रैंक (रैखिक बीजगणित): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Dimension of the column space of a matrix}}
{{Short description|Dimension of the column space of a matrix}}
रैखिक बीजगणित में, आव्यूह {{mvar|A}} का रैंक इसके स्तंभों द्वारा उत्पन्न (या [[रैखिक अवधि]]) सदिश स्थान का आयाम ([[सदिश स्थल]]) है।<ref>{{Harvard citation text|Axler|2015}} pp. 111-112, §§ 3.115, 3.119</ref><ref name=":0">{{Harvard citation text|Roman|2005}} p. 48, § 1.16</ref><ref>Bourbaki, ''Algebra'', ch. II, §10.12, p. 359</ref> यह {{mvar|A}} के [[रैखिक रूप से स्वतंत्र]] स्तंभों की अधिकतम संख्या से मेल खाता है। यह बदले में, इसकी पंक्तियों द्वारा फैले वेक्टर स्थान के आयाम के समान है।<ref name="mackiw">{{Citation| last=Mackiw| first=G. | title=A Note on the Equality of the Column and Row Rank of a Matrix | year=1995| journal=[[Mathematics Magazine]] | volume=68| issue=4 | pages=285–286 | doi=10.1080/0025570X.1995.11996337 }}</ref> सामान्यतः रैंक इस प्रकार {{mvar|A}} द्वारा एन्कोड किए गए  [[रैखिक समीकरणों की प्रणाली]] के [[पतित रूप]] का उपाय है और रैंक की कई समकक्ष परिभाषाएँ हैं। आव्यूह का रैंक इसकी सबसे मूलभूत विशेषताओं में से है।
रैखिक बीजगणित में, आव्यूह {{mvar|A}} का रैंक इसके स्तंभों द्वारा उत्पन्न (या [[रैखिक अवधि]]) सदिश स्थान का आयाम ([[सदिश स्थल]]) है।<ref>{{Harvard citation text|Axler|2015}} pp. 111-112, §§ 3.115, 3.119</ref><ref name=":0">{{Harvard citation text|Roman|2005}} p. 48, § 1.16</ref><ref>Bourbaki, ''Algebra'', ch. II, §10.12, p. 359</ref> यह {{mvar|A}} के [[रैखिक रूप से स्वतंत्र]] स्तंभों की अधिकतम संख्या से मेल खाता है। यह बदले में, इसकी पंक्तियों द्वारा फैले सदिश स्थान के आयाम के समान है।<ref name="mackiw">{{Citation| last=Mackiw| first=G. | title=A Note on the Equality of the Column and Row Rank of a Matrix | year=1995| journal=[[Mathematics Magazine]] | volume=68| issue=4 | pages=285–286 | doi=10.1080/0025570X.1995.11996337 }}</ref> सामान्यतः रैंक इस प्रकार {{mvar|A}} द्वारा एन्कोड किए गए  [[रैखिक समीकरणों की प्रणाली]] के [[पतित रूप]] का उपाय है और रैंक की कई समकक्ष परिभाषाएँ हैं। आव्यूह का रैंक इसकी सबसे मूलभूत विशेषताओं में से है।


सामान्यतः रैंक को {{math|rank(''A'')}} या {{math|rk(''A'')}} द्वारा निरूपित किया जाता है।<ref name=":0" />कभी-कभी कोष्ठक नहीं लिखे जाते हैं, जैसे कि {{math|rank ''A''}} में है।<ref group="lower-roman">Alternative notation includes <math>\rho (\Phi)</math> from {{Harvard citation text|Katznelson|Katznelson|2008|p=52, §2.5.1}} and {{Harvard citation text|Halmos|1974|p=90, § 50}}.</ref>
सामान्यतः रैंक को {{math|rank(''A'')}} या {{math|rk(''A'')}} द्वारा निरूपित किया जाता है।<ref name=":0" />कभी-कभी कोष्ठक नहीं लिखे जाते हैं, जैसे कि {{math|rank ''A''}} में है।<ref group="lower-roman">Alternative notation includes <math>\rho (\Phi)</math> from {{Harvard citation text|Katznelson|Katznelson|2008|p=52, §2.5.1}} and {{Harvard citation text|Halmos|1974|p=90, § 50}}.</ref>
Line 65: Line 65:


=== ऑर्थोगोनलिटी का उपयोग करके प्रमाण ===
=== ऑर्थोगोनलिटी का उपयोग करके प्रमाण ===
मान लीजिए {{mvar|A}} सामान्यतः {{math|''m''&thinsp;×&thinsp;''n''}} आव्यूह है। जिसमे [[वास्तविक संख्या]] में प्रविष्टियों है। जिसकी पंक्ति रैंक {{mvar|r}} है। अतः {{mvar|A}} के पंक्ति स्थान का आयाम {{mvar|r}} है।           होने देना {{math|'''x'''<sub>1</sub>, '''x'''<sub>2</sub>, …, '''x'''<sub>''r''</sub>}} की पंक्ति स्थान का [[आधार (रैखिक बीजगणित)]] हो {{mvar|A}}. हम प्रामाणित करते हैं कि सदिश {{math|''A'''''x'''<sub>1</sub>, ''A'''''x'''<sub>2</sub>, …, ''A'''''x'''<sub>''r''</sub>}} रैखिक रूप से स्वतंत्र हैं। यह देखने के लिए कि क्यों, अदिश गुणांक वाले इन सदिशों को सम्मिलित करते हुए रैखिक सजातीय संबंध पर विचार करें {{math|''c''<sub>1</sub>, ''c''<sub>2</sub>, …, ''c<sub>r</sub>''}}:
मान लीजिए {{mvar|A}} सामान्यतः {{math|''m''&thinsp;×&thinsp;''n''}} आव्यूह है। जिसमे [[वास्तविक संख्या]] में प्रविष्टियों है। जिसकी पंक्ति रैंक {{mvar|r}} है। अतः {{mvar|A}} के पंक्ति स्थान का आयाम {{mvar|r}} है। मान लीजिए {{math|'''x'''<sub>1</sub>, '''x'''<sub>2</sub>, …, '''x'''<sub>''r''</sub>}} की पंक्ति स्थान का [[आधार (रैखिक बीजगणित)]] है अतः हम प्रामाणित करते हैं कि सदिश {{math|''A'''''x'''<sub>1</sub>, ''A'''''x'''<sub>2</sub>, …, ''A'''''x'''<sub>''r''</sub>}} रैखिक रूप से स्वतंत्र हैं। यह देखने के लिए कि क्यों, अदिश गुणांक वाले इन सदिशों को सम्मिलित करते हुए रैखिक सजातीय संबंध पर विचार किया जाता है। {{math|''c''<sub>1</sub>, ''c''<sub>2</sub>, …, ''c<sub>r</sub>''}}:
<math display="block">0 = c_1 A\mathbf{x}_1 + c_2 A\mathbf{x}_2 + \cdots + c_r A\mathbf{x}_r = A(c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2 + \cdots + c_r \mathbf{x}_r) = A\mathbf{v}, </math>
<math display="block">0 = c_1 A\mathbf{x}_1 + c_2 A\mathbf{x}_2 + \cdots + c_r A\mathbf{x}_r = A(c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2 + \cdots + c_r \mathbf{x}_r) = A\mathbf{v}, </math>
कहाँ {{math|1='''v''' = ''c''<sub>1</sub>'''x'''<sub>1</sub> + ''c''<sub>2</sub>'''x'''<sub>2</sub> + ⋯ + ''c<sub>r</sub>'''''x'''<sub>''r''</sub>}}. हम दो अवलोकन करते हैं: (ए) {{math|'''v'''}} के पंक्ति स्थान में सदिशों का रैखिक संयोजन है {{mvar|A}}, जिसका तात्पर्य है {{math|'''v'''}} की पंक्ति स्थान के अंतर्गत आता है {{mvar|A}}, और (बी) के बाद से {{math|1=''A'''''v''' = 0}}, वेक्टर {{math|'''v'''}} की प्रत्येक पंक्ति सदिश के लिए [[ओर्थोगोनल]] है {{mvar|A}} और, अतः, की पंक्ति स्थान में प्रत्येक वेक्टर के लिए ओर्थोगोनल है {{mvar|A}}. तथ्य (ए) और (बी) साथ इसका मतलब है {{math|'''v'''}} अपने आप में ओर्थोगोनल है, जो यह सिद्ध करता है {{math|1='''v''' = 0}} या, की परिभाषा के द्वारा {{math|'''v'''}},
जहाँ {{math|1='''v''' = ''c''<sub>1</sub>'''x'''<sub>1</sub> + ''c''<sub>2</sub>'''x'''<sub>2</sub> + ⋯ + ''c<sub>r</sub>'''''x'''<sub>''r''</sub>}}. में हम दो अवलोकन करते हैं। (ए) {{math|'''v'''}}{{mvar|A}} के पंक्ति स्थान में सदिशों का रैखिक संयोजन है। जिसका तात्पर्य है {{math|'''v'''}}{{mvar|A}} की पंक्ति स्थान के अंतर्गत आता है और (बी) चूँकि {{math|1=''A'''''v''' = 0}}, सदिश {{math|'''v'''}} की प्रत्येक पंक्ति सदिश के लिए [[ओर्थोगोनल]] है। {{mvar|A}} का पंक्ति सदिश और {{mvar|A}} का पंक्ति स्थान में प्रत्येक सदिश के लिए ओर्थोगोनल है। अतः तथ्य (ए) और (बी) साथ यह दर्शाते है कि {{math|'''v'''}} स्वयं के लिए ओर्थोगोनल है। जो यह सिद्ध करता है कि {{math|1='''v''' = 0}} या, {{math|'''v'''}} की परिभाषा के द्वारा ,
<math display="block">c_1\mathbf{x}_1 + c_2\mathbf{x}_2 + \cdots + c_r \mathbf{x}_r = 0.</math>
<math display="block">c_1\mathbf{x}_1 + c_2\mathbf{x}_2 + \cdots + c_r \mathbf{x}_r = 0.</math>
किन्तु याद रखें कि {{math|'''x'''<sub>''i''</sub>}} को पंक्ति स्थान के आधार के रूप में चुना गया था {{mvar|A}} और अतः रैखिक रूप से स्वतंत्र हैं। इसका अर्थ यह है कि {{math|1=''c''<sub>1</sub> = ''c''<sub>2</sub> = ⋯ = ''c<sub>r</sub>'' = 0}}. यह इस प्रकार है कि {{math|''A'''''x'''<sub>1</sub>, ''A'''''x'''<sub>2</sub>, …, ''A'''''x'''<sub>''r''</sub>}} रैखिक रूप से स्वतंत्र हैं।
किन्तु स्मरण रखें कि {{math|'''x'''<sub>''i''</sub>}} को {{mvar|A}} के पंक्ति स्थान के आधार के रूप में चुना गया था अतः वह रैखिक रूप से स्वतंत्र हैं। इसका तात्पर्य यह है कि {{math|1=''c''<sub>1</sub> = ''c''<sub>2</sub> = ⋯ = ''c<sub>r</sub>'' = 0}}. इससे यह निष्कर्ष निकलता है कि {{math|''A'''''x'''<sub>1</sub>, ''A'''''x'''<sub>2</sub>, …, ''A'''''x'''<sub>''r''</sub>}} रैखिक रूप से स्वतंत्र हैं।


अब, प्रत्येक {{math|''A'''''x'''<sub>''i''</sub>}} स्पष्ट रूप से स्तंभ स्थान में वेक्टर है {{mvar|A}}. अतः, {{math|''A'''''x'''<sub>1</sub>, ''A'''''x'''<sub>2</sub>, …, ''A'''''x'''<sub>''r''</sub>}} का समुच्चय है {{mvar|r}} के स्तंभ स्थान में रैखिक रूप से स्वतंत्र सदिश {{mvar|A}} और, अतः, के स्तंभ स्थान का आयाम {{mvar|A}} (अर्थात, का स्तंभ रैंक {{mvar|A}}) कम से कम उतना ही बड़ा होना चाहिए {{mvar|r}}. यह उस पंक्ति रैंक को सिद्ध करता है {{mvar|A}} के स्तंभ रैंक से बड़ा नहीं है {{mvar|A}}. अब इस परिणाम को के स्थानान्तरण पर प्रयुक्त करें {{mvar|A}} विपरीत असमानता प्राप्त करने के लिए और पिछले प्रमाण के रूप में निष्कर्ष निकालने के लिए।
अब, प्रत्येक {{math|''A'''''x'''<sub>''i''</sub>}} स्पष्ट रूप से {{mvar|A}} के स्तंभ स्थान में सदिश है। अतः, {{math|''A'''''x'''<sub>1</sub>, ''A'''''x'''<sub>2</sub>, …, ''A'''''x'''<sub>''r''</sub>}} के स्तंभ स्थान में {{mvar|r}} रैखिक रूप से स्वतंत्र सदिश का समुच्चय है अतः {{mvar|A}} के स्तंभ स्थान का आयाम है। (अर्थात, {{mvar|A}} का स्तंभ रैंक) कम से कम {{mvar|r}} उतना ही बड़ा होना चाहिए। यह सिद्ध करता है कि {{mvar|A}} के पंक्ति रैंक, {{mvar|A}} स्तंभ रैंक से बड़ा नहीं है। अब इस परिणाम को विपरीत असमानता प्राप्त करने के लिए {{mvar|A}} के स्थानान्तरण पर प्रयुक्त करने के लिए और पिछले प्रमाण की भाति निष्कर्ष निकालने के लिए किया जाता है।


== वैकल्पिक परिभाषाएँ ==
== वैकल्पिक परिभाषाएँ ==
इस खंड में सभी परिभाषाओं में, आव्यूह {{mvar|A}} को माना जाता है {{math|''m'' × ''n''}} मनमाने क्षेत्र पर आव्यूह (गणित) {{mvar|F}}.
इस खंड में सभी परिभाषाओं में, आव्यूह {{mvar|A}} को अनैतिक क्षेत्र {{mvar|F}} पर {{math|''m'' × ''n''}} आव्यूह के रूप में लिया जाता है।


=== छवि का आयाम ===
=== छवि का आयाम ===
Line 87: Line 87:


=== स्तंभ रैंक - स्तंभ स्थान का आयाम ===
=== स्तंभ रैंक - स्तंभ स्थान का आयाम ===
का पद {{mvar|A}} रैखिक रूप से स्वतंत्र स्तंभों की अधिकतम संख्या है <math>\mathbf{c}_1,\mathbf{c}_2,\dots,\mathbf{c}_k</math> का {{mvar|A}}; यह स्तंभ स्थान के वेक्टर स्थान का आयाम है {{mvar|A}} (स्तंभ स्थान का उप-स्थान है {{math|''F''<sup>''m''</sup>}} के स्तंभों द्वारा उत्पन्न {{mvar|A}}, जो वास्तव में केवल रेखीय मानचित्र की छवि है {{mvar|f}} के लिए जुड़े {{mvar|A}}).
का पद {{mvar|A}} रैखिक रूप से स्वतंत्र स्तंभों की अधिकतम संख्या है <math>\mathbf{c}_1,\mathbf{c}_2,\dots,\mathbf{c}_k</math> का {{mvar|A}}; यह स्तंभ स्थान के सदिश स्थान का आयाम है {{mvar|A}} (स्तंभ स्थान का उप-स्थान है {{math|''F''<sup>''m''</sup>}} के स्तंभों द्वारा उत्पन्न {{mvar|A}}, जो वास्तव में केवल रेखीय मानचित्र की छवि है {{mvar|f}} के लिए जुड़े {{mvar|A}}).


=== पंक्ति रैंक - पंक्ति स्थान का आयाम ===
=== पंक्ति रैंक - पंक्ति स्थान का आयाम ===
Line 120: Line 120:
{{Main|Tensor rank decomposition|Tensor rank}}
{{Main|Tensor rank decomposition|Tensor rank}}


का पद {{mvar|A}} सबसे छोटी संख्या है {{mvar|k}} ऐसा है कि {{mvar|A}} के योग के रूप में लिखा जा सकता है {{mvar|k}} रैंक 1 मेट्रिसेस, जहां आव्यूह को रैंक 1 के रूप में परिभाषित किया गया है यदि और केवल यदि इसे गैर-शून्य उत्पाद के रूप में लिखा जा सकता है <math>c \cdot r</math> स्तंभ वेक्टर का {{mvar|c}} और पंक्ति वेक्टर {{mvar|r}}. रैंक की इस धारणा को [[टेंसर रैंक]] कहा जाता है; इसे एकवचन मूल्य अपघटन में सामान्यीकृत किया जा सकता है # एकवचन मूल्य अपघटन की वियोज्य मॉडल व्याख्या।
का पद {{mvar|A}} सबसे छोटी संख्या है {{mvar|k}} ऐसा है कि {{mvar|A}} के योग के रूप में लिखा जा सकता है {{mvar|k}} रैंक 1 मेट्रिसेस, जहां आव्यूह को रैंक 1 के रूप में परिभाषित किया गया है यदि और केवल यदि इसे गैर-शून्य उत्पाद के रूप में लिखा जा सकता है <math>c \cdot r</math> स्तंभ सदिश का {{mvar|c}} और पंक्ति सदिश {{mvar|r}}. रैंक की इस धारणा को [[टेंसर रैंक]] कहा जाता है; इसे एकवचन मूल्य अपघटन में सामान्यीकृत किया जा सकता है # एकवचन मूल्य अपघटन की वियोज्य मॉडल व्याख्या।


== गुण ==
== गुण ==

Revision as of 19:06, 19 March 2023

रैखिक बीजगणित में, आव्यूह A का रैंक इसके स्तंभों द्वारा उत्पन्न (या रैखिक अवधि) सदिश स्थान का आयाम (सदिश स्थल) है।[1][2][3] यह A के रैखिक रूप से स्वतंत्र स्तंभों की अधिकतम संख्या से मेल खाता है। यह बदले में, इसकी पंक्तियों द्वारा फैले सदिश स्थान के आयाम के समान है।[4] सामान्यतः रैंक इस प्रकार A द्वारा एन्कोड किए गए रैखिक समीकरणों की प्रणाली के पतित रूप का उपाय है और रैंक की कई समकक्ष परिभाषाएँ हैं। आव्यूह का रैंक इसकी सबसे मूलभूत विशेषताओं में से है।

सामान्यतः रैंक को rank(A) या rk(A) द्वारा निरूपित किया जाता है।[2]कभी-कभी कोष्ठक नहीं लिखे जाते हैं, जैसे कि rank A में है।[lower-roman 1]

मुख्य परिभाषाएँ

इस भाग में, हम आव्यूह की कोटि की कुछ परिभाषाएँ देते हैं। चूँकि कई परिभाषाएँ संभव हैं अतः इनमें से कई के लिए वैकल्पिक परिभाषाएं देख सकते है।

A का स्तंभ रैंक A के स्तंभ स्थान का आयाम (रैखिक बीजगणित) है। चूँकि A की पंक्ति रैंक A की पंक्ति स्थान का आयाम है।

रैखिक बीजगणित में मौलिक परिणाम यह है कि स्तंभ रैंक और पंक्ति रैंक हमेशा समांतर होते है। (इस परिणाम के तीन प्रमाण और प्रमाणों में दिए गए हैं कि § Proofs that column rank = row rank, नीचे।) यह संख्या (अर्थात, रैखिक रूप से स्वतंत्र पंक्तियों या स्तंभों की संख्या) को केवल A रैंक कहा जाता है।

अधिकांशतः आव्यूह को पूर्ण रैंक कहा जाता है। यदि इसकी रैंक समान आयामों के आव्यूह के लिए सबसे बड़ा संभव है। जो कि पंक्तियों और स्तंभों की संख्या से कम है। आव्यूह को रैंक-कमी कहा जाता है। यदि इसमें पूर्ण रैंक नहीं है। तब आव्यूह की रैंक की कमी पंक्तियों और स्तंभों की संख्या और रैंक के मध्य का अंतर है।

रेखीय मानचित्र या ऑपरेटर का पद को इसकी छवि (गणित) के आयाम के रूप में परिभाषित किया गया है।[5][6][7][8]

जहाँ सदिश स्थान का आयाम है और मानचित्र की छवि है।

उदाहरण

गणित का सवाल

रैंक 2 है, प्रथम दो स्तंभ रैखिक रूप से स्वतंत्र हैं। चूंकि रैंक कम से कम 2 है। किन्तु तीसरा प्रथम दो का रैखिक संयोजन है। (प्रथम स्तंभ माइनस दूसरा), तीन स्तंभ रैखिक रूप से निर्भर हैं। अतः रैंक 3 से कम होना चाहिए।

गणित का सवाल

रैंक 1 है, यह गैर-शून्य स्तंभ हैं। अतः रैंक सकारात्मक है। किन्तु स्तंभ की कोई भी जोड़ी रैखिक रूप से निर्भर है। इसी प्रकार, स्थानांतरण
A की रैंक 1 है। चूंकि A स्तंभ सदिश A के स्थानांतरण के पंक्ति सदिश हैं। यह कथन कि आव्यूह का स्तंभ रैंक उसकी पंक्ति रैंक के समांतर है। यह इस कथन के समांतर है कि आव्यूह का रैंक उसके स्थानान्तरण के रैंक के समांतर है, अर्थात, rank(A) = rank(AT) होता है।

आव्यूह के रैंक की गणना

पंक्ति पारिस्थितिक रूपों से रैंक

आव्यूह के रैंक को खोजने के लिए सामान्य दृष्टिकोण प्राथमिक पंक्ति संचालन द्वारा इसे सरल रूप में, सामान्यतः पंक्ति पारिस्थितिक रूप कम करना है। चूँकि पंक्ति संचालन, पंक्ति स्थान को परिवर्तित नहीं करते हैं। (अतः पंक्ति रैंक को नहीं बदलते हैं) और इन्वर्टिबल होने के कारण, स्तंभ स्थान को समरूपी स्थान में मानचित्र करते हैं। (अतः स्तंभ रैंक को परिवर्तित न करे) पारिस्थितिक रूप में, पंक्ति और रैंक स्पष्ट रूप से पंक्ति रैंक और स्तंभ रैंक दोनों के लिए समान है और पिवोट्स तत्व (या मूल स्तंभ) की संख्या और गैर-शून्य पंक्तियों की संख्या के समांतर है।

उदाहरण के लिए, आव्यूह A द्वारा दिए गए,

निम्नलिखित प्रारंभिक पंक्ति संचालन का उपयोग करके कम पंक्ति-पारिस्थितिक रूप में रखा जा सकता है।
अंतिम आव्यूह (पंक्ति पारिस्थितिक रूप में) में दो गैर-शून्य पंक्तियां होती हैं और इस प्रकार आव्यूह A की रैंक 2 होती है।

गणना

कंप्यूटर पर तैरने वाला स्थल कंप्यूटेशंस पर प्रयुक्त होने पर, मूल गॉसियन उन्मूलन (एलयू अपघटन) अविश्वसनीय हो सकता है और इसके अतिरिक्त रैंक-स्पष्टीकरण अपघटन का उपयोग किया जाता है। प्रभावी विकल्प एकवचन मूल्य अपघटन (एसवीडी) है। किन्तु अन्य निम्न बहुमूल्य विकल्प हैं। जैसे क्यूआर अपघटन पिवोटिंग (तथाकथित रैंक-खुलासा क्यूआर कारक करण) के साथ, जो अभी भी गॉसियन उन्मूलन से अधिक संख्यात्मक रूप से मजबूत हैं। रैंक के संख्यात्मक निर्धारण के लिए यह तय करने के लिए मानदंड की आवश्यकता होती है कि एसवीडी से विलक्षण मूल्य जैसे मूल्य को शून्य के रूप में माना जाता है। व्यावहारिक विकल्प जो आव्यूह और एप्लिकेशन दोनों पर निर्भर करता है।

प्रमाण है कि स्तंभ रैंक = पंक्ति रैंक

पंक्ति न्यूनीकरण का उपयोग कर प्रमाण

सामान्यतः तथ्य यह है कि किसी भी आव्यूह के स्तंभ और पंक्ति रैंक का समान रूप होता हैं। अतः रैखिक बीजगणित में मौलिक के अनेक प्रमाण दिये हैं। पंक्ति पारिस्थितिक रूपों से और रैंक में सबसे प्राथमिक व्यक्तियों में संक्षिप्त वर्णन किया गया है। यह इस प्रमाण का रूप है।

यह दिखाना प्रत्यक्ष है कि प्राथमिक पंक्ति संचालन द्वारा न तो पंक्ति रैंक और न ही स्तंभ रैंक को परिवर्तित किया जाता है। जैसा कि गौसियन उन्मूलन प्राथमिक पंक्ति संचालन से आगे बढ़ता है और आव्यूह के कम पंक्ति पारिस्थितिक रूप में मूल आव्यूह के समान पंक्ति रैंक और समान स्तंभ रैंक होता है। अतः आगे के प्राथमिक स्तंभ संचालन आव्यूह को पहचान आव्यूह के रूप में रखने की अनुमति देते हैं। जो संभवतः शून्य की पंक्तियों और स्तंभों से घिरा होता है। अतः यह पुनः न तो पंक्ति रैंक और न ही स्तंभ रैंक परिवर्तित करता है। यह तत्काल है कि इस परिणामी आव्यूह की पंक्ति और स्तंभ दोनों रैंक इसकी गैर-शून्य प्रविष्टियों की संख्या है।

हम इस परिणाम के दो अन्य प्रमाण प्रस्तुत करते हैं। प्रथम सदिशों के रैखिक संयोजन के केवल मूलभूत गुणों का उपयोग करता है और किसी भी क्षेत्र (गणित) पर मान्य है कि प्रमाण वार्डलॉ (2005) पर आधारित है।[9] दूसरा ओर्थोगोनालिटी का उपयोग करता है और वास्तविक संख्याओं पर आव्यूह के लिए मान्य है। यह मैकिव (1995) पर आधारित है।[4]दोनों प्रमाण बनर्जी और रॉय (2014) की पुस्तक में पाए जा सकते हैं।[10]

रैखिक संयोजनों का उपयोग करके प्रमाण

माना A सामान्यतः m × n आव्यूह है। मान लीजिए A का स्तंभ रैंक r है और c1, ..., cr को A के स्तंभ स्थान के लिए कोई भी आधार होने देता है। इन्हें m × r आव्यूह C के स्तंभ के रूप में रखा जाता है। A के प्रत्येक स्तंभ को रैखिक संयोजन के रूप में व्यक्त किया जा सकता है। C में r स्तंभ का रैखिक संयोजन होता है। इसका तात्पर्य यह है कि r × n आव्यूह R है। जैसे कि A = CR अतः R वह आव्यूह है जिसका iवाँ स्तंभ A के i के स्तंभ को C के r स्तंभ के रैखिक संयोजन के रूप में देने वाले गुणांक से बनता है। दूसरे शब्दों में, R वह आव्यूह है जिसमें A (जो कि C है) स्तंभ स्थान के आधापंक्तिं के लिए गुणक होते हैं। जो तब A को समग्र रूप में बनाने के लिए उपयोग किए जाते हैं। अब A की प्रत्येक पंक्ति R की r पंक्तियों के रैखिक संयोजन द्वारा दी गयी है। अतः R की पंक्तियाँ A के पंक्ति स्थान का फैला हुआ समूह बनती है। A और स्टेनिट्ज एक्सचेंज लेम्मा द्वारा, A की पंक्ति r रैंक से अधिक नहीं हो सकती है। यह सिद्ध करता है कि A की पंक्ति रैंक A के स्तंभ रैंक से कम या उसके समांतर है। यह परिणाम किसी भी आव्यूह पर प्रयुक्त किया जा सकता है। अतः परिणाम को A के स्थानान्तरण पर प्रयुक्त किया है। चूँकि A के स्थानान्तरण की पंक्ति रैंक के पश्चात् से A का स्तंभ रैंक है। और A के स्थानान्तरण के स्तंभ रैंक A की पंक्ति रैंक है। यह रिवर्स असमानता स्थापित करता है। अतः हम A पंक्ति रैंक और स्तंभ रैंक की समानता प्राप्त करते हैं। (रैंक गुणनखंड भी देखें।)

ऑर्थोगोनलिटी का उपयोग करके प्रमाण

मान लीजिए A सामान्यतः m × n आव्यूह है। जिसमे वास्तविक संख्या में प्रविष्टियों है। जिसकी पंक्ति रैंक r है। अतः A के पंक्ति स्थान का आयाम r है। मान लीजिए x1, x2, …, xr की पंक्ति स्थान का आधार (रैखिक बीजगणित) है अतः हम प्रामाणित करते हैं कि सदिश Ax1, Ax2, …, Axr रैखिक रूप से स्वतंत्र हैं। यह देखने के लिए कि क्यों, अदिश गुणांक वाले इन सदिशों को सम्मिलित करते हुए रैखिक सजातीय संबंध पर विचार किया जाता है। c1, c2, …, cr:

जहाँ v = c1x1 + c2x2 + ⋯ + crxr. में हम दो अवलोकन करते हैं। (ए) vA के पंक्ति स्थान में सदिशों का रैखिक संयोजन है। जिसका तात्पर्य है vA की पंक्ति स्थान के अंतर्गत आता है और (बी) चूँकि Av = 0, सदिश v की प्रत्येक पंक्ति सदिश के लिए ओर्थोगोनल है। A का पंक्ति सदिश और A का पंक्ति स्थान में प्रत्येक सदिश के लिए ओर्थोगोनल है। अतः तथ्य (ए) और (बी) साथ यह दर्शाते है कि v स्वयं के लिए ओर्थोगोनल है। जो यह सिद्ध करता है कि v = 0 या, v की परिभाषा के द्वारा ,
किन्तु स्मरण रखें कि xi को A के पंक्ति स्थान के आधार के रूप में चुना गया था अतः वह रैखिक रूप से स्वतंत्र हैं। इसका तात्पर्य यह है कि c1 = c2 = ⋯ = cr = 0. इससे यह निष्कर्ष निकलता है कि Ax1, Ax2, …, Axr रैखिक रूप से स्वतंत्र हैं।

अब, प्रत्येक Axi स्पष्ट रूप से A के स्तंभ स्थान में सदिश है। अतः, Ax1, Ax2, …, Axr के स्तंभ स्थान में r रैखिक रूप से स्वतंत्र सदिश का समुच्चय है अतः A के स्तंभ स्थान का आयाम है। (अर्थात, A का स्तंभ रैंक) कम से कम r उतना ही बड़ा होना चाहिए। यह सिद्ध करता है कि A के पंक्ति रैंक, A स्तंभ रैंक से बड़ा नहीं है। अब इस परिणाम को विपरीत असमानता प्राप्त करने के लिए A के स्थानान्तरण पर प्रयुक्त करने के लिए और पिछले प्रमाण की भाति निष्कर्ष निकालने के लिए किया जाता है।

वैकल्पिक परिभाषाएँ

इस खंड में सभी परिभाषाओं में, आव्यूह A को अनैतिक क्षेत्र F पर m × n आव्यूह के रूप में लिया जाता है।

छवि का आयाम

आव्यूह दिया , संबद्ध रेखीय मानचित्रण है

द्वारा परिभाषित
का पद की छवि का आयाम है . इस परिभाषा का लाभ यह है कि इसे किसी विशिष्ट आव्यूह की आवश्यकता के बिना किसी भी रेखीय मानचित्र पर प्रयुक्त किया जा सकता है।

अशक्तता के स्थितिमें रैंक

उसी रेखीय मानचित्रण को देखते हुए f ऊपर के रूप में, रैंक है n के कर्नेल (बीजगणित) के आयाम को घटाएं f. पद-अशक्तता प्रमेय कहता है कि यह परिभाषा पिछली परिभाषा के समकक्ष है।

स्तंभ रैंक - स्तंभ स्थान का आयाम

का पद A रैखिक रूप से स्वतंत्र स्तंभों की अधिकतम संख्या है का A; यह स्तंभ स्थान के सदिश स्थान का आयाम है A (स्तंभ स्थान का उप-स्थान है Fm के स्तंभों द्वारा उत्पन्न A, जो वास्तव में केवल रेखीय मानचित्र की छवि है f के लिए जुड़े A).

पंक्ति रैंक - पंक्ति स्थान का आयाम

का पद A की रैखिक रूप से स्वतंत्र पंक्तियों की अधिकतम संख्या है A; यह पंक्ति स्थान का आयाम है A.

अपघटन रैंक

का पद A सबसे छोटा पूर्णांक है k ऐसा है कि A के रूप में फैक्टर किया जा सकता है , कहाँ C m × k आव्यूह और R है k × n आव्यूह। वास्तव में, सभी पूर्णांकों के लिए k, निम्नलिखित समतुल्य हैं:

  1. स्तंभ रैंक A से कम या इसके समांतर है k,
  2. वहां है k स्तंभ आकार का m ऐसा है कि का हर स्तंभ A का रैखिक संयोजन है ,
  3. वहाँ उपस्तिथ है आव्यूह C और ए आव्यूह R ऐसा है कि (कब k रैंक है, यह रैंक गुणनखंड है A),
  4. वहां है k पंक्तियाँ आकार का n ऐसा है कि की हर पंक्ति A का रैखिक संयोजन है ,
  5. की पंक्ति रैंक A से कम या इसके समांतर है k.

वास्तव में, निम्नलिखित समानताएं स्पष्ट हैं: . उदाहरण के लिए, (3) को (2) से सिद्ध करने के लिए, लीजिए C वह आव्यूह होना चाहिए जिसके स्तंभ हैं (2) से। (2) को (3) से सिद्ध करने के लिए, लीजिए के स्तंभ होना C.

यह तुल्यता से अनुसरण करता है कि पंक्ति रैंक स्तंभ रैंक के समांतर है।

छवि लक्षण वर्णन के आयाम के स्थितिमें, इसे किसी भी रैखिक मानचित्र के रैंक की परिभाषा के लिए सामान्यीकृत किया जा सकता है: रैखिक मानचित्र का रैंक f : VW न्यूनतम आयाम है k मध्यवर्ती स्थान का X ऐसा है कि f को मानचित्र की रचना के रूप में लिखा जा सकता है VX और नक्शा XW. दुर्भाग्य से, यह परिभाषा रैंक की गणना करने के लिए कुशल तरीके का सुझाव नहीं देती है (जिसके लिए वैकल्पिक परिभाषाओं में से किसी का उपयोग करना उत्तम है)। विवरण के लिए रैंक गुणनखंड देखें।

विलक्षण मूल्यों के संदर्भ में रैंक

का पद A गैर-शून्य एकवचन मूल्य अपघटन की संख्या के समांतर है, जो कि एकवचन मूल्य अपघटन में Σ में गैर-शून्य विकर्ण तत्वों की संख्या के समान है .

निर्धारक रैंक - सबसे बड़े गैर-लुप्त होने वाले नाबालिग का आकार

का पद A किसी भी गैर-शून्य माइनर (रैखिक बीजगणित) का सबसे बड़ा क्रम है A. (नाबालिग का क्रम वर्ग उप-आव्यूह की पार्श्व-लम्बाई है, जिसका यह निर्धारक है।) अपघटन रैंक लक्षण वर्णन की तरह, यह रैंक की गणना करने का कुशल विधि नहीं देता है, किन्तु यह सैद्धांतिक रूप से उपयोगी है: a एकल गैर-शून्य नाबालिग आव्यूह के रैंक के लिए निचली सीमा (अर्थात् इसका क्रम) का गवाह है, जो उपयोगी हो सकता है (उदाहरण के लिए) यह सिद्ध करने के लिए कि कुछ ऑपरेशन आव्यूह के रैंक को कम नहीं करते हैं।

गैर-लुप्तप्राय p-अवयस्क (p × p सबआव्यूह गैर-शून्य निर्धारक के साथ) दिखाता है कि उस सबआव्यूह की पंक्तियाँ और स्तंभ रैखिक रूप से स्वतंत्र हैं, और इस प्रकार पूर्ण आव्यूह की वे पंक्तियाँ और स्तंभ रैखिक रूप से स्वतंत्र हैं (पूर्ण आव्यूह में), अतः पंक्ति और स्तंभ रैंक कम से कम हैं निर्धारक रैंक जितना बड़ा; चूँकि, बातचीत कम सीधी है। निर्धारक रैंक और स्तंभ रैंक की समानता इस कथन की मजबूती है कि यदि अवधि n सदिश का आयाम है p, तब {{mvar|p}उन सदिशों में से } स्थान को फैलाते हैं (समतुल्य रूप से, कोई फैले हुए सेट को चुन सकता है जो सदिशों का सबसेट है): तुल्यता का अर्थ है कि पंक्तियों का सबसेट और स्तंभों का उपसमुच्चय साथ व्युत्क्रमणीय सबआव्यूह को परिभाषित करता है (समकक्ष रूप से, यदि की अवधि n सदिश का आयाम है p, तब {{mvar|p}इनमें से } अंतरिक्ष में फैला है और इसका सेट है p निर्देशांक जिस पर वे रैखिक रूप से स्वतंत्र हैं)।

टेंसर रैंक - साधारण टेंसपंक्तिं की न्यूनतम संख्या

का पद A सबसे छोटी संख्या है k ऐसा है कि A के योग के रूप में लिखा जा सकता है k रैंक 1 मेट्रिसेस, जहां आव्यूह को रैंक 1 के रूप में परिभाषित किया गया है यदि और केवल यदि इसे गैर-शून्य उत्पाद के रूप में लिखा जा सकता है स्तंभ सदिश का c और पंक्ति सदिश r. रैंक की इस धारणा को टेंसर रैंक कहा जाता है; इसे एकवचन मूल्य अपघटन में सामान्यीकृत किया जा सकता है # एकवचन मूल्य अपघटन की वियोज्य मॉडल व्याख्या।

गुण

हम मानते हैं कि A m × n आव्यूह, और हम रैखिक मानचित्र को परिभाषित करते हैं f द्वारा f(x) = Ax ऊपपंक्तिक्त अनुसार।

  • का पद m × n आव्यूह गैर-नकारात्मक पूर्णांक है और किसी से भी बड़ा नहीं हो सकता m या n. वह है,
    आव्यूह जिसमें रैंक है {{math|min(m, n)}कहा जाता है कि } की पूरी रैंक है; अन्यथा, आव्यूह रैंक की कमी है।
  • केवल शून्य आव्यूह का रैंक शून्य होता है।
  • f इंजेक्शन समापंक्तिह (या एक-से-एक) है यदि और केवल यदि A रैंक है n (इस स्थितिमें, हम कहते हैं कि A का पूरा स्तंभ रैंक है)।
  • f विशेषण फलन (या आच्छादित) है यदि और केवल यदि A रैंक है m (इस स्थितिमें, हम कहते हैं कि A पूर्ण पंक्ति रैंक है)।
  • यदि A वर्ग आव्यूह है (अर्थात, m = n), तब A उलटा आव्यूह है यदि और केवल यदि A रैंक है n (वह है, A की पूरी रैंक है)।
  • यदि B क्या किसी n × k आव्यूह, फिर
  • यदि B n × k रैंक का आव्यूह n, तब
  • यदि C l × m रैंक का आव्यूह m, तब
  • का पद A के समांतर है r यदि और केवल यदि कोई व्युत्क्रमणीय उपस्तिथ है m × m आव्यूह X और उलटा n × n आव्यूह Y ऐसा है कि
    कहाँ Ir दर्शाता है r × r शिनाख्त सांचा।
  • जेम्स जोसेफ सिल्वेस्टर की रैंक असमानता: यदि A m × n आव्यूह और B है n × k, तब[lower-roman 2]
    यह अगली असमानता का विशेष मामला है।
  • फर्डिनेंड जॉर्ज फ्पंक्तिबेनियस के कारण असमानता: यदि AB, ABC और BC परिभाषित हैं, तो[lower-roman 3]
  • उप-विषमता:
    कब A और B समान आयाम के हैं। परिणाम स्वरुप , रैंक-k आव्यूह को योग के रूप में लिखा जा सकता है k रैंक-1 मैट्रिसेस, किन्तु कम नहीं।
  • आव्यूह की रैंक प्लस आव्यूह का कर्नेल (आव्यूह) आव्यूह के स्तंभ की संख्या के समांतर होता है। (यह रैंक-शून्यता प्रमेय है।)
  • यदि A वास्तविक संख्याओं पर आव्यूह है, फिर रैंक A और इसके संगत ग्राम आव्यूह की कोटि समांतर होती है। इस प्रकार, वास्तविक मेट्रिसेस के लिए
    यह उनके कर्नेल (आव्यूह) की समानता सिद्ध करके दिखाया जा सकता है। ग्राम आव्यूह का रिक्त स्थान सदिशों द्वारा दिया जाता है x जिसके लिए यदि यह शर्त पूरी होती है, तो हमारी भी होगी [11]
  • यदि A जटिल संख्याओं पर आव्यूह है और के जटिल संयुग्म को दर्शाता है A और A का संयुग्मी स्थानांतरण A (अर्थात, हर्मिटियन का संलग्न A), तब


अनुप्रयोग

आव्यूह के रैंक की गणना करने का उपयोगी अनुप्रयोग रैखिक समीकरणों की प्रणाली के समाधान की संख्या की गणना है। पंक्तिचे-कैपेली प्रमेय के अनुसार, यदि संवर्धित आव्यूह का रैंक गुणांक आव्यूह के रैंक से अधिक है तो सिस्टम असंगत है। यदि दूसरी ओर, इन दो आव्यूहों की कोटि समान हैं, तो तंत्र में कम से कम हल होना चाहिए। समाधान अद्वितीय है यदि और केवल यदि रैंक चर की संख्या के समांतर है। अन्यथा सामान्य समाधान है k मुक्त पैरामीटर जहां k चपंक्तिं की संख्या और रैंक के मध्य का अंतर है। इस स्थितिमें (और यह मानते हुए कि समीकरणों की प्रणाली वास्तविक या जटिल संख्या में है) समीकरणों की प्रणाली में अपरिमित रूप से कई समाधान हैं।

नियंत्रण सिद्धांत में, आव्यूह की रैंक का उपयोग यह निर्धारित करने के लिए किया जा सकता है कि रैखिक प्रणाली नियंत्रणीयता है या अवलोकनीयता है।

संचार जटिलता के क्षेत्र में, किसी फ़ंक्शन के संचार आव्यूह का रैंक फ़ंक्शन की गणना करने के लिए दो पक्षों के लिए आवश्यक संचार की मात्रा पर सीमा देता है।

सामान्यीकरण

मनमाना रिंग (गणित) पर रैंक से मैट्रिसेस की अवधारणा के विभिन्न सामान्यीकरण हैं, जहां स्तंभ रैंक, पंक्ति रैंक, स्तंभ स्थान का आयाम और आव्यूह के पंक्ति स्थान का आयाम दूसपंक्तिं से भिन्न हो सकता है या उपस्तिथ नहीं हो सकता है।

मैट्रिसेस को टेंसर के रूप में सोचते हुए, टेंसर रैंक मनमाना टेंसपंक्तिं के लिए सामान्यीकृत होता है; 2 से अधिक ऑर्डर के टेंसर के लिए (मैट्रिसेस ऑर्डर 2 टेंसर हैं), मैट्रिसेस के विपरीत, रैंक की गणना करना बहुत कठिन है।

चिकना कई गुना के मध्य चिकने नक्शों के लिए रैंक (अंतर टोपोलॉजी) की धारणा है। यह पुशफॉरवर्ड (अंतर) के रैखिक रैंक के समांतर है।

टेन्सर के रूप में आव्यूह

आव्यूह रैंक को टेंसर क्रम से भ्रमित नहीं होना चाहिए, जिसे टेंसर रैंक कहा जाता है। टेन्सर क्रम टेंसर लिखने के लिए आवश्यक सूचकांकों की संख्या है, और इस प्रकार मैट्रिसेस में टेंसर ऑर्डर 2 होता है। अधिक त्रुटिहीन रूप से, मैट्रिसेस टाइप (1,1) के टेंसर होते हैं, जिनमें पंक्ति इंडेक्स और स्तंभ इंडेक्स होता है, जिसे सहसंयोजक क्रम 1 भी कहा जाता है। और प्रतिपरिवर्ती क्रम 1; विवरण के लिए टेंसर (आंतरिक परिभाषा) देखें।

आव्यूह के टेंसर रैंक का अर्थ आव्यूह को रैखिक संयोजन के रूप में व्यक्त करने के लिए आवश्यक सरल टेंसपंक्तिं की न्यूनतम संख्या भी हो सकता है, और यह परिभाषा आव्यूह रैंक से सहमत है जैसा कि यहां चर्चा की गई है।

यह भी देखें

टिप्पणियाँ

  1. Alternative notation includes from Katznelson & Katznelson (2008, p. 52, §2.5.1) and Halmos (1974, p. 90, § 50).
  2. Proof: Apply the rank–nullity theorem to the inequality
  3. Proof. The map
    is well-defined and injective. We thus obtain the inequality in terms of dimensions of kernel, which can then be converted to the inequality in terms of ranks by the rank–nullity theorem. Alternatively, if is a linear subspace then ; apply this inequality to the subspace defined by the orthogonal complement of the image of in the image of , whose dimension is ; its image under has dimension .


संदर्भ

  1. Axler (2015) pp. 111-112, §§ 3.115, 3.119
  2. 2.0 2.1 Roman (2005) p. 48, § 1.16
  3. Bourbaki, Algebra, ch. II, §10.12, p. 359
  4. 4.0 4.1 Mackiw, G. (1995), "A Note on the Equality of the Column and Row Rank of a Matrix", Mathematics Magazine, 68 (4): 285–286, doi:10.1080/0025570X.1995.11996337
  5. Hefferon (2020) p. 200, ch. 3, Definition 2.1
  6. Katznelson & Katznelson (2008) p. 52, § 2.5.1
  7. Valenza (1993) p. 71, § 4.3
  8. Halmos (1974) p. 90, § 50
  9. Wardlaw, William P. (2005), "Row Rank Equals Column Rank", Mathematics Magazine, 78 (4): 316–318, doi:10.1080/0025570X.2005.11953349, S2CID 218542661
  10. Banerjee, Sudipto; Roy, Anindya (2014), Linear Algebra and Matrix Analysis for Statistics, Texts in Statistical Science (1st ed.), Chapman and Hall/CRC, ISBN 978-1420095388
  11. Mirsky, Leonid (1955). रैखिक बीजगणित का परिचय. Dover Publications. ISBN 978-0-486-66434-7.


स्पंक्तित

अग्रिम पठन

  • Roger A. Horn and Charles R. Johnson (1985). Matrix Analysis. ISBN 978-0-521-38632-6.
  • Kaw, Autar K. Two Chapters from the book Introduction to Matrix Algebra: 1. Vectors [1] and System of Equations [2]
  • Mike Brookes: Matrix Reference Manual. [3]