प्रत्यक्ष योग
This article needs additional citations for verification. (December 2013) (Learn how and when to remove this template message) |
प्रत्यक्ष योग, गणित की एक शाखा और अमूर्त बीजगणित में गणितीय संरचना के बीच का एक संचालन है। यह अलग-अलग प्रकार की संरचनाओं के लिए अलग-अलग, लेकिन समान रूप से परिभाषित किया गया है। अमूर्त बीजगणित में प्रत्यक्ष योग का उपयोग कैसे किया जाता है, यह देखने के लिए, अधिक प्रारंभिक संरचना, एबेलियन समूह पर विचार करें। दो एबेलियन समूहों तथा का प्रत्यक्ष योग एक दूसरा एबेलियन समूह होता है जिसमे क्रमित युग्म सम्मलित होता है : जहाँ तथा . क्रमित युग्मों को जोड़ने के लिए, हम योग को द्वारा परिभाषित करते हैं; दूसरे शब्दों में जोड़ को निर्देशांक के अनुसार परिभाषित किया गया है। उदाहरण के लिए, प्रत्यक्ष योग , जहाँ वास्तविक कार्तीय तल है, . इसी तरह की प्रक्रिया का उपयोग दो सदिश क्षेत्र या दो मॉड्यूल के प्रत्यक्ष योग के लिए किया जा सकता है।
हम किसी भी परिमित संख्या के जोड़ के साथ प्रत्यक्ष योग भी बना सकते हैं। उदाहरण के लिए, , जहाँ पर तथा एक ही प्रकार की बीजगणितीय संरचनाएं हैं ( उदाहरण के लिए, सभी एबेलियन समूह, या सभी सदिश क्षेत्र )। यह इस तथ्य पर निर्भर करता है कि प्रत्यक्ष योग समरूपता तक साहचर्य है। वह है, एक ही तरह की किसी भी बीजगणितीय संरचना के लिए , , तथा के लिए । प्रत्यक्ष योग समरूपता तक क्रमविनिमेय भी है, अर्थात एक ही तरह की किसी भी बीजगणितीय संरचना के लिए , , तथा के लिए ।
बहुत से एबेलियन समूहों, सदिश क्षेत्र, या मॉड्यूल का प्रत्यक्ष योग, संबंधित प्रत्यक्ष गुणन के लिए प्रामाणिक रूप से समाकृतिक है। सामान्यतः, यह कुछ बीजगणितीय वस्तुओं के लिए गलत है, जैसे कि गैर-अबेलियन समूह।
ऐसे स्थिति में जहाँ असीमित रूप से अनेक वस्तुएं संयुक्त होती हैं, प्रत्यक्ष योग और प्रत्यक्ष गुणन समाकृतिक नहीं होते हैं, यहाँ तक कि एबेलियन समूहों, सदिश क्षेत्र या मॉड्यूल के लिए भी समाकृतिक नहीं होते हैं। एक उदाहरण के रूप में, पूर्णांकों की अपरिमित रूप से अनेक प्रतियों के प्रत्यक्ष योग और प्रत्यक्ष गुणनफल पर विचार करें। प्रत्यक्ष गुणन में एक तत्व, एक अनंत अनुक्रम है जैसे (1,2,3,...) लेकिन प्रत्यक्ष योग में, एक आवश्यकता है कि सभी लेकिन बहुत से निर्देशांक शून्य हों, इसलिए अनुक्रम (1,2,3,...) प्रत्यक्ष गुणन का एक तत्व होगा, लेकिन प्रत्यक्ष योग का नहीं, जबकि (1,2,0,0,0,...) दोनों का एक तत्व होगा। अधिकांशतः, यदि एक + चिह्न का उपयोग किया जाता है, तो बहुत से निर्देशांकों को छोड़कर सभी निर्देशांक शून्य होने चाहिए, जबकि यदि गुणन के किसी रूप का उपयोग किया जाता है, तो निश्चित रूप से बहुत से निर्देशांकों को छोड़कर सभी 1 होना चाहिए। अधिक तकनीकी भाषा में, यदि योगफल हैं , तब प्रत्यक्ष योग
उदाहरण
xy-तल, एक द्वि-आयामी सदिश क्षेत्र, को दो एक-आयामी सदिश क्षेत्र, अर्थात् x और y अक्षों के प्रत्यक्ष योग के रूप में माना जा सकता है। इस प्रत्यक्ष योग में, x और y अक्ष केवल मूल बिंदु (शून्य सदिश) पर प्रतिच्छेद करते हैं। जोड़ को निर्देशांक-के अनुसार परिभाषित किया गया है, अर्थात , जो सदिश योग के समान है।
दो संरचनाएं तथा दी गई हैं, उनका प्रत्यक्ष योग प्रकार से लिखा जाता है। संरचनाओं के अनुक्रमित परिवार को देखते हुए, प्रत्यक्ष योग लिखा जा सकता है। प्रत्येक Ai को A का 'प्रत्यक्ष योग' कहा जाता है। यदि सूचकांक सेट सीमित है, तो प्रत्यक्ष योग, प्रत्यक्ष गुणन के समान होता है। समूहों के विषय में, यदि समूह संचालन के रूप में लिखा गया है, तो प्रत्यक्ष योग का उपयोग किया जाता है, जबकि यदि समूह संचालन लिखा जाता है प्रत्यक्ष गुणन वाक्यांश का उपयोग किया जाता है। जब सूचकांक सेट अनंत होता है, तो प्रत्यक्ष योग, प्रत्यक्ष गुणन के समान नहीं होता है क्योंकि प्रत्यक्ष योग की अतिरिक्त आवश्यकता होती है कि सभी लेकिन अंतत: अनेक निर्देशांक शून्य होने चाहिए।
आंतरिक और बाह्य प्रत्यक्ष योग
आंतरिक और बाह्य प्रत्यक्ष योगों के बीच एक भेद किया जाता है, सामान्यतः दोनों तुल्याकारी हैं। यदि योग को पहले परिभाषित किया जाता है, और फिर योग के संदर्भ में प्रत्यक्ष योग को परिभाषित किया जाता है, तो हमारे पास बाहरी प्रत्यक्ष योग होता है। उदाहरण के लिए, यदि हम वास्तविक संख्याओं को परिभाषित करते हैं और फिर परिभाषित करें प्रत्यक्ष योग को बाह्य कहा जाता है।
यदि, दूसरी ओर, हम पहले कुछ बीजगणितीय संरचना को परिभाषित करते हैं और फिर लिखो दो अवसंरचनाओं के प्रत्यक्ष योग के रूप में तथा , तो प्रत्यक्ष योग को आंतरिक कहा जाता है। इस मामले में, के प्रत्येक तत्व के एक तत्व के बीजगणितीय संयोजन के रूप में विशिष्ट रूप से व्यक्त किया जा सकता है और का एक तत्व . आंतरिक प्रत्यक्ष योग के उदाहरण के लिए, विचार करें (पूर्णांक मॉड्यूल छह), जिनके तत्व हैं . यह आंतरिक प्रत्यक्ष योग के रूप में व्यक्त किया जा सकता है .
प्रत्यक्ष योग के प्रकार
एबेलियन समूहों का प्रत्यक्ष योग
एबेलियन समूहों का प्रत्यक्ष योग, प्रत्यक्ष योग का एक प्रोटोटाइपिक उदाहरण है। ऐसे ही दिए गए दो समूहो तथा के लिए उनका प्रत्यक्ष योग समूहों के प्रत्यक्ष गुणन के समान है। यही है, अंतर्निहित सेट कार्तीय गुणन है और समूह संचालन घटक के अनुसार परिभाषित किया गया है:
द्वारा अनुक्रमित, समूहों के एक यादृच्छिक परिवार के लिए, उनका प्रत्यक्ष योग [2]
मॉड्यूल का प्रत्यक्ष योग
मॉड्यूल का प्रत्यक्ष योग एक निर्माण है जो अनेक मॉड्यूल (गणित) को एक नए मॉड्यूल में जोड़ता है।
इस निर्माण के सबसे परिचित उदाहरण सदिश क्षेत्र पर विचार करते समय होते हैं, जो एक फ़ील्ड (गणित) पर मॉड्यूल होते हैं। निर्माण को बनच स्थानों और हिल्बर्ट स्थानों तक भी बढ़ाया जा सकता है।
श्रेणियों में प्रत्यक्ष योग
एक योजक श्रेणी मॉड्यूल की श्रेणी के गुणों का एक सार है।[4][5] ऐसी श्रेणी में, परिमित गुणन और सह-गुणन सहमत होते हैं और प्रत्यक्ष योग उनमें से कोई एक होता है, cf. द्विगुणन।
सामान्य स्थिति : [2]श्रेणी सिद्धांत में प्रत्यक्ष योग अधिकांशतः, लेकिन हमेशा नहीं, प्रश्न में गणितीय वस्तुओं की श्रेणी में अनुत्पादक होता है। उदाहरण के लिए, एबेलियन समूहों की श्रेणी में, प्रत्यक्ष योग एक सह-गुणन है। यह मॉड्यूल की श्रेणी में भी सही है।
समूहों की श्रेणी में प्रत्यक्ष योग बनाम सह-गुणन
चूंकि, प्रत्यक्ष योग (एबेलियन समूहों के प्रत्यक्ष योग के समान परिभाषित) है समूहों का एक गुणन तथा समूहों की श्रेणी में।[6] तो इस श्रेणी के लिए, किसी भी संभावित भ्रम से बचने के लिए एक स्पष्ट प्रत्यक्ष योग को अधिकांशतः एक सह-गुणन कहा जाता है।
समूह प्रतिनिधित्व का प्रत्यक्ष योग
समूह प्रतिनिधित्व का प्रत्यक्ष योग अंतर्निहित मॉड्यूल (गणित) के मॉड्यूल के प्रत्यक्ष योग को सामान्यीकृत करता है, इसमें एक समूह क्रिया (गणित) जोड़ता है। विशेष रूप से, एक समूह दिया गया और दो समूह प्रतिनिधित्व तथा का (या, अधिक सामान्यतः, दो -मॉड्यूल |-मॉड्यूल), प्रतिनिधित्व का प्रत्यक्ष योग है की क्रिया के साथ दिए गए घटक-के अनुसार, अर्थात्,
दो दिए गए प्रतिनिधित्व तथा प्रत्यक्ष योग का सदिश स्थान है और समरूपता द्वारा दिया गया है जहाँ उपरोक्तानुसार समन्वय-वार क्रिया द्वारा प्राप्त प्राकृतिक मानचित्र है।
इसके अतिरिक्त, यदि सीमित आयामी हैं, तब फिर दिए गए आधार पर , तथा आव्यूह-मूल्यवान हैं। इस स्थिति में, निम्न रूप में दिया जाता है
वलयो का प्रत्यक्ष योग
कुछ लेखक दो वलयो के प्रत्यक्ष योग की बात करेंगे, जब उनका अभिप्राय प्रत्यक्ष गुणन से है, लेकिन इसे अनदेखा करना चाहिए[7] जैसा कि , तथा से प्राकृतिक वलय समरूपता प्राप्त नहीं करता है: विशेष रूप से, मानचित्र , को पर भेजना रिंग समरूपता नहीं है क्योंकि यह 1 को में भेजने पर विफल रहता है (ऐसा मानते हुए में ). इस प्रकार वलयो की श्रेणी में प्रतिगुणन नहीं है, और इसे प्रत्यक्ष योग के रूप में नहीं लिखा जाना चाहिए। (कम्यूटेटिव रिंग्स की श्रेणी में कोप्रोडक्ट वलय का प्रदिश गुणन है।[8] वलयो की श्रेणी में, प्रतिगुणन समूहों के मुक्त गुणन के समान निर्माण द्वारा दिया जाता है।)
प्रत्यक्ष योग शब्दावली और संकेतन का उपयोग विशेष रूप से तब समस्याग्रस्त होता है जब वलयो के अनंत परिवारों के साथ व्यवहार किया जाता है: यदि गैर-तुच्छ वलयो का एक अनंत संग्रह है, तो अंतर्निहित योज्य समूहों का प्रत्यक्ष योग शब्दवार गुणन से सुसज्जित किया जा सकता है, लेकिन यह एक rng उत्पन्न करता है, जो कि गुणक पहचान के बिना एक वलय है।
आव्यूह का प्रत्यक्ष योग
किसी भी यादृच्छिक आव्यूह तथा के लिए प्रत्यक्ष योग , तथा के ब्लॉक विकर्ण आव्यूह के रूप में परिभाषित किया गया है यदि दोनों वर्ग आव्यूह हैं (और एक समान ब्लॉक आव्यूह के लिए, यदि नहीं)।
टोपोलॉजिकल सदिश क्षेत्र का प्रत्यक्ष योग
एक टोपोलॉजिकल सदिश क्षेत्र (TVS) जैसे बनच क्षेत्र, को दो सदिश उप-क्षेत्र तथा का टोपोलॉजिकल प्रत्यक्ष योग कहा जाता है यदि अतिरिक्त मानचित्र
यदि , एक वास्तविक या कोम्प्लेक्स्स सदिश क्षेत्र का एक सदिश उप-क्षेत्र है, तो वहाँ हमेशा एक और उप-स्थान सदिश उपस्थित होता है। जिसे में का एक बीजगणितीय पूरक कहा जाता है। ऐसा कि , तथा बीजगणितीय प्रत्यक्ष योग है। (जो केवल तब ही होता है जब अतिरिक्त मानचित्र एक सदिश अंतरिक्ष समरूपता होता है)।बीजगणितीय प्रत्यक्ष योगों के विपरीत, इस तरह के पूरक के अस्तित्व की अब टोपोलॉजिकल प्रत्यक्ष योगों के लिए गारंटी नहीं है।
का एक सदिश उप-स्थान , का पूरक उपक्षेत्र कहा जाता है यदि वहाँ के कुछ सदिश उप-स्थान उपस्थित है वह भी इस प्रकार कि , का टोपोलॉजिकल प्रत्यक्ष योग है। एक सदिश उप-स्थान को अपूर्ण कहा जाता है यदि यह एक पूरक उप-स्थान नहीं है। उदाहरण के लिए, हौसडॉर्फ TVS का प्रत्येक सदिश उपस्थान जो एक बंद उपसमुच्चय नहीं है, आवश्यक रूप से अपूर्ण है। हिल्बर्ट क्षेत्र का प्रत्येक बंद सदिश उप-क्षेत्र पूरक है। लेकिन हर बनच क्षेत्र जो कि हिल्बर्ट स्थान नहीं है, आवश्यक रूप से कुछ अपूर्ण बंद सदिश उप-स्थान रखता है।
समरूपता
प्रत्यक्ष योग , I में प्रत्येक j के लिए प्रोजेक्शन समरूपता और I में प्रत्येक j के लिए एक सहप्रक्षेपण के साथ सुसज्जित रूप से प्राप्त होता है। [9] दी गयी एक अन्य बीजगणितीय संरचना (समान अतिरिक्त संरचना के साथ) और I में प्रत्येक j के लिए समरूपता के लिए, एक अद्वितीय समरूपता है , जिसे gj का योग कहा जाता है, वह भी तब जब सभी j के लिए हो। इस प्रकार प्रत्यक्ष योग उपयुक्त श्रेणी में प्रतिफल है।
यह भी देखें
- समूहों का प्रत्यक्ष योग
- क्रमपरिवर्तन का प्रत्यक्ष योग
- टोपोलॉजिकल समूहों का प्रत्यक्ष योग
- प्रतिबंधित गुणन
- व्हिटनी योग
टिप्पणियाँ
- ↑ Thomas W. Hungerford, Algebra, p.60, Springer, 1974, ISBN 0387905189
- ↑ 2.0 2.1 Direct Sum at the nLab
- ↑ Joseph J. Rotman, The Theory of Groups: an Introduction, p. 177, Allyn and Bacon, 1965
- ↑ "p.45"
- ↑ "अनुबंध" (PDF). Archived from the original (PDF) on 2006-09-17. Retrieved 2014-01-14.
- ↑ "उत्पादों और प्रतिउत्पाद के लिए प्रति उदाहरण". Planetmath. Retrieved 2021-07-23.
- ↑ Math StackExchange on direct sum of rings vs. direct product of rings.
- ↑ Lang 2002 , section I.11
- ↑ Heunen, Chris (2009). श्रेणीबद्ध क्वांटम मॉडल और तर्क. Pallas Proefschriften. Amsterdam University Press. p. 26. ISBN 978-9085550242.
संदर्भ
- Lang, Serge (2002), Algebra, Graduate Texts in Mathematics, vol. 211 (Revised third ed.), New York: Springer-Verlag, ISBN 978-0-387-95385-4, MR 1878556, Zbl 0984.00001