होरोसाइकिल: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 5: Line 5:
यद्यपि ऐसा प्रतीत होता है जैसे  दो संकेंद्रित कुंडलियों की लंबाई या वक्रता समान नहीं हो सकती, वास्तव में कोई भी दो कुंडली [[सर्वांगसमता (ज्यामिति)|सर्वांगसम]] होती हैं।
यद्यपि ऐसा प्रतीत होता है जैसे  दो संकेंद्रित कुंडलियों की लंबाई या वक्रता समान नहीं हो सकती, वास्तव में कोई भी दो कुंडली [[सर्वांगसमता (ज्यामिति)|सर्वांगसम]] होती हैं।


कुंडली को उन मंडलियों की सीमा के रूप में भी वर्णित किया जा सकता है जो किसी दिए गए बिंदु में एक स्पर्शरेखा साझा करते हैं, क्योंकि उनकी त्रिज्या अनंत की ओर जाती है। [[यूक्लिडियन ज्यामिति]] में, अनंत त्रिज्या का ऐसा वृत्त एक सीधी रेखा होगी, लेकिन अतिशयोक्तिपूर्ण ज्यामिति में यह एक कुंडली (एक वक्र) है।
कुंडली को उन वृत्तों की सीमा के रूप में भी वर्णित किया जा सकता है जो किसी दिए गए बिंदु में एक स्पर्शरेखा साझा करते हैं, क्योंकि उनकी त्रिज्या [[अनंत]] की ओर जाती है। [[यूक्लिडियन ज्यामिति]] में,ऐसा "अनंत त्रिज्या का वृत्त" एक सीधी रेखा होगी, लेकिन अतिपरवलय ज्यामिति में यह एक कुंडली (एक वक्र) है।


उत्तल पक्ष से होरोसायकल को हाइपरसायकल (ज्यामिति) द्वारा अनुमानित किया जाता है, जिसकी धुरी से दूरी अनंत की ओर जाती है।
उत्तल पक्ष से होरोसायकल को हाइपरसायकल (ज्यामिति) द्वारा अनुमानित किया जाता है, जिसकी धुरी से दूरी अनंत की ओर जाती है।
Line 31: Line 31:


* दो बिंदुओं के बीच कुंडली के एक चाप की 'लंबाई' है:
* दो बिंदुओं के बीच कुंडली के एक चाप की 'लंबाई' है:
:<math> s = 2 \sinh \left( \frac{1}{2} d \right) = \sqrt{2 (\cosh d -1) } </math> जहाँ d दो बिंदुओं के बीच की दूरी है, और sinh और cos [[अतिशयोक्तिपूर्ण कार्य]] हैं।<ref>{{cite book|last1=Smogorzhevsky|title=लोबाचेवस्कियन ज्यामिति|date=1976|publisher=Mir|location=Moscow|page=65}}</ref>
:<math> s = 2 \sinh \left( \frac{1}{2} d \right) = \sqrt{2 (\cosh d -1) } </math> जहाँ d दो बिंदुओं के बीच की दूरी है, और sinh और cos [[अतिशयोक्तिपूर्ण कार्य|अतिपरवलय कार्य]] हैं।<ref>{{cite book|last1=Smogorzhevsky|title=लोबाचेवस्कियन ज्यामिति|date=1976|publisher=Mir|location=Moscow|page=65}}</ref>
* एक कुंडली के एक चाप की लंबाई जैसे कि एक छोर पर स्पर्शरेखा दूसरे छोर के माध्यम से त्रिज्या के समानांतर सीमित है, 1 है।<ref>{{cite book|last1=Sommerville|first1=D.M.Y.|title=गैर-यूक्लिडियन ज्यामिति के तत्व|date=2005|publisher=Dover Publications|location=Mineola, N.Y.|isbn=0-486-44222-5|page=58|edition=Unabr. and unaltered republ.}}</ref> इस कुंडली और त्रिज्या के बीच परिबद्ध क्षेत्र 1 है।<ref>{{cite book|last1=Coxeter|first1=H.S.M.|title=गैर-यूक्लिडियन ज्यामिति|url=https://archive.org/details/noneuclideangeom00coxe_738|url-access=limited|date=1998|publisher=Mathematical Assoc. of America|location=Washington, DC|isbn=978-0-88385-522-5|page=[https://archive.org/details/noneuclideangeom00coxe_738/page/n262 250]|edition=6.}}</ref>
* एक कुंडली के एक चाप की लंबाई जैसे कि एक छोर पर स्पर्शरेखा दूसरे छोर के माध्यम से त्रिज्या के समानांतर सीमित है, 1 है।<ref>{{cite book|last1=Sommerville|first1=D.M.Y.|title=गैर-यूक्लिडियन ज्यामिति के तत्व|date=2005|publisher=Dover Publications|location=Mineola, N.Y.|isbn=0-486-44222-5|page=58|edition=Unabr. and unaltered republ.}}</ref> इस कुंडली और त्रिज्या के बीच परिबद्ध क्षेत्र 1 है।<ref>{{cite book|last1=Coxeter|first1=H.S.M.|title=गैर-यूक्लिडियन ज्यामिति|url=https://archive.org/details/noneuclideangeom00coxe_738|url-access=limited|date=1998|publisher=Mathematical Assoc. of America|location=Washington, DC|isbn=978-0-88385-522-5|page=[https://archive.org/details/noneuclideangeom00coxe_738/page/n262 250]|edition=6.}}</ref>
* दो संकेंद्रित कुंडलियों की दो त्रिज्याओं के बीच चाप की लंबाई का अनुपात जहां कुंडली एक दूसरे से 1 दूरी पर हैं, e (गणितीय स्थिरांक) है: 1।<ref>{{cite book|last1=Sommerville|first1=D.M.Y.|title=गैर-यूक्लिडियन ज्यामिति के तत्व|date=2005|publisher=Dover Publications|location=Mineola, N.Y.|isbn=0-486-44222-5|page=58|edition=Unabr. and unaltered republ.}}</ref>
* दो संकेंद्रित कुंडलियों की दो त्रिज्याओं के बीच चाप की लंबाई का अनुपात जहां कुंडली एक दूसरे से 1 दूरी पर हैं, e (गणितीय स्थिरांक) है: 1।<ref>{{cite book|last1=Sommerville|first1=D.M.Y.|title=गैर-यूक्लिडियन ज्यामिति के तत्व|date=2005|publisher=Dover Publications|location=Mineola, N.Y.|isbn=0-486-44222-5|page=58|edition=Unabr. and unaltered republ.}}</ref>




== अतिशयोक्तिपूर्ण ज्यामिति के मॉडल में प्रतिनिधित्व ==
== अतिपरवलय ज्यामिति के मॉडल में प्रतिनिधित्व ==
[[File:Order-3 apeirogonal tiling one cell horocycle.png|thumb|[[क्रम-3 एपिरोगोनल टाइलिंग]], {∞, 3}, हाइपरबोलिक प्लेन को एपिरोगोन से भरता है, जिसके वर्टिकल होरोसाइक्लिक पथ के साथ मौजूद होते हैं।]]
[[File:Order-3 apeirogonal tiling one cell horocycle.png|thumb|[[क्रम-3 एपिरोगोनल टाइलिंग]], {∞, 3}, हाइपरबोलिक प्लेन को एपिरोगोन से भरता है, जिसके वर्टिकल होरोसाइक्लिक पथ के साथ मौजूद होते हैं।]]


=== पोंकारे डिस्क मॉडल ===
=== पोंकारे डिस्क मॉडल ===
अतिशयोक्तिपूर्ण तल के पोनकारे डिस्क मॉडल में, कुंडली चक्रों को सीमा वृत्त के [[स्पर्शरेखा]] वृत्तों द्वारा दर्शाया जाता है; कुंडली का केंद्र वह आदर्श बिंदु है जहां कुंडली सीमा चक्र को छूती है।
अतिपरवलय तल के पोनकारे डिस्क मॉडल में, कुंडली चक्रों को सीमा वृत्त के [[स्पर्शरेखा]] वृत्तों द्वारा दर्शाया जाता है; कुंडली का केंद्र वह आदर्श बिंदु है जहां कुंडली सीमा चक्र को छूती है।


दो बिंदुओं के माध्यम से दो होरोसाइकिलों का [[कम्पास और सीधा निर्माण]] एपोलोनियस की समस्या के विशेष मामलों के लिए सीपीपी निर्माण का एक ही निर्माण है जहां दोनों बिंदु सर्कल के अंदर हैं।
दो बिंदुओं के माध्यम से दो होरोसाइकिलों का [[कम्पास और सीधा निर्माण]] एपोलोनियस की समस्या के विशेष मामलों के लिए सीपीपी निर्माण का एक ही निर्माण है जहां दोनों बिंदु सर्कल के अंदर हैं।

Revision as of 18:06, 15 March 2023

पॉइंकेयर डिस्क मॉडल में एक नीला कुंडली और कुछ लाल मानक। मानक ऊपरी केंद्रीय आदर्श बिंदु पर असमान रूप से अभिसरण करते हैं।

अतिपरवलीय ज्यामिति में, एक कुंडली (from Greek ὅριον (hórion) 'border', and κύκλος (kúklos) 'circle'), जिसे कभी-कभी ऑरिसाइकल, ऑरिसर्कल या सीमांत वृत्त कहा जाता है, एक वक्र है जिसका सामान्य या लंबवत भूगणितीय सभी असम्बद्ध रूप से एक ही दिशा में अभिसरित होते हैं। यह एक होरोस्फीयर (या ऑरिस्फीयर) की द्वि-आयामी स्थिति है।

कुंडली का केंद्र वह आदर्श बिंदु होता है जहां सभी सामान्य भूगर्भ विज्ञान स्पर्शोन्मुख रूप से अभिसरित होते हैं। एक ही केंद्र वाली दो कुंडली संकेन्द्री होती है। यद्यपि ऐसा प्रतीत होता है जैसे दो संकेंद्रित कुंडलियों की लंबाई या वक्रता समान नहीं हो सकती, वास्तव में कोई भी दो कुंडली सर्वांगसम होती हैं।

कुंडली को उन वृत्तों की सीमा के रूप में भी वर्णित किया जा सकता है जो किसी दिए गए बिंदु में एक स्पर्शरेखा साझा करते हैं, क्योंकि उनकी त्रिज्या अनंत की ओर जाती है। यूक्लिडियन ज्यामिति में,ऐसा "अनंत त्रिज्या का वृत्त" एक सीधी रेखा होगी, लेकिन अतिपरवलय ज्यामिति में यह एक कुंडली (एक वक्र) है।

उत्तल पक्ष से होरोसायकल को हाइपरसायकल (ज्यामिति) द्वारा अनुमानित किया जाता है, जिसकी धुरी से दूरी अनंत की ओर जाती है।

गुण

Hyperbolic apeirogon example.png

* बिन्दुओं के प्रत्येक युग्म से 2 कुंडली बनती है। कुंडली के केंद्र उनके बीच के खंड के लंबवत द्विभाजक के आदर्श बिंदु हैं।

  • किसी कुंडली के कोई भी तीन बिन्दु एक रेखा, वृत्त या अतिचक्र पर नहीं होते।
  • एक सीधी रेखा, वृत्त, हाइपरचक्र, या अन्य कुंडली एक कुंडली को अधिकतम दो बिंदुओं पर काटती है।
  • किसी कुंडली की जीवा का लंब समद्विभाजक कुंडली का सामान्य (ज्यामिति) होता है और यह जीवा द्वारा अंतरित चाप को समद्विभाजित करता है।
  • दो बिंदुओं के बीच कुंडली के एक चाप की लंबाई है:
उन दो बिंदुओं के बीच रेखा खंड की लंबाई से अधिक,
उन दो बिंदुओं के बीच हाइपरसाइकल के चाप की लंबाई से अधिक और
उन दो बिंदुओं के बीच किसी भी वृत्त चाप की लंबाई से छोटा।
  • कुंडली से उसके केंद्र तक की दूरी अनंत होती है, और जबकि अतिपरवलयिक ज्यामिति के कुछ मॉडलों में ऐसा लगता है कि कुंडली के दो छोर एक साथ और करीब और उसके केंद्र के करीब हो जाते हैं, यह सच नहीं है; कुंडली के दोनों सिरे एक-दूसरे से और दूर होते जाते हैं।
  • हाइपरबोलिक प्लेन में एक नियमित एपिरोगोन#एपिरोगोन या तो एक होरोसाइकल या हाइपरसाइकल द्वारा परिचालित होता है।
  • यदि C कुंडली का केंद्र है और A और B कुंडली पर बिंदु हैं तो कोण CAB और CBA बराबर होते हैं।[1]
  • कुंडली के एक त्रिज्यखंड (दो त्रिज्या और कुंडली के बीच का क्षेत्र) का क्षेत्रफल परिमित होता है।[2]


मानकीकृत गाऊसी वक्रता

जब अतिपरवलयिक तल में -1 का मानकीकृत गाऊसी वक्रता K होता है:

  • दो बिंदुओं के बीच कुंडली के एक चाप की 'लंबाई' है:
जहाँ d दो बिंदुओं के बीच की दूरी है, और sinh और cos अतिपरवलय कार्य हैं।[3]
  • एक कुंडली के एक चाप की लंबाई जैसे कि एक छोर पर स्पर्शरेखा दूसरे छोर के माध्यम से त्रिज्या के समानांतर सीमित है, 1 है।[4] इस कुंडली और त्रिज्या के बीच परिबद्ध क्षेत्र 1 है।[5]
  • दो संकेंद्रित कुंडलियों की दो त्रिज्याओं के बीच चाप की लंबाई का अनुपात जहां कुंडली एक दूसरे से 1 दूरी पर हैं, e (गणितीय स्थिरांक) है: 1।[6]


अतिपरवलय ज्यामिति के मॉडल में प्रतिनिधित्व

क्रम-3 एपिरोगोनल टाइलिंग, {∞, 3}, हाइपरबोलिक प्लेन को एपिरोगोन से भरता है, जिसके वर्टिकल होरोसाइक्लिक पथ के साथ मौजूद होते हैं।

पोंकारे डिस्क मॉडल

अतिपरवलय तल के पोनकारे डिस्क मॉडल में, कुंडली चक्रों को सीमा वृत्त के स्पर्शरेखा वृत्तों द्वारा दर्शाया जाता है; कुंडली का केंद्र वह आदर्श बिंदु है जहां कुंडली सीमा चक्र को छूती है।

दो बिंदुओं के माध्यम से दो होरोसाइकिलों का कम्पास और सीधा निर्माण एपोलोनियस की समस्या के विशेष मामलों के लिए सीपीपी निर्माण का एक ही निर्माण है जहां दोनों बिंदु सर्कल के अंदर हैं।

पोंकारे आधा विमान मॉडल

पोनकारे अर्ध-विमान मॉडल में, कुंडली चक्रों को सीमा रेखा पर स्पर्शरेखा द्वारा दर्शाया जाता है, इस मामले में उनका केंद्र आदर्श बिंदु होता है जहां वृत्त सीमा रेखा को छूता है।

जब कुंडली का केंद्र आदर्श बिंदु होता है तो कुंडली सीमा रेखा के समानांतर एक रेखा है।

पहले मामले में कंपास और सीधा किनारा निर्माण एपोलोनियस की समस्या के विशेष मामलों के लिए एलपीपी निर्माण के समान निर्माण है।

हाइपरबोलाइड मॉडल

हाइपरबोलाइड मॉडल में वे हाइपरबोलॉइड के चौराहों द्वारा प्रतिनिधित्व करते हैं, जिनके सामान्य स्पर्शोन्मुख शंकु में स्थित हैं।

मीट्रिक

यदि गॉसियन वक्रता −1 होने के लिए मीट्रिक को सामान्य किया जाता है, तो कुंडली प्रत्येक बिंदु पर जियोडेसिक वक्रता 1 का एक वक्र है।

यह भी देखें

अपोलोनियन गैसकेट में दिखाई देने वाले वृत्त जो बाहरी वृत्त के स्पर्शरेखा हैं, को पोनकारे डिस्क मॉडल में हॉरोसायकल माना जा सकता है

* राशिफल

  • हाइपर साइकिल (ज्यामिति)

संदर्भ

  1. Sossinsky, A.B. (2012). ज्यामिति. Providence, R.I.: American Mathematical Society. pp. 141–2. ISBN 9780821875711.
  2. Coxeter, H.S.M. (1998). गैर-यूक्लिडियन ज्यामिति (6. ed.). Washington, DC: Mathematical Assoc. of America. pp. 243–244. ISBN 978-0-88385-522-5.
  3. Smogorzhevsky (1976). लोबाचेवस्कियन ज्यामिति. Moscow: Mir. p. 65.
  4. Sommerville, D.M.Y. (2005). गैर-यूक्लिडियन ज्यामिति के तत्व (Unabr. and unaltered republ. ed.). Mineola, N.Y.: Dover Publications. p. 58. ISBN 0-486-44222-5.
  5. Coxeter, H.S.M. (1998). गैर-यूक्लिडियन ज्यामिति (6. ed.). Washington, DC: Mathematical Assoc. of America. p. 250. ISBN 978-0-88385-522-5.
  6. Sommerville, D.M.Y. (2005). गैर-यूक्लिडियन ज्यामिति के तत्व (Unabr. and unaltered republ. ed.). Mineola, N.Y.: Dover Publications. p. 58. ISBN 0-486-44222-5.