आदर्श बिंदु
अतिपरवलयिक ज्यामिति में, आदर्श बिंदु, ओमेगा बिंदु[1] या अनंत पर बिंदु अतिपरवलयिक तल या स्थान के बाहर स्पष्ट प्रकार से परिभाषित बिंदु है।
दी गयी रेखा/और बिंदु P/पर, दाहिने और बाएं सीमित समानांतरों को / P के माध्यम से आदर्श बिंदुओं में /अभिसरण नहीं करते हैं।
प्रक्षेपी कथन के विपरीत, आदर्श बिंदु सीमा के साथ उप-प्रासमस्टी नहीं बनाते हैं। इसलिए, ये रेखाएँ आदर्श बिंदु पर प्रतिच्छेद नहीं करती हैं और ऐसे, स्पष्ट प्रकार से परिभाषित बिंदु, अतिपरवलयिक स्थान से संबंधित नहीं होते हैं।
आदर्श बिंदु मिलकर केली निरपेक्ष या अतिपरवलयिक ज्यामिति की सीमा बनाते हैं। उदाहरण के लिए, इकाई वृत्त पोंकारे डिस्क मॉडल और क्लेन डिस्क मॉडल के केली निरपेक्ष बनाता है। जबकि वास्तविक रेखा पॉइंकेयर अर्ध-समतल मॉडल के केली निरपेक्ष का निर्माण करती है।[2] पाश्च का अभिगृहित और बाहरी कोण प्रमेय ओमेगा त्रिकोण के लिए प्रयुक्त है, जिसे अतिपरवलयिक स्थान में दो बिंदुओं और एक ओमेगा बिंदु द्वारा परिभाषित किया जाता है।[3]
गुण
- आदर्श बिंदु और किसी अन्य बिंदु या आदर्श बिंदु के बिच की अतिपरवलयिक दूरी अनंत होती है।
- कुंडली और कुंडली के केंद्र आदर्श बिंदु होते हैं; एक ही केंद्र होने पर दो कुंडली संकेंद्रित होती हैं।
आदर्श शीर्षों वाले बहुभुज
आदर्श त्रिभुज
Main article: आदर्श त्रिकोण
यदि अतिपरवलयिक त्रिभुज के सभी शीर्ष आदर्श बिंदु हैं तो त्रिभुज आदर्श त्रिभुज है।
आदर्श त्रिभुजों के गुण निम्नलिखित हैं:
- सभी आदर्श त्रिभुज समरूप होते हैं।
- आदर्श त्रिभुज के सभी आंतरिक कोण शून्य होते हैं।
- किसी भी आदर्श त्रिभुज का परिमाप अनंत होता है।
- किसी भी आदर्श त्रिभुज का क्षेत्रफल होता है जहाँ K समतल की (ऋणात्मक) वक्रता है।[4]
आदर्श चतुर्भुज
यदि किसी चतुर्भुज के सभी शीर्ष आदर्श बिंदु हों, तो चतुर्भुज आदर्श चतुर्भुज होता है।
जबकि सभी आदर्श त्रिभुज समरूप होते हैं, सभी चतुर्भुज नहीं होते हैं; विकर्ण एक दूसरे के साथ अलग-अलग कोण बना सकते हैं, जिसके परिणामस्वरूप असमरूप चतुर्भुज होते हैं। कथन है की:
- आदर्श चतुर्भुज के सभी आंतरिक कोण शून्य होते हैं।
- किसी भी आदर्श चतुर्भुज का परिमाप अनंत होता है।
- किसी भी आदर्श उत्तल बहुभुज (उत्तल गैर प्रतिच्छेदी) चतुर्भुज का क्षेत्रफल होता है जहाँ K समतल की (ऋणात्मक) वक्रता है।
आदर्श वर्ग
दो लंबवत विकर्णो वाले आदर्श चतुर्भुज, आदर्श वर्ग बनाते हैं।
इसका उपयोग फर्डिनेंड कार्ल श्वेकार्ट द्वारा अपने ज्ञापन में किया गया था, जिसे उन्होंने सूक्ष्म ज्यामिति कहा था, जो अतिपरवलयिक ज्यामिति की संभावना को स्वीकार करने वाला पहला प्रकाशन है।[5]
आदर्श एन-गोंन्स
आदर्श एन-गॉन को (n-2) आदर्श त्रिभुज में अविभाजित किया जा सकता है , जिसका क्षेत्रफल आदर्श त्रिभुज के क्षेत्रफल का (n-2) गुना होता है।
अतिपरवलयिक ज्यामिति के मॉडल में प्रतिनिधित्व
क्लेन डिस्क मॉडल और अतिपरवलयिक समतल के पॉइनकेयर डिस्क मॉडल में आदर्श बिंदु इकाई वृत्त (अतिपरवलयिक प्लेन) या इकाई क्षेत्र (उच्च आयाम) हैं जो अतिपरवलयिक समतल की अगम्य सीमा है।
क्लेन डिस्क मॉडल और पॉइनकेयर डिस्क मॉडल के लिए एक ही अतिपरवलयिक रेखा को प्रछेपित करते समय दोनों रेखाएं एक ही दो आदर्श बिंदुओं से गुजरती हैं (दोनों मॉडलों में आदर्श बिंदु एक ही स्थान पर हैं)।
क्लेन डिस्क मॉडल
ओपन इकाई डिस्क में दो अलग-अलग बिंदुओं p और q को देखते हुए उन्हें जोड़ने वाली रिंग सीधी रेखा इकाई वृत्त को दो आदर्श बिंदुओं, a और b में लेबल करती है, जिससे की अंक क्रम में हों, a, p, q, b जिससे की |एक्यू| > |एपी| और |पीबी| > |क्यूबी| है। तब p और q के बीच अतिपरवलयिक दूरी को व्यक्त किया जाता है
पोंकारे डिस्क मॉडल
ओपन इकाई डिस्क में दो अलग-अलग बिंदु p और q दिए गए हैं, फिर उन्हें जोड़ने वाली सीमा के लिए अद्वितीय वृत्त चाप (ज्यामिति) आयतिय इकाई वृत्त को दो आदर्श बिंदुओं, a और b में चिह्नित करता है, जिससे की अंक क्रम में हों, a,p, q, b जिससे की |एक्यू| > |एपी| और |पीबी| > |क्यूबी|. तब p और q के बीच अतिपरवलयिक दूरी को व्यक्त किया जाता है
- \
जहाँ दूरियों को (सीधी रेखा) खंडों aq, ap, pb और qb के साथ मापा जाता है।
पोंकारे अर्ध-समतल मॉडल
पॉइनकेयर अर्ध-तल मॉडल में आदर्श बिंदु सीमा अक्ष पर बिंदु हैं।एक और आदर्श बिंदु भी है जो अर्ध-तल मॉडल में प्रदर्शित नहीं होता है (परन्तु धनात्मक y-अक्ष के समानांतर किरणें उस तक पहुंचती हैं)।
अतिपरवलयिक मॉडल
अतिपरवलिक मॉडल में कोई आदर्श बिंदु नहीं होते हैं।
यह भी देखें
- आदर्श त्रिकोण
- आदर्श बहुफलक
- अन्य ज्यामिति में उपयोग के लिए अनंत पर अंक
संदर्भ
- ↑ Sibley, Thomas Q. (1998). ज्यामितीय दृष्टिकोण: ज्यामिति का एक सर्वेक्षण. Reading, Mass.: Addison-Wesley. p. 109. ISBN 0-201-87450-4.
- ↑ Struve, Horst; Struve, Rolf (2010), "Non-euclidean geometries: the Cayley-Klein approach", Journal of Geometry, 89 (1): 151–170, doi:10.1007/s00022-010-0053-z, ISSN 0047-2468, MR 2739193
- ↑ Hvidsten, Michael (2005). ज्यामिति एक्सप्लोरर के साथ ज्यामिति. New York, NY: McGraw-Hill. pp. 276–283. ISBN 0-07-312990-9.
- ↑ Thurston, Dylan (Fall 2012). "274 कर्व ऑन सरफेस, लेक्चर 5" (PDF). Retrieved 23 July 2013.
- ↑ Bonola, Roberto (1955). गैर-यूक्लिडियन ज्यामिति: इसके विकास का एक महत्वपूर्ण और ऐतिहासिक अध्ययन (Unabridged and unaltered republ. of the 1. English translation 1912. ed.). New York, NY: Dover. pp. 75–77. ISBN 0486600270.