आदर्श बिंदु: Difference between revisions
No edit summary |
No edit summary |
||
| Line 7: | Line 7: | ||
प्रक्षेपी कथन के विपरीत, आदर्श बिंदु [[सीमा के साथ कई गुना|सीमा के साथ]] उप-नलिका नहीं बनाते हैं। इसलिए, ये रेखाएँ आदर्श बिंदु पर प्रतिच्छेद नहीं करती हैं और ऐसे बिंदु, चूँकि स्पष्ट प्रकार से परिभाषित हैं, अतिपरवलयिक स्थान से संबंधित नहीं हैं। | प्रक्षेपी कथन के विपरीत, आदर्श बिंदु [[सीमा के साथ कई गुना|सीमा के साथ]] उप-नलिका नहीं बनाते हैं। इसलिए, ये रेखाएँ आदर्श बिंदु पर प्रतिच्छेद नहीं करती हैं और ऐसे बिंदु, चूँकि स्पष्ट प्रकार से परिभाषित हैं, अतिपरवलयिक स्थान से संबंधित नहीं हैं। | ||
आदर्श बिंदु मिलकर [[केली निरपेक्ष]] या अतिपरवलयिक ज्यामिति की सीमा बनाते हैं। उदाहरण के लिए, [[यूनिट सर्कल|इकाई वृत्त]] पोंकारे डिस्क मॉडल और [[छोटा डिस्क मॉडल]] के केली निरपेक्ष बनाता है। जबकि वास्तविक रेखा पॉइंकेयर हाफ-प्लेन मॉडल के केली निरपेक्ष का निर्माण करती है।<ref>{{Citation | last1=Struve | first1=Horst | last2=Struve | first2=Rolf | title=Non-euclidean geometries: the Cayley-Klein approach |doi=10.1007/s00022-010-0053-z | mr=2739193 | year=2010 | journal=Journal of Geometry | issn=0047-2468 | volume=89 | issue=1 | pages=151–170}}</ref> | आदर्श बिंदु मिलकर [[केली निरपेक्ष]] या अतिपरवलयिक ज्यामिति की सीमा बनाते हैं। उदाहरण के लिए, [[यूनिट सर्कल|इकाई वृत्त]] पोंकारे डिस्क मॉडल और [[छोटा डिस्क मॉडल]] के केली निरपेक्ष बनाता है। जबकि वास्तविक रेखा पॉइंकेयर हाफ-प्लेन मॉडल के केली निरपेक्ष का निर्माण करती है।<ref>{{Citation | last1=Struve | first1=Horst | last2=Struve | first2=Rolf | title=Non-euclidean geometries: the Cayley-Klein approach |doi=10.1007/s00022-010-0053-z | mr=2739193 | year=2010 | journal=Journal of Geometry | issn=0047-2468 | volume=89 | issue=1 | pages=151–170}}</ref> पाश्च का अभिगृहित और [[बाहरी कोण प्रमेय]] अभी भी ओमेगा त्रिकोण के लिए है, जिसे अतिपरवलयिक स्थान में दो बिंदुओं और एक ओमेगा बिंदु द्वारा परिभाषित किया गया है।<ref>{{cite book|last =Hvidsten|first =Michael|title = ज्यामिति एक्सप्लोरर के साथ ज्यामिति|publisher = McGraw-Hill|year = 2005 | location = New York, NY |pages = 276–283 | isbn = 0-07-312990-9}}</ref> | ||
== गुण == | == गुण == | ||
* | * आदर्श बिंदु और किसी अन्य बिंदु या आदर्श बिंदु के बिच अतिपरवलयिक दूरी अनंत है। | ||
* [[कुंडली]] और कुंडली के केंद्र आदर्श बिंदु होते हैं; एक ही केंद्र होने पर दो कुंडली संकेंद्रित होती हैं। | *[[कुंडली]] और कुंडली के केंद्र आदर्श बिंदु होते हैं; एक ही केंद्र होने पर दो कुंडली संकेंद्रित होती हैं। | ||
== आदर्श शीर्षों वाले बहुभुज == | == आदर्श शीर्षों वाले बहुभुज == | ||
===आदर्श त्रिभुज=== | ===आदर्श त्रिभुज=== | ||
''Main article:'' आदर्श त्रिकोण | |||
आदर्श त्रिभुजों के कुछ गुणों में | यदि अतिपरवलयिक त्रिभुज के सभी शीर्ष आदर्श बिंदु हैं तो त्रिभुज आदर्श त्रिभुज है। | ||
आदर्श त्रिभुजों के कुछ गुणों में सम्मिलित हैं: | |||
* सभी आदर्श त्रिभुज सर्वांगसम होते हैं। | * सभी आदर्श त्रिभुज सर्वांगसम होते हैं। | ||
Revision as of 13:20, 12 March 2023
This article may be confusing or unclear to readers. (November 2021) (Learn how and when to remove this template message) |
अतिपरवलयिक ज्यामिति में, आदर्श बिंदु, ओमेगा बिंदु[1] या अनंत पर बिंदु अतिपरवलयिक तल या स्पेस के बाहर स्पष्ट प्रकार से परिभाषित बिंदु है।
दी गयी रेखा / और बिंदु पी / पर नहीं, दाहिने और बाएं सीमित समानांतरों को / पी के माध्यम से आदर्श बिंदुओं पर / में अभिसरण करते हैं।
प्रक्षेपी कथन के विपरीत, आदर्श बिंदु सीमा के साथ उप-नलिका नहीं बनाते हैं। इसलिए, ये रेखाएँ आदर्श बिंदु पर प्रतिच्छेद नहीं करती हैं और ऐसे बिंदु, चूँकि स्पष्ट प्रकार से परिभाषित हैं, अतिपरवलयिक स्थान से संबंधित नहीं हैं।
आदर्श बिंदु मिलकर केली निरपेक्ष या अतिपरवलयिक ज्यामिति की सीमा बनाते हैं। उदाहरण के लिए, इकाई वृत्त पोंकारे डिस्क मॉडल और छोटा डिस्क मॉडल के केली निरपेक्ष बनाता है। जबकि वास्तविक रेखा पॉइंकेयर हाफ-प्लेन मॉडल के केली निरपेक्ष का निर्माण करती है।[2] पाश्च का अभिगृहित और बाहरी कोण प्रमेय अभी भी ओमेगा त्रिकोण के लिए है, जिसे अतिपरवलयिक स्थान में दो बिंदुओं और एक ओमेगा बिंदु द्वारा परिभाषित किया गया है।[3]
गुण
- आदर्श बिंदु और किसी अन्य बिंदु या आदर्श बिंदु के बिच अतिपरवलयिक दूरी अनंत है।
- कुंडली और कुंडली के केंद्र आदर्श बिंदु होते हैं; एक ही केंद्र होने पर दो कुंडली संकेंद्रित होती हैं।
आदर्श शीर्षों वाले बहुभुज
आदर्श त्रिभुज
Main article: आदर्श त्रिकोण
यदि अतिपरवलयिक त्रिभुज के सभी शीर्ष आदर्श बिंदु हैं तो त्रिभुज आदर्श त्रिभुज है।
आदर्श त्रिभुजों के कुछ गुणों में सम्मिलित हैं:
- सभी आदर्श त्रिभुज सर्वांगसम होते हैं।
- एक आदर्श त्रिभुज के सभी आंतरिक कोण शून्य होते हैं।
- किसी भी आदर्श त्रिभुज का परिमाप अनंत होता है।
- किसी भी आदर्श त्रिभुज का क्षेत्रफल होता है जहाँ K समतल की (ऋणात्मक) वक्रता है।[4]
आदर्श चतुर्भुज
यदि किसी चतुर्भुज के सभी शीर्ष आदर्श बिंदु हों, तो चतुर्भुज एक आदर्श चतुर्भुज होता है।
जबकि सभी आदर्श त्रिभुज सर्वांगसम होते हैं, सभी चतुर्भुज नहीं होते हैं; विकर्ण एक दूसरे के साथ अलग-अलग कोण बना सकते हैं, जिसके परिणामस्वरूप गैर-समरूप चतुर्भुज होते हैं। यह कह कर:[clarification needed]
- एक आदर्श चतुर्भुज के सभी आंतरिक कोण शून्य होते हैं।
- किसी भी आदर्श चतुर्भुज का परिमाप अनंत होता है।
- किसी भी आदर्श उत्तल बहुभुज|(उत्तल गैर प्रतिच्छेदी) चतुर्भुज का क्षेत्रफल होता है जहाँ K समतल की (ऋणात्मक) वक्रता है।
आदर्श वर्ग
आदर्श चतुर्भुज जहाँ दो विकर्ण एक दूसरे के लंबवत होते हैं, एक आदर्श वर्ग बनाते हैं।
इसका उपयोग फर्डिनेंड कार्ल श्वेकार्ट द्वारा अपने ज्ञापन में किया गया था, जिसे उन्होंने सूक्ष्म ज्यामिति कहा था, हाइपरबोलिक ज्यामिति की संभावना को स्वीकार करने वाले पहले प्रकाशनों में से एक।[5]
आदर्श एन-गोंन्स
एक आदर्श एन-गॉन को उप-विभाजित किया जा सकता है (n − 2) आदर्श त्रिकोण, क्षेत्र के साथ (n − 2) एक आदर्श त्रिभुज के क्षेत्रफल का गुना।
अतिशयोक्तिपूर्ण ज्यामिति के मॉडल में प्रतिनिधित्व
क्लेन डिस्क मॉडल और हाइपरबोलिक प्लेन के पॉइनकेयर डिस्क मॉडल में आदर्श बिंदु यूनिट सर्कल (हाइपरबोलिक प्लेन) या इकाई क्षेत्र (उच्च आयाम) पर हैं जो हाइपरबोलिक प्लेन की अगम्य सीमा है।
क्लेन डिस्क मॉडल और पॉइनकेयर डिस्क मॉडल के लिए एक ही हाइपरबोलिक लाइन को प्रोजेक्ट करते समय दोनों लाइनें एक ही दो आदर्श बिंदुओं से गुजरती हैं (दोनों मॉडलों में आदर्श बिंदु एक ही स्थान पर हैं)।
क्लेन डिस्क मॉडल
ओपन यूनिट डिस्क में दो अलग-अलग बिंदुओं पी और क्यू को देखते हुए उन्हें जोड़ने वाली अनूठी सीधी रेखा यूनिट सर्कल को दो आदर्श बिंदुओं, ए और बी में लेबल करती है, ताकि अंक क्रम में हों, ए, पी, क्यू, बी ताकि |एक्यू| > |एपी| और |पंजाब| > |क्यूबी|. तब p और q के बीच अतिशयोक्तिपूर्ण दूरी को व्यक्त किया जाता है
पोंकारे डिस्क मॉडल
ओपन यूनिट डिस्क में दो अलग-अलग बिंदु पी और क्यू दिए गए हैं, फिर उन्हें जोड़ने वाली सीमा के लिए अद्वितीय सर्कल आर्क (ज्यामिति) ऑर्थोगोनल यूनिट सर्कल को दो आदर्श बिंदुओं, ए और बी में चिह्नित करता है, ताकि अंक क्रम में हों, ए , p, q, b ताकि |aq| > |एपी| और |पंजाब| > |क्यूबी|. तब p और q के बीच अतिशयोक्तिपूर्ण दूरी को व्यक्त किया जाता है
जहाँ दूरियों को (सीधी रेखा) खंडों aq, ap, pb और qb के साथ मापा जाता है।
पोंकारे आधा विमान मॉडल
पॉइनकेयर हाफ-प्लेन मॉडल में आदर्श बिंदु सीमा अक्ष पर बिंदु हैं। एक और आदर्श बिंदु भी है जो अर्ध-विमान मॉडल में प्रदर्शित नहीं होता है (लेकिन धनात्मक y-अक्ष के समानांतर किरणें उस तक पहुंचती हैं)।
हाइपरबोलाइड मॉडल
हाइपरबोलॉइड मॉडल में कोई आदर्श बिंदु नहीं होते हैं।
यह भी देखें
- आदर्श त्रिकोण
- आदर्श बहुफलक
- अन्य ज्यामिति में उपयोग के लिए अनंत पर अंक।
इस पेज में लापता आंतरिक लिंक की सूची
- शिखर (ज्यामिति)
- समानांतर सीमित करना
- गाढ़ा
- horoball
- अतिशयोक्तिपूर्ण त्रिकोण
- चतुष्कोष
- सीधा
- चाप (ज्यामिति)
- आदर्श पॉलीहेड्रॉन
संदर्भ
- ↑ Sibley, Thomas Q. (1998). ज्यामितीय दृष्टिकोण: ज्यामिति का एक सर्वेक्षण. Reading, Mass.: Addison-Wesley. p. 109. ISBN 0-201-87450-4.
- ↑ Struve, Horst; Struve, Rolf (2010), "Non-euclidean geometries: the Cayley-Klein approach", Journal of Geometry, 89 (1): 151–170, doi:10.1007/s00022-010-0053-z, ISSN 0047-2468, MR 2739193
- ↑ Hvidsten, Michael (2005). ज्यामिति एक्सप्लोरर के साथ ज्यामिति. New York, NY: McGraw-Hill. pp. 276–283. ISBN 0-07-312990-9.
- ↑ Thurston, Dylan (Fall 2012). "274 कर्व ऑन सरफेस, लेक्चर 5" (PDF). Retrieved 23 July 2013.
- ↑ Bonola, Roberto (1955). गैर-यूक्लिडियन ज्यामिति: इसके विकास का एक महत्वपूर्ण और ऐतिहासिक अध्ययन (Unabridged and unaltered republ. of the 1. English translation 1912. ed.). New York, NY: Dover. pp. 75–77. ISBN 0486600270.