है कि प्रतिबाधा का परिमाण एक के बराबर है।

एक आदर्श अवरोध क का प्रतिबाधा विशुद्ध रूप से वास्तविक है और इसे प्रतिरोधक प्रतिबाधा कहा जाता है:

इस मामले में, वोल्टेज और धारा तरंग आनुपातिक और स्थिति में हैं।

प्रेरित्र और संधारित्र

आदर्श इंडक्टर्स और कैपेसिटर में विशुद्ध रूप से काल्पनिक संख्या प्रतिक्रियाशील प्रतिबाधा है:

आवृत्ति बढ़ने के साथ प्रेरकों की प्रतिबाधा बढ़ जाती है;

[lower-alpha 1]

आवृत्ति बढ़ने के साथ संधारित्र की प्रतिबाधा कम हो जाती है;

दोनों मामलों में, एक लागू साइनसोइडल वोल्टेज के लिए, परिणाम स्वरूप धारा भी साइनसोइडल है, लेकिन चतुर्भुज स्थिति में, वोल्टेज के साथ स्थिति से 90 डिग्री बाहर। हालांकि, स्थितिों में विपरीत संकेत होते हैं: एक प्रेरित्र में, धारामें पिछड़ रहा है;एक संधारित्र में धारा अग्रणी है।

काल्पनिक इकाई और इसके पारस्परिक के लिए निम्नलिखित पहचान पर ध्यान दें:

इस प्रकार प्रेरित्र और संधारित्र प्रतिबाधा समीकरणों को ध्रुवीय रूप में फिर से लिखा जा सकता है:

परिमाण प्रतिबाधा के माध्यम से किसी दिए गए धारा आयाम के लिए वोल्टेज आयाम में परिवर्तन देता है, जबकि घातीय कारक स्थिति संबंध देते हैं।

डिवाइस-विशिष्ट बाधाओं को प्राप्त करना

नीचे दिए गए तीन बुनियादी विद्युत नेटवर्क तत्वों में से प्रत्येक के लिए प्रतिबाधा की व्युत्पत्ति है: रोकनेवाला, संधारित्र, और प्रेरित्र। यद्यपि किसी भी मनमाने संकेत (विद्युत अभियांत्रिकी) के वोल्टेज और धारा के बीच संबंध को परिभाषित करने के लिए विचार को बढ़ाया जा सकता है, ये व्युत्पन्न साइनसॉइडल संकेतों को मानते हैं।वास्तव में, यह किसी भी मनमाने आवधिक संकेतों पर लागू होता है, क्योंकि इन्हें फूरियर विश्लेषण के माध्यम से साइनसोइड्स के योग के रूप में अनुमानित किया जा सकता है।

प्रतिरोधक

एक अवरोधक के लिए, संबंध है

जो ओम का कानून है।

वोल्टेज सिग्नल को ध्यान में रखते हुए

यह इस प्रकार है कि

यह कहता है कि एक अवरोधक के पार प्रत्यावर्ती धारा आयाम के लिए एसी वोल्टेज आयाम का अनुपात है, और यह कि एसी वोल्टेज एक अवरोधक के पार करंट को 0 डिग्री तक ले जाता है।

यह परिणाम सामान्यतः के रूप में व्यक्त किया जाता है


संधारित्र

एक संधारित्र के लिए, संबंध है:

वोल्टेज सिग्नल को ध्यान में रखते हुए

यह इस प्रकार है कि

और इस प्रकार, पहले के रूप में,

इसके विपरीत, यदि सर्किट के माध्यम से धारा को साइनसोइडल माना जाता है, तो इसका सम्मिश्र प्रतिनिधित्व किया जा रहा है

फिर अंतर समीकरण को एकीकृत करना

फलस्वरूप होता है

स्थिरांक शब्द एसी साइनसोइडल क्षमता के लिए एक निश्चित संभावित पूर्वाग्रह का प्रतिनिधित्व करता है, जो एसी विश्लेषण में कोई भूमिका नहीं निभाता है। इस उद्देश्य के लिए, इस शब्द को 0 माना जा सकता है, इसलिए फिर से प्रतिबाधा


प्रेरित्र

प्रेरित्र के लिए, हमारे पास संबंध है (फैराडे का नियम):

इस बार, धारा संकेत को देखते हुए:

यह इस प्रकार है कि:

यह परिणाम सामान्यतः ध्रुवीय रूप में व्यक्त किया जाता है

या, यूलर के सूत्र का उपयोग करते हुए, के रूप में

कैपेसिटर के मामले में, इस सूत्र को सीधे वोल्टेज और धाराओं के सम्मिश्र अभ्यावेदन से प्राप्त करना, या प्रेरित्र के दो ध्रुवों के बीच एक साइनसोइडल वोल्टेज मानकर भी संभव है। बाद के मामले में, ऊपर के अंतर समीकरण को एकीकृत करने से धारा के लिए एक निरंतर शब्द होता है, जो प्रेरित्र के माध्यम से बहने वाले एक निश्चित डीसी पूर्वाग्रह का प्रतिनिधित्व करता है। यह शून्य पर सेट है क्योंकि आवृत्ति डोमेन प्रतिबाधा का उपयोग करके एसी विश्लेषण एक समय में एक आवृत्ति पर विचार करता है और डीसी इस संदर्भ में शून्य हर्ट्ज की एक अलग आवृत्ति का प्रतिनिधित्व करता है।

सामान्यीकृत एस-प्लेन प्रतिबाधा

परिभाषित प्रतिबाधा jω के संदर्भ में केवल सर्किट के लिए सख्ती से लागू किया जा सकता है जो एक स्थिर-स्थिति एसी सिग्नल के साथ संचालित होते हैं। प्रतिबाधा की अवधारणा को के अतिरिक्त सम्मिश्र आवृत्ति का उपयोग करके किसी भी मनमाना संकेत के साथ सक्रिय सर्किट तक बढ़ाया जा सकता है। सम्मिश्र आवृत्ति को प्रतीक एस (s) और सामान्य रूप से, एक सम्मिश्र संख्या दी जाती है। सिग्नल को सिग्नल के समय डोमेन अभिव्यक्ति के लाप्लास रूपांतरण को लेकर सम्मिश्र आवृत्ति के संदर्भ में संकेतों को व्यक्त किया जाता है। इस अधिक सामान्य संकेतन में मूल सर्किट तत्वों का प्रतिबाधा इस प्रकार है:

अवयव प्रतिबाधा अभिव्यक्ति
अवरोध
प्रेरित्र
संधारित्र

एक डीसी सर्किट के लिए, यह सरल बनाता है s = 0. एक स्थिर-राज्य साइनसोइडल एसी सिग्नल के लिए s = .

औपचारिक व्युत्पत्ति

प्रतिबाधा एक विद्युत अवयव को लाप्लास के बीच के अनुपात के रूप में परिभाषित किया गया है,और इसके माध्यम से वर्तमान, अर्थात् जो उस पर वोल्टेज के रूपांतरण करता है ।

जहाँ पे सम्मिश्र लाप्लास पैरामीटर है। एक उदाहरण के रूप में, एक संधारित्र के I-V-law के अनुसार, , जिसमें से यह अनुसरण करता है

फासोर व्यवस्था में (स्थिर-अवस्था एसी, का अर्थ है कि सभी संकेतों को गणितीय रूप से सरल सम्मिश्र घातांक के रूप में दर्शाया गया है तथा एक सामान्य आवृत्ति पर दोलन ), प्रतिबाधा की गणना केवल वोल्टेज-से-धाराअनुपात के रूप में की जा सकती है, जिसमें सामान्य समय-निर्भर कारक रद्द कर देता है:

फिर, एक संधारित्र के लिए, एक हो जाता है , और इसलिए .फासोर डोमेन को कभी -कभी आवृत्ति डोमेन डब किया जाता है, हालांकि इसमें लाप्लास पैरामीटर के आयामों में से एक का अभाव होता है।[12] स्थिर-राज्य एसी के लिए, सम्मिश्र प्रतिबाधा के ध्रुवीय रूप की सम्मिश्र संख्या#संकेतन वोल्टेज और धाराके आयाम और स्थिति से संबंधित है।विशेष रूप से:

  • सम्मिश्र प्रतिबाधा का परिमाण धाराआयाम के लिए वोल्टेज आयाम का अनुपात है;
  • सम्मिश्र प्रतिबाधा का स्थिति स्थिति शिफ्ट है जिसके द्वारा धारा वोल्टेज को पिछड़ता है।

ये दो संबंध जटिल घातांकों के वास्तविक भाग को लेने के बाद भी बने रहते हैं (चरणों को देखें), जो वास्तविक काल के सर्किट में वास्तव में मापे जाने वाले सिग्नल का हिस्सा है।

प्रतिरोध बनाम प्रतिक्रिया

प्रतिरोध और प्रतिक्रिया एक साथ निम्नलिखित संबंधों के माध्यम से प्रतिबाधा के परिमाण और स्थिति को निर्धारित करती है:

कई अनुप्रयोगों में, वोल्टेज और करंट का सापेक्ष स्थिति महत्वपूर्ण नहीं है, इसलिए केवल प्रतिबाधा का परिमाण महत्वपूर्ण है।

प्रतिरोध

प्रतिरोध प्रतिबाधा का वास्तविक हिस्सा है; विशुद्ध रूप से प्रतिरोधक प्रतिबाधा वाला एक उपकरण वोल्टेज और करंट के बीच कोई स्थिति बदलाव नहीं दिखाता है।

प्रतिक्रिया

प्रतिक्रिया प्रतिबाधा का काल्पनिक हिस्सा है; एक परिमित प्रतिक्रिया वाला एक अवयव एक स्थिति शिफ्ट को प्रेरित करता है इसके माध्यम से वोल्टेज के बीच और इसके माध्यम से करंट।

एक विशुद्ध रूप से प्रतिक्रियाशील अवयव के माध्यम से साइनसोइडल करंट के साथ द्विघात में होने वाले अवयव में साइनसोइडल वोल्टेज द्वारा प्रतिष्ठित होता है। इसका तात्पर्य यह है कि अवयव वैकल्पिक रूप से सर्किट से ऊर्जा को अवशोषित करता है और फिर सर्किट में ऊर्जा लौटाता है। एक शुद्ध प्रतिक्रिया किसी भी शक्ति को भंग नहीं करती है।

संधारित्र रिएक्शन

एक संधारित्र में एक विशुद्ध रूप से प्रतिक्रियाशील प्रतिबाधा होता है जो सिग्नल आवृत्ति के लिए विपरीत आनुपातिकता है। एक संधारित्र में एक विद्युत इन्सुलेशन द्वारा अलग किए गए दो विद्युत चालन होते हैं, जिन्हें एक अपरिचालक पदार्थ के रूप में भी जाना जाता है।

माइनस साइन इंगित करता है कि प्रतिबाधा का काल्पनिक हिस्सा ऋणात्मक है।

कम आवृत्तियों पर, एक संधारित्र एक खुले सर्किट के पास जाता है ताकि इसके माध्यम से कोई धाराप्रवाह न हो।

एक संधारित्र में लागू एक डीसी वोल्टेज एक तरफ से जमा होने के लिए विद्युत आवेश का कारण बनता है;संचित चार्ज के कारण विद्युत क्षेत्र धाराके विपक्ष का स्रोत है।जब चार्ज से जुड़ी क्षमता लागू वोल्टेज को बिल्कुल संतुलित करती है, तो करंट शून्य हो जाता है।

एक एसी आपूर्ति द्वारा संचालित, एक संधारित्र संभावित अंतर परिवर्तन संकेत से पहले केवल एक सीमित शुल्क जमा करता है और चार्ज विघटित हो जाता है।आवृत्ति जितनी अधिक होगी, कम चार्ज जमा होगा और धाराके लिए विपक्ष जितना छोटा होगा।

आगमनात्मक प्रतिक्रिया

आगमनात्मक प्रतिक्रिया संकेत आवृत्ति के लिए आनुपातिकता (गणित) है और अधिष्ठापन

एक प्रेरित्र में एक कुंडलित कंडक्टर होता है। फैराडे का कानून का नियम- फैराडे के इलेक्ट्रोमैग्नेटिक इंडक्शन का नियमविद्युत प्रभावन बल देता है (वोल्टेज विरोध वर्तमान) चुंबकीय प्रवाह घनत्व की दर-परिवर्तन के कारण एक धारा लूप के माध्यम से।

एक कुंडल से मिलकर एक प्रेरित्र के लिए यह देता है:

बैक-ईएमएफ धारा प्रवाह के विरोध का स्रोत है। एक निरंतर प्रत्यक्ष धारामें एक शून्य दर-परिवर्तन होता है, और एक प्रेरित्र को शार्ट सर्किट के रूप में देखता है (यह सामान्यतः कम प्रतिरोधकता वाली सामग्री से बनाया जाता है) l एक प्रत्यावर्ती धारा में एक समय-औसत दर-परिवर्तन होता है जो आवृत्ति के लिए आनुपातिक है, यह आवृत्ति के साथ आगमनात्मक प्रतिक्रिया में वृद्धि का कारण बनता है।

कुल प्रतिक्रिया

कुल प्रतिक्रिया द्वारा दी गई है

(ध्यान दें कि ऋणात्मक है)

ताकि कुल प्रतिबाधा हो


प्रतिबाधा का संयोजन

अवयवों के कई सरल नेटवर्क के कुल प्रतिबाधा की गणना श्रृंखला और समानांतर में बाधाओं के संयोजन के लिए नियमों का उपयोग करके की जा सकती है। नियम प्रतिरोधों के संयोजन के लिए समान हैं, सिवाय इसके कि सामान्य रूप से संख्याएं सम्मिश्र संख्याएं हैं।सामान्य मामले, हालांकि, श्रृंखला और समानांतर के अलावा समान प्रतिबाधा परिवर्तन की आवश्यकता होती है।

श्रृंखला संयोजन

श्रृंखला में जुड़े अवयवों के लिए, प्रत्येक सर्किट तत्व के माध्यम से धारासमान है; कुल प्रतिबाधा अवयव प्रतिबाधा का योग है।

Impedances in series.svg

या स्पष्ट रूप से वास्तविक और काल्पनिक शब्दों में:


समानांतर संयोजन

समानांतर में जुड़े अवयवों के लिए, प्रत्येक सर्किट तत्व में वोल्टेज समान है; किसी भी दो तत्वों के माध्यम से धाराओं का अनुपात उनके प्रतिबाधा का व्युत्क्रम अनुपात है।

Impedances in parallel.svg

इसलिए उलटा कुल प्रतिबाधा अवयव प्रतिबाधा के व्युत्क्रमों का योग है:

या, जब n = 2:

समकक्ष प्रतिबाधा समान श्रृंखला प्रतिरोध के संदर्भ में गणना की जा सकती है और प्रतिक्रिया .[13]


माप

उपकरणों और ट्रांसमिशन लाइनों की प्रतिबाधा का माप रेडियो प्रौद्योगिकी और अन्य क्षेत्रों में एक व्यावहारिक समस्या है। प्रतिबाधा के माप एक आवृत्ति पर किए जा सकते हैं, या आवृत्तियों की एक सीमा पर डिवाइस प्रतिबाधा की भिन्नता ब्याज की हो सकती है। प्रतिबाधा को ओम में सीधे मापा या प्रदर्शित किया जा सकता है, या प्रतिबाधा से संबंधित अन्य मूल्यों को प्रदर्शित किया जा सकता है; उदाहरण के लिए, एक रेडियो एंटीना में, स्थायी तरंग अनुपात या प्रतिबिंब गुणांक अकेले प्रतिबाधा की तुलना में अधिक उपयोगी हो सकता है। प्रतिबाधा के माप के लिए वोल्टेज और धाराके परिमाण की माप की आवश्यकता होती है, और उनके बीच स्थिति अंतर। प्रतिबाधा प्रायः ब्रिज सर्किट द्वारा मापा जाता है | पुल के तरीके, प्रत्यक्ष-धाराव्हीटस्टोन पुल के समान; परीक्षण के तहत डिवाइस के प्रतिबाधा के प्रभाव को संतुलित करने के लिए एक कैलिब्रेटेड संदर्भ प्रतिबाधा को समायोजित किया जाता है। पावर इलेक्ट्रॉनिक उपकरणों में प्रतिबाधा माप एक साथ माप और ऑपरेटिंग डिवाइस के लिए शक्ति के प्रावधान की आवश्यकता हो सकती है।

एक उपकरण के प्रतिबाधा की गणना वोल्टेज और धाराके सम्मिश्र विभाजन द्वारा की जा सकती है। डिवाइस के प्रतिबाधा की गणना एक अवरोधक के साथ श्रृंखला में डिवाइस में एक साइनसोइडल वोल्टेज लागू करके की जा सकती है, और रोकनेवाला और डिवाइस में वोल्टेज को मापने के लिए। लागू सिग्नल की आवृत्तियों को स्वीप करके इस माप को करना प्रतिबाधा स्थिति और परिमाण प्रदान करता है।[14] एक आवेग प्रतिक्रिया के उपयोग का उपयोग फास्ट फूरियर ट्रांसफॉर्म (एफएफटी) के साथ संयोजन में किया जा सकता है ताकि विभिन्न विद्युत उपकरणों के विद्युत प्रतिबाधा को तेजी से मापा जा सके।[14]

एलसीआर मीटर (इंडक्शन (एल), कैपेसिटेंस (सी), और प्रतिरोध (आर)) एक उपकरण है जिसका उपयोग सामान्यतः एक अवयव के इंडक्शन, प्रतिरोध और समाई को मापने के लिए किया जाता है;इन मूल्यों से, किसी भी आवृत्ति पर प्रतिबाधा की गणना की जा सकती है।

उदाहरण

एक एलसी एलसी सर्किट सर्किट पर विचार करें। सर्किट का सम्मिश्र प्रतिबाधा है

यह तुरंत देखा जाता है कि मूल्य जब भी न्यूनतम (वास्तव में 0 के बराबर है) जब भी

इसलिए, मौलिक अनुनाद कोणीय आवृत्ति है


चर प्रतिबाधा

सामान्य तौर पर, न तो प्रतिबाधा और न ही प्रवेश समय के साथ भिन्न हो सकते हैं, क्योंकि वे सम्मिश्र घातांक −∞ < t < +∞ के लिए परिभाषित किए जाते हैं। यदि समय या आयाम के साथ धारा अनुपात में सम्मिश्र घातीय वोल्टेज बदल जाता है, तो सर्किट तत्व को आवृत्ति डोमेन का उपयोग करके वर्णित नहीं किया जा सकता है। हालांकि, कई अवयव और सिस्टम (जैसे, वैरिएप्स जो ट्यूनर (रेडियो) में उपयोग किए जाते हैं) गैर-रैखिक या समय अलग-अलग वोल्टेज को धारा अनुपातों में प्रदर्शित कर सकते हैं जो कि LTI तंत्र सिद्धांत प्रतीत होते हैं। छोटे संकेतों के लिए रैखिक समय-अपरिवर्तनीय (एलटीआई)और छोटे अवलोकन खिड़कियों पर, इसलिए उन्हें मोटे तौर पर वर्णित किया जा सकता है अगर उनके पास एक समय अलग-अलग प्रतिबाधा था। यह विवरण एक अनुमान है: बड़े सिग्नल अस्थिर या व्यापक अवलोकन खिड़कियों पर, धारा संबंध के लिए वोल्टेज एलटीआई नहीं होगा और प्रतिबाधा द्वारा वर्णित नहीं किया जा सकता है।

यह भी देखें

टिप्पणियाँ

  1. is the imaginary unit; i.e., used in electrical engineering. The character is not used as that is often used for current.


संदर्भ

  1. Slurzberg; Osterheld (1950). Essentials of Electricity for Radio and Television. 2nd ed. McGraw-Hill. pp. 360 - 362
  2. Callegaro, L. (2012). Electrical Impedance: Principles, Measurement, and Applications. CRC Press, p. 5
  3. Callegaro, Sec. 1.6
  4. Science, p. 18, 1888
  5. Oliver Heaviside, The Electrician, p. 212, 23 July 1886, reprinted as Electrical Papers, Volume II, p 64, AMS Bookstore, ISBN 0-8218-3465-7
  6. Kennelly, Arthur. Impedance (AIEE, 1893)
  7. 7.0 7.1 Gross, Charles A. (2012). Fundamentals of electrical engineering. Thaddeus Adam Roppel. Boca Raton, FL: CRC Press. ISBN 978-1-4398-9807-9. OCLC 863646311.
  8. Complex impedance, Hyperphysics
  9. Horowitz, Paul; Hill, Winfield (1989). "1". The Art of Electronics. Cambridge University Press. pp. 31–32. ISBN 978-0-521-37095-0.
  10. AC Ohm's law, Hyperphysics
  11. Horowitz, Paul; Hill, Winfield (1989). "1". The Art of Electronics. Cambridge University Press. pp. 32–33. ISBN 978-0-521-37095-0.
  12. Alexander, Charles; Sadiku, Matthew (2006). Fundamentals of Electric Circuits (3, revised ed.). McGraw-Hill. pp. 387–389. ISBN 978-0-07-330115-0.
  13. Parallel Impedance Expressions, Hyperphysics
  14. 14.0 14.1 George Lewis Jr.; George K. Lewis Sr. & William Olbricht (August 2008). "Cost-effective broad-band electrical impedance spectroscopy measurement circuit and signal analysis for piezo-materials and ultrasound transducers". Measurement Science and Technology. 19 (10): 105102. Bibcode:2008MeScT..19j5102L. doi:10.1088/0957-0233/19/10/105102. PMC 2600501. PMID 19081773.

बाहरी संबंध

]