इकाई वलय पर तर्कसंगत बिंदुओं का समूह: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Complex numbers with unit norm and both real and imaginary parts rational numbers}}
{{Short description|Complex numbers with unit norm and both real and imaginary parts rational numbers}}
[[File:Pythagorean triple and rational point on unit triangle 1.svg|thumb|300px|[[पायथागॉरियन ट्रिपल]] (4,3,5) यूनिट सर्कल पर तर्कसंगत बिंदु (4/5,3/5) से जुड़ा है।]]गणित में, यूनिट सर्कल पर परिमेय बिंदु वे बिंदु (''x'', ''y'') होते हैं जैसे कि ''x'' और ''y'' दोनों परिमेय संख्याएँ ("अंश") हैं और ''x''<sup>2</sup> + ''y''<sup>2</sup> = 1 को संतुष्ट करते हैं। ऐसे बिंदुओं का सेट आदिम पायथागॉरियन ट्रिपल से निकटता से संबंधित है। एक आदिम समकोण त्रिभुज पर विचार करें, अर्थात्, पूर्णांक भुजाओं की लंबाई a, b, कर्ण c के साथ, जैसे कि भुजाओं में 1 से बड़ा कोई सामान्य कारक नहीं है। फिर यूनिट सर्कल पर तर्कसंगत बिंदु (a/c, b/c) मौजूद होता है। जो जटिल तल में सिर्फ a/c + ib/c है, जहां i [[काल्पनिक इकाई]] है। इसके विपरीत, यदि(x, y) समन्वय प्रणाली के प्रथम चतुर्भुज (अर्थात x > 0, y > 0) में यूनिट सर्कल पर एक परिमेय बिंदु है, तो भुजाओं xc, yc, c, के साथ एक आदिम समकोण त्रिभुज मौजूद है। जहाँ c x और y के हर का लघुत्तम समापवर्तक है। x-y तल में बिंदु (a, b) और जटिल तल में बिंदु a + ib के बीच एक पत्र-व्यवहार है जिसका उपयोग नीचे किया गया है।
[[File:Pythagorean triple and rational point on unit triangle 1.svg|thumb|300px|[[पायथागॉरियन ट्रिपल]] (4,3,5) यूनिट सर्कल पर तर्कसंगत बिंदु (4/5,3/5) से जुड़ा है।]]गणित में, यूनिट सर्कल पर परिमेय बिंदु वे बिंदु (''x'', ''y'') होते हैं जैसे कि ''x'' और ''y'' दोनों परिमेय संख्याएँ ("अंश") हैं और ''x''<sup>2</sup> + ''y''<sup>2</sup> = 1 को संतुष्ट करते हैं। ऐसे बिंदुओं का सेट आदिम पायथागॉरियन ट्रिपल से निकटता से संबंधित है। एक आदिम समकोण त्रिभुज पर विचार करें, अर्थात्, पूर्णांक भुजाओं की लंबाई a, b, कर्ण c के साथ, जैसे कि भुजाओं में 1 से बड़ा कोई सामान्य कारक नहीं है। फिर यूनिट सर्कल पर तर्कसंगत बिंदु (a/c, b/c) मौजूद होता है। जो जटिल तल में सिर्फ a/c + ib/c है, जहां i [[काल्पनिक इकाई]] है। इसके विपरीत, यदि(x, y) समन्वय प्रणाली के प्रथम चतुर्भुज (अर्थात x > 0, y > 0) में यूनिट सर्कल पर एक परिमेय बिंदु है, तो भुजाओं xc, yc, c, के साथ एक आदिम समकोण त्रिभुज मौजूद है। जहाँ c x और y के हर का लघुत्तम समापवर्तक है। x-y तल में बिंदु (a, b) और जटिल तल में बिंदु a + ib के बीच एक पत्र-व्यवहार है जिसका उपयोग नीचे किया गया है।


== समूह संचालन ==
== समूह संचालन ==
यूनिट सर्कल पर तर्कसंगत बिंदुओं का सेट, इस आलेख में छोटा G घूर्णन के तहत एक अनंत एबेलियन समूह बनाता है। पहचान तत्व बिंदु अथवा तत्समक तत्व बिंदु (1, 0) = 1 + i0 = 1 है। समूह संचालन, या "उत्पाद" (x, y) * (t, u) = (xt - uy, xu + yt) है। यह गुणनफल कोण जोड़ है क्योंकि x = cos(A) और y = sin(A), जहां A वह कोण है जो सदिश (x, y) सदिश (1,0) के साथ बनाता है, जिसे वामावर्त मापा जाता है। तो (x, y) और (t, u) क्रमशः (1, 0) के साथ कोण A और B बनाते हैं, उनका गुणनफल (xt − uy, xu + yt) कोण कोण ''A'' + ''B'' (1, 0) के साथ बनाने वाले यूनिट सर्कल पर तर्कसंगत बिंदु है। समूह संचालन जटिल संख्याओं के साथ अधिक आसानी से व्यक्त किया जाता है: बिंदुओं (x, y) और (t, u) को क्रमशः x+iy और t+iu के साथ पहचानना, उपरोक्त समूह गुणनफल सामान्य जटिल संख्या गुणन (x + iy)(t + iu) = xt − yu + i(xu + yt) है, जो उपरोक्त बिंदु (xt − uy, xu + yt) के अनुरूप है।
यूनिट सर्कल पर तर्कसंगत बिंदुओं का सेट, इस आलेख में छोटा G घूर्णन के तहत एक अनंत एबेलियन समूह बनाता है। पहचान तत्व बिंदु अथवा तत्समक तत्व बिंदु (1, 0) = 1 + i0 = 1 है। समूह संचालन, या "उत्पाद" (x, y) * (t, u) = (xt - uy, xu + yt) है। यह गुणनफल कोण जोड़ है क्योंकि x = cos(A) और y = sin(A), जहां A वह कोण है जो सदिश (x, y) सदिश (1,0) के साथ बनाता है, जिसे वामावर्त मापा जाता है। तो (x, y) और (t, u) क्रमशः (1, 0) के साथ कोण A और B बनाते हैं, उनका गुणनफल (xt − uy, xu + yt) कोण कोण ''A'' + ''B'' (1, 0) के साथ बनाने वाले यूनिट सर्कल पर तर्कसंगत बिंदु है। समूह संचालन जटिल संख्याओं के साथ अधिक आसानी से व्यक्त किया जाता है: बिंदुओं (x, y) और (t, u) को क्रमशः x+iy और t+iu के साथ पहचानना, उपरोक्त समूह गुणनफल सामान्य जटिल संख्या गुणन (x + iy)(t + iu) = xt − yu + i(xu + yt) है, जो उपरोक्त बिंदु (xt − uy, xu + yt) के अनुरूप है।


=== उदाहरण ===
=== उदाहरण ===
Line 11: Line 11:
=== समूह का वर्णन करने के अन्य तरीके ===
=== समूह का वर्णन करने के अन्य तरीके ===
::<math>G \cong \mathrm{SO}(2, \mathbb{Q}).</math>
::<math>G \cong \mathrm{SO}(2, \mathbb{Q}).</math>
तर्कसंगत प्रविष्टियों के साथ सभी 2×2 [[ओर्थोगोनल]] का सेट G के साथ मेल खाता है। यह इस तथ्य से अनुसरण करता है कि सर्कल समूह <math>S^1</math> के लिए आइसोमॉर्फिक <math>\mathrm{SO}(2, \mathbb{R})</math> है, और तथ्य यह है कि उनके परिमेय बिंदु मेल खाते हैं।
तर्कसंगत प्रविष्टियों के साथ सभी 2×2 [[ओर्थोगोनल]] का सेट G के साथ मेल खाता है। यह इस तथ्य से अनुसरण करता है कि सर्कल समूह <math>S^1</math> के लिए आइसोमॉर्फिक <math>\mathrm{SO}(2, \mathbb{R})</math> है, और तथ्य यह है कि उनके परिमेय बिंदु मेल खाते हैं।


== समूह संरचना ==
== समूह संरचना ==


G की संरचना [[चक्रीय समूह|चक्रीय समूहों]] का एक अनंत योग है। बता दें G<sub>2</sub> बिंदु 0 + 1i द्वारा उत्पन्न G के [[उपसमूह]] को दर्शाता है। G<sub>2</sub> क्रम 4 का एक [[चक्रीय उपसमूह]] है। 4k + 1 के अभाज्य p के लिए, मान लीजिए G<sub>''p''</sub> हर p<sup>n</sup> वाले तत्वों के उपसमूह को निरूपित करता है जहाँ n एक गैर-ऋणात्मक पूर्णांक है। G<sub>''p''</sub> एक अनंत चक्रीय समूह है, और बिंदु (''a''<sup>2</sup> − ''b''<sup>2</sup>)/''p'' + (2''ab''/''p'')''i'' G<sub>''p''</sub> का एक जनरेटर है। इसके अलावा, G के एक तत्व के हरों का गुणनखण्ड करके, यह दिखाया जा सकता है कि G, ''G''<sub>2</sub> और ''G<sub>p</sub>'' का प्रत्यक्ष योग है। वह है:
G की संरचना [[चक्रीय समूह|चक्रीय समूहों]] का एक अनंत योग है। बता दें G<sub>2</sub> बिंदु 0 + 1i द्वारा उत्पन्न G के [[उपसमूह]] को दर्शाता है। G<sub>2</sub> क्रम 4 का एक [[चक्रीय उपसमूह]] है। 4k + 1 के अभाज्य p के लिए, मान लीजिए G<sub>''p''</sub> हर p<sup>n</sup> वाले तत्वों के उपसमूह को निरूपित करता है जहाँ n एक गैर-ऋणात्मक पूर्णांक है। G<sub>''p''</sub> एक अनंत चक्रीय समूह है, और बिंदु (''a''<sup>2</sup> − ''b''<sup>2</sup>)/''p'' + (2''ab''/''p'')''i'' G<sub>''p''</sub> का एक जनरेटर है। इसके अलावा, G के एक तत्व के हरों का गुणनखण्ड करके, यह दिखाया जा सकता है कि G, ''G''<sub>2</sub> और ''G<sub>p</sub>'' का प्रत्यक्ष योग है। वह है:


::<math>G \cong G_2 \oplus \bigoplus_{p \, \equiv \, 1 \, (\text{mod } 4)} G_p.</math>
::<math>G \cong G_2 \oplus \bigoplus_{p \, \equiv \, 1 \, (\text{mod } 4)} G_p.</math>
Line 21: Line 21:


=== उदाहरण ===
=== उदाहरण ===
G को अनंत प्रत्यक्ष योग के रूप में देखते हुए, पदार्थ ({0}; 2, 0, 1, 0, 0, ..., 0, ...) पर विचार करें जहां पहला अक्षर 0 चक्रीय समूह ''C''<sub>4</sub> में है और अन्य निर्देशांक (''a''<sup>2</sup> − ''b''<sup>2</sup>)/''p''(''r'') + ''i''2''ab''/''p''(''r'') की घात देते हैं, जहां p(r) फॉर्म 4k + 1 की rवीं अभाज्य संख्या है। फिर यह G में, परिमेय बिंदु (3/5 + ''i''4/5)<sup>2</sup> · (8/17 + ''i''15/17)<sup>1</sup> = −416/425 + i87/4255 से मेल खाता है। हर 425, हर 5 का दो बार और हर 17 का एक बार गुणफल है, और पिछले उदाहरण की तरह, अंश -416 का वर्ग और अंश 87 का वर्ग, हर 425 के वर्ग के बराबर है। इस पर भी ध्यान दिया जाना चाहिए, समझ बनाए रखने में मदद करने के लिए एक सम्बन्ध के रूप में, कि भाजक 5 = p(1) फॉर्म 4k + 1 का पहला अभाज्य है, और भाजक 17 = p(3) फॉर्म 4k + 1 का तीसरा अभाज्य है।
G को अनंत प्रत्यक्ष योग के रूप में देखते हुए, पदार्थ ({0}; 2, 0, 1, 0, 0, ..., 0, ...) पर विचार करें जहां पहला अक्षर 0 चक्रीय समूह ''C''<sub>4</sub> में है और अन्य निर्देशांक (''a''<sup>2</sup> − ''b''<sup>2</sup>)/''p''(''r'') + ''i''2''ab''/''p''(''r'') की घात देते हैं, जहां p(r) फॉर्म 4k + 1 की rवीं अभाज्य संख्या है। फिर यह G में, परिमेय बिंदु (3/5 + ''i''4/5)<sup>2</sup> · (8/17 + ''i''15/17)<sup>1</sup> = −416/425 + i87/4255 से मेल खाता है। हर 425, हर 5 का दो बार और हर 17 का एक बार गुणफल है, और पिछले उदाहरण की तरह, अंश -416 का वर्ग और अंश 87 का वर्ग, हर 425 के वर्ग के बराबर है। इस पर भी ध्यान दिया जाना चाहिए, समझ बनाए रखने में मदद करने के लिए एक सम्बन्ध के रूप में, कि भाजक 5 = p(1) फॉर्म 4k + 1 का पहला अभाज्य है, और भाजक 17 = p(3) फॉर्म 4k + 1 का तीसरा अभाज्य है।
 
'''., 0, ...) पर विचार करें जहां पहला अक्षर 0 चक्रीय समूह C4 में है|और अन्य विवरण (a2 − b2)/p(r) + i2ab/p(r) की शक्तियां देते हैं हैं, जहां p(r) फॉर्म 4k+1 की nवीं अभाज्य संख्या है। फिर यह जी में, परिमेय बिंदु (3/ 5 + i4/5)2 · (8/17 + i15/17)1 = −416/425 + i87/425 है। हर 425, हर 5 का दो बार और हर 17 का एक बार गुणनफल है, और पिछले उदाहरण की तरह, अंश -416 का वर्ग और अंश 87 का वर्ग, हर 425 के वर्ग के वर्ग है। इस पर भी ध्यान दिया जाना चाहिए, इसे बनाए रखने में मदद करने के लिए एक संबंध के रूप में, कि भाजक 5 = p(1) फॉर्म 4k + 1 का पहला अभियोग है, और भाजक 17 = p(3) फॉर्म 4k + 1 का तीसरा विधानसभा है।'''


== [[इकाई अतिपरवलय]] का तर्कसंगत बिंदुओं का समूह ==
== [[इकाई अतिपरवलय]] का तर्कसंगत बिंदुओं का समूह ==
यूनिट हाइपरबोला पर इस समूह और ऊपर चर्चा किए गए समूह के बीच घनिष्ठ संबंध है। यदि यूनिट सर्कल पर <math>\frac {a + ib}{c}</math> एक तर्कसंगत बिंदु है, जहां a/c और b/c कम अंश हैं, फिर (c/a, b/a) यूनिट हाइपरबोला पर एक तर्कसंगत बिंदु है, क्योंकि <math>(c/a)^2-(b/a)^2=1,</math> यूनिट हाइपरबोला के लिए समीकरण को संतुष्ट करता है। यहाँ समूह संचालन '''है''' <math>(x, y) \times (u, v)=(xu+yv, xv+yu)</math> है और समूह पहचान उपरोक्त के समान बिंदु (1, 0) है। इस समूह में [[ अतिशयोक्तिपूर्ण कोसाइन | हाइपरबोलिक कोसाइन]] और [[अतिशयोक्तिपूर्ण साइन|हाइपरबोलिक]] [[अतिशयोक्तिपूर्ण साइन|साइन]] के साथ घनिष्ठ संबंध है, जो उपरोक्त यूनिट सर्कल समूह में कोसाइन और साइन के साथ संबंध के समानांतर है।
यूनिट हाइपरबोला पर इस समूह और ऊपर चर्चा किए गए समूह के बीच घनिष्ठ संबंध है। यदि यूनिट सर्कल पर <math>\frac {a + ib}{c}</math> एक तर्कसंगत बिंदु है, जहां a/c और b/c कम अंश हैं, फिर (c/a, b/a) यूनिट हाइपरबोला पर एक तर्कसंगत बिंदु है, क्योंकि <math>(c/a)^2-(b/a)^2=1,</math> यूनिट हाइपरबोला के लिए समीकरण को संतुष्ट करता है। यहाँ समूह संचालन <math>(x, y) \times (u, v)=(xu+yv, xv+yu)</math> है और समूह पहचान उपरोक्त के समान बिंदु (1, 0) है। इस समूह में [[ अतिशयोक्तिपूर्ण कोसाइन |हाइपरबोलिक कोसाइन]] और [[अतिशयोक्तिपूर्ण साइन|हाइपरबोलिक]] [[अतिशयोक्तिपूर्ण साइन|साइन]] के साथ घनिष्ठ संबंध है, जो उपरोक्त यूनिट सर्कल समूह में कोसाइन और साइन के साथ संबंध के समानांतर है।


=== एक वृहत समूह के अंदर प्रतियां ===
=== एक वृहत समूह के अंदर प्रतियां ===
समीकरण <math>w^2+x^2-y^2+z^2=0</math> द्वारा दिए गए चार-आयामी अंतरिक्ष में [[एबेलियन किस्म]] पर तर्कसंगत बिंदुओं के समूह के उपसमूह (और ज्यामितीय वस्तुओं के रूप में) दोनों समूहों की आइसोमोर्फिक प्रतियां हैं। ध्यान दें कि यह विविधता 0 के बराबर मूल के सापेक्ष [[मिन्कोव्स्की मीट्रिक]] के साथ बिंदुओं का सेट है। इस बड़े समूह में पहचान (1, 0, 1, 0) है, और समूह संचालन है :<math>(a, b, c, d) \times (w, x, y, z)=(aw-bx,ax+bw,cy+dz,cz+dy)</math>  
समीकरण <math>w^2+x^2-y^2+z^2=0</math> द्वारा दिए गए चार-आयामी अंतरिक्ष में [[एबेलियन किस्म]] पर तर्कसंगत बिंदुओं के समूह के उपसमूह (और ज्यामितीय वस्तुओं के रूप में) दोनों समूहों की आइसोमोर्फिक प्रतियां हैं। ध्यान दें कि यह विविधता 0 के बराबर मूल के सापेक्ष [[मिन्कोव्स्की मीट्रिक]] के साथ बिंदुओं का सेट है। इस बड़े समूह में पहचान (1, 0, 1, 0) है, और समूह संचालन है:<math>(a, b, c, d) \times (w, x, y, z)=(aw-bx,ax+bw,cy+dz,cz+dy)</math>  


यूनिट सर्कल पर समूह के लिए, उपयुक्त उपसमूह '''फॉर्म''' '''के साथ''' <math>w^2+x^2=1</math> के साथ फॉर्म के बिंदुओं (w, x, 1, 0) का उपसमूह है '''(w, x, 1, 0)''', '''के साथ <math>w^2+x^2=1,</math>''' और इसका पहचान तत्व (1, 0, 1, 0) है। यूनिट हाइपरबोला समूह <math>y^2-z^2=1</math> के साथ फॉर्म के बिंदुओं (1, 0, y, z) से मेल खाता है और पहचान तत्व फिर से '''तत्समक''' (1, 0, 1, 0) है। (बेशक, चूँकि वे बड़े समूह के उपसमूह हैं, अतः उन दोनों में एक ही पहचान तत्व होना चाहिए।)
यूनिट सर्कल पर समूह के लिए, उपयुक्त उपसमूह <math>w^2+x^2=1</math> के साथ फॉर्म के बिंदुओं (w, x, 1, 0) का उपसमूह है और इसका पहचान तत्व (1, 0, 1, 0) है। यूनिट हाइपरबोला समूह <math>y^2-z^2=1</math> के साथ फॉर्म के बिंदुओं (1, 0, y, z) से मेल खाता है और पहचान तत्व फिर से (1, 0, 1, 0) है। (बेशक, चूँकि वे बड़े समूह के उपसमूह हैं, अतः उन दोनों में एक ही पहचान तत्व होना चाहिए।)


== यह भी देखें ==
== यह भी देखें ==

Revision as of 19:46, 16 March 2023

पायथागॉरियन ट्रिपल (4,3,5) यूनिट सर्कल पर तर्कसंगत बिंदु (4/5,3/5) से जुड़ा है।

गणित में, यूनिट सर्कल पर परिमेय बिंदु वे बिंदु (xy) होते हैं जैसे कि x और y दोनों परिमेय संख्याएँ ("अंश") हैं और x2 + y2 = 1 को संतुष्ट करते हैं। ऐसे बिंदुओं का सेट आदिम पायथागॉरियन ट्रिपल से निकटता से संबंधित है। एक आदिम समकोण त्रिभुज पर विचार करें, अर्थात्, पूर्णांक भुजाओं की लंबाई a, b, कर्ण c के साथ, जैसे कि भुजाओं में 1 से बड़ा कोई सामान्य कारक नहीं है। फिर यूनिट सर्कल पर तर्कसंगत बिंदु (a/c, b/c) मौजूद होता है। जो जटिल तल में सिर्फ a/c + ib/c है, जहां i काल्पनिक इकाई है। इसके विपरीत, यदि(x, y) समन्वय प्रणाली के प्रथम चतुर्भुज (अर्थात x > 0, y > 0) में यूनिट सर्कल पर एक परिमेय बिंदु है, तो भुजाओं xc, yc, c, के साथ एक आदिम समकोण त्रिभुज मौजूद है। जहाँ c x और y के हर का लघुत्तम समापवर्तक है। x-y तल में बिंदु (a, b) और जटिल तल में बिंदु a + ib के बीच एक पत्र-व्यवहार है जिसका उपयोग नीचे किया गया है।

समूह संचालन

यूनिट सर्कल पर तर्कसंगत बिंदुओं का सेट, इस आलेख में छोटा G घूर्णन के तहत एक अनंत एबेलियन समूह बनाता है। पहचान तत्व बिंदु अथवा तत्समक तत्व बिंदु (1, 0) = 1 + i0 = 1 है। समूह संचालन, या "उत्पाद" (x, y) * (t, u) = (xt - uy, xu + yt) है। यह गुणनफल कोण जोड़ है क्योंकि x = cos(A) और y = sin(A), जहां A वह कोण है जो सदिश (x, y) सदिश (1,0) के साथ बनाता है, जिसे वामावर्त मापा जाता है। तो (x, y) और (t, u) क्रमशः (1, 0) के साथ कोण A और B बनाते हैं, उनका गुणनफल (xt − uy, xu + yt) कोण कोण A + B (1, 0) के साथ बनाने वाले यूनिट सर्कल पर तर्कसंगत बिंदु है। समूह संचालन जटिल संख्याओं के साथ अधिक आसानी से व्यक्त किया जाता है: बिंदुओं (x, y) और (t, u) को क्रमशः x+iy और t+iu के साथ पहचानना, उपरोक्त समूह गुणनफल सामान्य जटिल संख्या गुणन (x + iy)(t + iu) = xt − yu + i(xu + yt) है, जो उपरोक्त बिंदु (xt − uy, xu + yt) के अनुरूप है।

उदाहरण

3/5 + 4/5i और 5/13 + 12/13i (जो दो सबसे प्रसिद्ध पायथागॉरियन ट्रिपल (3,4,5) और (5,12,13) ​​के अनुरूप हैं) यूनिट सर्कल पर तर्कसंगत बिंदु हैं यह जटिल तल, और इस प्रकार G के तत्व हैं। उनका समूह उत्पाद -33/65 +56/65i है, जो पायथागॉरियन ट्रिपल (33,56,65) से मेल खाता है। अंश 33 और 56 के वर्गों का योग 1089 + 3136 = 4225 है, जो हर 65 का वर्ग है।

समूह का वर्णन करने के अन्य तरीके

तर्कसंगत प्रविष्टियों के साथ सभी 2×2 ओर्थोगोनल का सेट G के साथ मेल खाता है। यह इस तथ्य से अनुसरण करता है कि सर्कल समूह के लिए आइसोमॉर्फिक है, और तथ्य यह है कि उनके परिमेय बिंदु मेल खाते हैं।

समूह संरचना

G की संरचना चक्रीय समूहों का एक अनंत योग है। बता दें G2 बिंदु 0 + 1i द्वारा उत्पन्न G के उपसमूह को दर्शाता है। G2 क्रम 4 का एक चक्रीय उपसमूह है। 4k + 1 के अभाज्य p के लिए, मान लीजिए Gp हर pn वाले तत्वों के उपसमूह को निरूपित करता है जहाँ n एक गैर-ऋणात्मक पूर्णांक है। Gp एक अनंत चक्रीय समूह है, और बिंदु (a2b2)/p + (2ab/p)i Gp का एक जनरेटर है। इसके अलावा, G के एक तत्व के हरों का गुणनखण्ड करके, यह दिखाया जा सकता है कि G, G2 और Gp का प्रत्यक्ष योग है। वह है:

चूंकि यह प्रत्यक्ष उत्पाद के बजाय एक प्रत्यक्ष योग है, इसलिए Gps में केवल बहुत से मान गैर-शून्य हैं।

उदाहरण

G को अनंत प्रत्यक्ष योग के रूप में देखते हुए, पदार्थ ({0}; 2, 0, 1, 0, 0, ..., 0, ...) पर विचार करें जहां पहला अक्षर 0 चक्रीय समूह C4 में है और अन्य निर्देशांक (a2b2)/p(r) + i2ab/p(r) की घात देते हैं, जहां p(r) फॉर्म 4k + 1 की rवीं अभाज्य संख्या है। फिर यह G में, परिमेय बिंदु (3/5 + i4/5)2 · (8/17 + i15/17)1 = −416/425 + i87/4255 से मेल खाता है। हर 425, हर 5 का दो बार और हर 17 का एक बार गुणफल है, और पिछले उदाहरण की तरह, अंश -416 का वर्ग और अंश 87 का वर्ग, हर 425 के वर्ग के बराबर है। इस पर भी ध्यान दिया जाना चाहिए, समझ बनाए रखने में मदद करने के लिए एक सम्बन्ध के रूप में, कि भाजक 5 = p(1) फॉर्म 4k + 1 का पहला अभाज्य है, और भाजक 17 = p(3) फॉर्म 4k + 1 का तीसरा अभाज्य है।

इकाई अतिपरवलय का तर्कसंगत बिंदुओं का समूह

यूनिट हाइपरबोला पर इस समूह और ऊपर चर्चा किए गए समूह के बीच घनिष्ठ संबंध है। यदि यूनिट सर्कल पर एक तर्कसंगत बिंदु है, जहां a/c और b/c कम अंश हैं, फिर (c/a, b/a) यूनिट हाइपरबोला पर एक तर्कसंगत बिंदु है, क्योंकि यूनिट हाइपरबोला के लिए समीकरण को संतुष्ट करता है। यहाँ समूह संचालन है और समूह पहचान उपरोक्त के समान बिंदु (1, 0) है। इस समूह में हाइपरबोलिक कोसाइन और हाइपरबोलिक साइन के साथ घनिष्ठ संबंध है, जो उपरोक्त यूनिट सर्कल समूह में कोसाइन और साइन के साथ संबंध के समानांतर है।

एक वृहत समूह के अंदर प्रतियां

समीकरण द्वारा दिए गए चार-आयामी अंतरिक्ष में एबेलियन किस्म पर तर्कसंगत बिंदुओं के समूह के उपसमूह (और ज्यामितीय वस्तुओं के रूप में) दोनों समूहों की आइसोमोर्फिक प्रतियां हैं। ध्यान दें कि यह विविधता 0 के बराबर मूल के सापेक्ष मिन्कोव्स्की मीट्रिक के साथ बिंदुओं का सेट है। इस बड़े समूह में पहचान (1, 0, 1, 0) है, और समूह संचालन है:

यूनिट सर्कल पर समूह के लिए, उपयुक्त उपसमूह के साथ फॉर्म के बिंदुओं (w, x, 1, 0) का उपसमूह है और इसका पहचान तत्व (1, 0, 1, 0) है। यूनिट हाइपरबोला समूह के साथ फॉर्म के बिंदुओं (1, 0, y, z) से मेल खाता है और पहचान तत्व फिर से (1, 0, 1, 0) है। (बेशक, चूँकि वे बड़े समूह के उपसमूह हैं, अतः उन दोनों में एक ही पहचान तत्व होना चाहिए।)

यह भी देखें

  • मंडल समूह

संदर्भ

  • The Group of Rational Points on the Unit Circle[1], Lin Tan, Mathematics Magazine Vol. 69, No. 3 (June, 1996), pp. 163–171
  • The Group of Primitive Pythagorean Triangles[2], Ernest J. Eckert, Mathematics Magazine Vol 57 No. 1 (January, 1984), pp 22–26
  • ’’Rational Points on Elliptic Curves’’ Joseph Silverman