भौतिक मात्रा: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 196: Line 196:
| ''q''  
| ''q''  
| ''q''  
| ''q''  
| Amount of a property
| किसी गुण की राशि
| [q]
| [q]
|-
|-
Line 202: Line 202:
| <math> \dot{q} \,\!</math>  
| <math> \dot{q} \,\!</math>  
| <math> \dot{q} \equiv \frac{\mathrm{d} q}{\mathrm{d} t} </math>
| <math> \dot{q} \equiv \frac{\mathrm{d} q}{\mathrm{d} t} </math>
| Rate of change of property with respect to time
| समय के संबंध में गुण के परिवर्तन की दर
| [q]T<sup>−1</sup>
| [q]T<sup>−1</sup>
|-
|-
| मात्रा स्थानिक घनत्व  
| मात्रा स्थानिक घनत्व  
| ''ρ'' = volume density (''n'' = 3), ''σ'' = surface density (''n'' = 2), ''λ'' = linear density (''n'' = 1)
| ρ = आयतन घनत्व (n = 3), σ = सतह घनत्व (n = 2), λ = रैखिक घनत्व (n = 1)
 
n-अंतरिक्ष घनत्व के लिए कोई सामान्य प्रतीक नहीं है, यहाँ ρn का उपयोग किया गया है।
No common symbol for ''n''-space density, here ''ρ<sub>n</sub>'' is used.
| <math> q = \int \rho_n  \mathrm{d} V_n </math>  
| <math> q = \int \rho_n  \mathrm{d} V_n </math>  
| Amount of property per unit n-space <br />
| गुण की मात्रा प्रति इकाई एन-स्पेस
(length, area, volume or higher dimensions)
(लंबाई, क्षेत्रफल, आयतन या उच्च आयाम)
| [q]L<sup>−''n''</sup>
| [q]L<sup>−''n''</sup>
|-
|-
Line 217: Line 216:
| ''q<sub>m</sub>''  
| ''q<sub>m</sub>''  
| <math> q_m = \frac{\mathrm{d} q}{\mathrm{d} m} \,\!</math>  
| <math> q_m = \frac{\mathrm{d} q}{\mathrm{d} m} \,\!</math>  
| Amount of property per unit mass
| प्रति इकाई द्रव्यमान में गुण की मात्रा
| [q]M<sup>−1</sup>
| [q]M<sup>−1</sup>
|-
|-
Line 223: Line 222:
| ''q<sub>n</sub>''
| ''q<sub>n</sub>''
| <math> q_n = \frac{\mathrm{d} q}{\mathrm{d} n} \,\!</math>  
| <math> q_n = \frac{\mathrm{d} q}{\mathrm{d} n} \,\!</math>  
| Amount of property per mole of substance
| पदार्थ के प्रति मोल गुण की मात्रा
| [q]N<sup>−1</sup>
| [q]N<sup>−1</sup>
|-
|-
Line 229: Line 228:
|
|
| <math> \nabla q </math>  
| <math> \nabla q </math>  
| Rate of change of property with respect to position
| स्थिति के संबंध में गुण के परिवर्तन की दर
|| [q]L<sup>−1</sup>
|| [q]L<sup>−1</sup>
|-
|-
| स्पेक्ट्रल मात्रा (ईएम तरंगों के लिए)
| स्पेक्ट्रल मात्रा (ईएम तरंगों के लिए)
| ''q<sub>v</sub>, q<sub>ν</sub>, q<sub>λ</sub>''
| ''q<sub>v</sub>, q<sub>ν</sub>, q<sub>λ</sub>''
| Two definitions are used, for frequency and wavelength:<br />
| आवृत्ति और तरंग दैर्ध्य के लिए दो परिभाषाओं का उपयोग किया जाता है:<br />
<math> q=\int q_\lambda \mathrm{d} \lambda </math><br />
<math> q=\int q_\lambda \mathrm{d} \lambda </math><br /><math> q=\int q_\nu \mathrm{d} \nu </math>
<math> q=\int q_\nu \mathrm{d} \nu </math>  
| प्रति इकाई तरंग दैर्ध्य या आवृत्ति की गुण की मात्रा।
| Amount of property per unit wavelength or frequency.
| [q]L<sup>−1</sup> (''q<sub>λ</sub>'')<br />
| [q]L<sup>−1</sup> (''q<sub>λ</sub>'')<br />
[q]T (''q<sub>ν</sub>'')
[q]T (''q<sub>ν</sub>'')
Line 243: Line 241:
| प्रवाह, प्रवाह (समानार्थक)  
| प्रवाह, प्रवाह (समानार्थक)  
| ''Φ<sub>F</sub>'', ''F''  
| ''Φ<sub>F</sub>'', ''F''  
| Two definitions are used; <br />
| दो परिभाषाओं का उपयोग किया जाता है; <br />
[[Transport phenomena (engineering & physics)|Transport mechanics]], [[nuclear physics]]/[[particle physics]]: <br />
[[Transport phenomena (engineering & physics)|परिवहन यांत्रिकी]], [[nuclear physics|परमाणु भौतिकी]]/[[particle physics|कण भौतिकी]]: <br /><math> q = \iiint F \mathrm{d} A \mathrm{d} t </math>
<math> q = \iiint F \mathrm{d} A \mathrm{d} t </math>


[[Vector field]]: <br />
[[Vector field|सदिश क्षेत्र]]: <br /><math> \Phi_F = \iint_S \mathbf{F} \cdot \mathrm{d} \mathbf{A}</math>
<math> \Phi_F = \iint_S \mathbf{F} \cdot \mathrm{d} \mathbf{A}</math>  
| अनुप्रस्थ-काट/सतह सीमा के माध्यम से गुण का प्रवाह।
| Flow of a property though a cross-section/surface boundary.
| [q]T<sup>−1</sup>L<sup>−2</sup>, [F]L<sup>2</sup>
| [q]T<sup>−1</sup>L<sup>−2</sup>, [F]L<sup>2</sup>
|-
|-
Line 255: Line 251:
| '''F'''  
| '''F'''  
| <math> \mathbf{F} \cdot \mathbf{\hat{n}} = \frac{\mathrm{d} \Phi_F}{\mathrm{d} A} \,\!</math>  
| <math> \mathbf{F} \cdot \mathbf{\hat{n}} = \frac{\mathrm{d} \Phi_F}{\mathrm{d} A} \,\!</math>  
| Flow of a property though a cross-section/surface boundary per unit cross-section/surface area
| एक गुण का प्रवाह हालांकि एक क्रॉस-सेक्शन/सतह सीमा प्रति इकाई अनुप्रस्थ काट/सतह क्षेत्र
| [F]
| [F]
|-
|-
Line 261: Line 257:
| ''i'', ''I''
| ''i'', ''I''
| <math> I = \frac{\mathrm{d} q}{\mathrm{d} t} </math>  
| <math> I = \frac{\mathrm{d} q}{\mathrm{d} t} </math>  
| Rate of flow of property through a cross
| एक क्रॉस के माध्यम से गुण के प्रवाह की दर
section / surface boundary
खंड / सतह सीमा
| [q]T<sup>−1</sup>
| [q]T<sup>−1</sup>
|-
|-
Line 268: Line 264:
| '''j''', '''J'''
| '''j''', '''J'''
| <math> I = \iint \mathbf{J} \cdot \mathrm{d}\mathbf{S}</math>
| <math> I = \iint \mathbf{J} \cdot \mathrm{d}\mathbf{S}</math>
| Rate of flow of property per unit cross-section/surface area
| प्रति इकाई क्रॉस-सेक्शन / सतह क्षेत्र में गुण के प्रवाह की दर
| [q]T<sup>−1</sup>L<sup>−2</sup>
| [q]T<sup>−1</sup>L<sup>−2</sup>
|-
|-
|[[Moment (physics)|आघूर्ण]] की मात्रा
|[[Moment (physics)|आघूर्ण]] की मात्रा
| '''m''', '''M'''  
| '''m''', '''M'''  
|Two definitions can be used; <br />
|दो परिभाषाओं का उपयोग किया जा सकता है; <br />
q is a scalar: <math> \mathbf{m} = \mathbf{r} q </math> <br />q is a vector: <math> \mathbf{m} = \mathbf{r} \times \mathbf{q} </math>
q एक अदिश: <math> \mathbf{m} = \mathbf{r} q </math> है <br />q एक सदिश: <math> \mathbf{m} = \mathbf{r} \times \mathbf{q} </math> है
| Quantity at position '''r''' has a moment about a point or axes, often relates to tendency of rotation or [[potential energy]].
| स्थिति '''r''' पर मात्रा में एक बिंदु या अक्ष के बारे में एक क्षण होता है, जो अक्सर रोटेशन या [[potential energy|संभावित ऊर्जा]] की प्रवृत्ति से संबंधित होता है।
| [q]L
| [q]L
|-
|-
|}भौतिक मात्रा शब्द का अर्थ सामान्यतः अच्छी तरह से समझा जाता है (हर कोई समझता है कि आवधिक घटना की आवृत्ति, या विद्युत तार के प्रतिरोध का क्या अर्थ है)। भौतिक मात्रा शब्द का अर्थ भौतिक रूप से अपरिवर्तनीय मात्रा नहीं है। उदाहरण के लिए लंबाई भौतिक मात्रा है, फिर भी यह विशेष और सामान्य सापेक्षता में समन्वय परिवर्तन के अंतर्गत भिन्न है। भौतिक राशियों की धारणा विज्ञान के क्षेत्र में इतनी बुनियादी और सहज ज्ञान युक्त है कि इसे स्पष्ट रूप से लिखने या यहां तक ​​कि उल्लेख करने की आवश्यकता नहीं है। यह सार्वभौमिक रूप से समझा जाता है कि वैज्ञानिक गुणात्मक डेटा के विपरीत मात्रात्मक डेटा से निपटेंगे। भौतिक मात्राओं का स्पष्ट उल्लेख और चर्चा किसी भी मानक विज्ञान कार्यक्रम का हिस्सा नहीं है, और विज्ञान या दर्शन कार्यक्रम के दर्शन के लिए अधिक अनुकूल है।
|}भौतिक मात्रा शब्द का अर्थ सामान्यतः अच्छी तरह से समझा जाता है (हर कोई समझता है कि आवधिक घटना की आवृत्ति, या विद्युत तार के प्रतिरोध का क्या अर्थ है)। भौतिक मात्रा शब्द का अर्थ भौतिक रूप से अपरिवर्तनीय मात्रा नहीं है। उदाहरण के लिए लंबाई भौतिक मात्रा है, फिर भी यह विशेष और सामान्य सापेक्षता में समन्वय परिवर्तन के अंतर्गत भिन्न है। भौतिक राशियों की धारणा विज्ञान के क्षेत्र में इतनी मूलभूत और सहज ज्ञान युक्त है कि इसे स्पष्ट रूप से लिखने या यहां तक ​​कि उल्लेख करने की आवश्यकता नहीं है। यह सार्वभौमिक रूप से समझा जाता है कि वैज्ञानिक गुणात्मक डेटा के विपरीत मात्रात्मक डेटा से निपटेंगे। भौतिक मात्राओं का स्पष्ट उल्लेख और चर्चा किसी भी मानक विज्ञान कार्यक्रम का हिस्सा नहीं है, और विज्ञान या दर्शन कार्यक्रम के दर्शन के लिए अधिक अनुकूल है।
   
   
भौतिक मात्राओं की धारणा भौतिकी में शायद ही कभी प्रयोग की जाती है, न ही यह मानक भौतिकी का हिस्सा है। यह विचार अक्सर भ्रामक होता है, क्योंकि इसके नाम का तात्पर्य ऐसी मात्रा से है जिसे भौतिक रूप से मापा जा सकता है, फिर भी अक्सर गलत तरीके से [[अपरिवर्तनीय (भौतिकी)]] का उपयोग किया जाता है। भौतिकी की समृद्ध जटिलता के कारण, कई अलग-अलग क्षेत्रों में अलग-अलग भौतिक आक्रमणकारी होते हैं। भौतिकी के सभी संभव क्षेत्रों में कोई ज्ञात भौतिक अपरिवर्तनीय पवित्र नहीं है। ऊर्जा, स्थान, संवेग, बल आघूर्ण, स्थिति, और लंबाई (बस कुछ नाम रखने के लिए) सभी कुछ विशेष पैमाने और प्रणाली में प्रयोगात्मक रूप से भिन्न पाए जाते हैं। इसके अतिरिक्त, धारणा है कि भौतिक मात्रा को मापना संभव है, विशेष रूप से क्वांटम क्षेत्र सिद्धांत और सामान्यीकरण तकनीकों में प्रश्न में आता है। जैसा कि सिद्धांत द्वारा इन्फिनिटी का उत्पादन किया जाता है, किए गए वास्तविक माप वास्तव में भौतिक ब्रह्मांड के नहीं होते हैं (क्योंकि हम इन्फिनिटी को माप नहीं सकते हैं), वे रेनॉर्मलाइजेशन स्कीम के हैं जो स्पष्ट रूप से हमारी माप योजना, समन्वय प्रणाली और मीट्रिक प्रणाली पर निर्भर हैं।
भौतिक मात्राओं की धारणा भौतिकी में शायद ही कभी प्रयोग की जाती है, न ही यह मानक भौतिकी का हिस्सा है। यह विचार अक्सर भ्रामक होता है, क्योंकि इसके नाम का तात्पर्य ऐसी मात्रा से है जिसे भौतिक रूप से मापा जा सकता है, फिर भी अक्सर गलत तरीके से [[अपरिवर्तनीय (भौतिकी)]] का उपयोग किया जाता है। भौतिकी की समृद्ध जटिलता के कारण, कई अलग-अलग क्षेत्रों में अलग-अलग भौतिक आक्रमणकारी होते हैं। भौतिकी के सभी संभव क्षेत्रों में कोई ज्ञात भौतिक अपरिवर्तनीय पवित्र नहीं है। ऊर्जा, स्थान, संवेग, बल आघूर्ण, स्थिति, और लंबाई (बस कुछ नाम रखने के लिए) सभी कुछ विशेष पैमाने और प्रणाली में प्रयोगात्मक रूप से भिन्न पाए जाते हैं। इसके अतिरिक्त, धारणा है कि भौतिक मात्रा को मापना संभव है, विशेष रूप से क्वांटम क्षेत्र सिद्धांत और सामान्यीकरण तकनीकों में प्रश्न में आता है। जैसा कि सिद्धांत द्वारा इन्फिनिटी का उत्पादन किया जाता है, किए गए वास्तविक माप वास्तव में भौतिक ब्रह्मांड के नहीं होते हैं (क्योंकि हम अनंत को माप नहीं सकते हैं), वे पुनर्सामान्यीकरण योजना के हैं जो स्पष्ट रूप से हमारी माप योजना, समन्वय प्रणाली और मीट्रिक प्रणाली पर निर्भर हैं।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 13:47, 15 March 2023

भौतिक मात्रा एक सामग्री या प्रणाली की भौतिक गुण है जिसे माप द्वारा परिमाणित किया जा सकता है। भौतिक मात्रा को 'मान' के रूप में व्यक्त किया जा सकता है, जो 'संख्यात्मक मान' और 'इकाई' का बीजगणितीय गुणन है। उदाहरण के लिए, द्रव्यमान की भौतिक मात्रा को '32.3 किग्रा' के रूप में परिमाणित किया जा सकता है, जहाँ '32.3' संख्यात्मक मान है और 'किग्रा' इकाई है।

भौतिक राशि में कम से कम दो विशेषताएँ समान होती हैं।

  1. संख्यात्मक परिमाण
  2. इकाइयां

प्रतीक और नामकरण

मात्राओं के लिए प्रतीकों के उपयोग के लिए अंतर्राष्ट्रीय अनुशंसाएँ ISO/IEC 80000, आईयूपीएपी लाल किताब और भौतिक रसायन में मात्राएँ, इकाइयाँ और प्रतीक निर्धारित की गई हैं। उदाहरण के लिए, भौतिक मात्रा द्रव्यमान के लिए अनुशंसित प्रतीक m है, और मात्रा विद्युत आवेश के लिए अनुशंसित प्रतीक Q है।

सदस्यता और सूचकांक

सबस्क्रिप्ट का उपयोग दो कारणों से किया जाता है, केवल नाम को मात्रा से जोड़ने के लिए या इसे किसी अन्य मात्रा के साथ जोड़ने के लिए, या विशिष्ट घटक (जैसे, पंक्ति या स्तंभ) को अनुक्रमित करने के लिए।

  • नाम संदर्भ: मात्रा में सबस्क्रिप्टेड या सुपरस्क्रिप्टेड एकल अक्षर, अक्षरों का समूह, या पूर्ण शब्द होता है, जिसे लेबल करने के लिए वे किस अवधारणा या इकाई को संदर्भित करते हैं, अक्सर इसे उसी मुख्य प्रतीक के साथ अन्य मात्राओं से अलग करने के लिए। ये सबस्क्रिप्ट या सुपरस्क्रिप्ट इटैलिक के अतिरिक्त सीधे रोमन प्रकारफेस में लिखे जाते हैं जबकि मात्रा का प्रतिनिधित्व करने वाला मुख्य प्रतीक इटैलिक में है। उदाहरण के लिए, Ek या Ekinetic सामान्यतः गतिज ऊर्जा और Ep या Epotential को निरूपित करने के लिए उपयोग किया जाता है सामान्यतः संभावित ऊर्जा को निरूपित करने के लिए उपयोग किया जाता है।
  • मात्रा संदर्भ: मात्रा में सबस्क्रिप्टेड या सुपरस्क्रिप्टेड एकल अक्षर, अक्षरों का समूह, या पूरा शब्द होता है, जो कि वे किस माप का उल्लेख करते हैं। ये सबस्क्रिप्ट या सुपरस्क्रिप्ट सीधे रोमन प्रकारफेस के अतिरिक्त इटैलिक में लिखे जाते हैं; मात्रा का प्रतिनिधित्व करने वाला मुख्य प्रतीक इटैलिक में है। उदाहरण के लिए Cpया Cpressureसबस्क्रिप्ट में मात्रा द्वारा दिए गए दबाव पर ताप क्षमता है।

सबस्क्रिप्ट का प्रकार इसके प्रकारफेस द्वारा व्यक्त किया गया है: 'के' और 'पी' शब्द काइनेटिक और पोटेंशियल के संक्षिप्त रूप हैं, जबकि पी (इटैलिक) शब्द के संक्षिप्त नाम के अतिरिक्त भौतिक मात्रा के दबाव का प्रतीक है।

  • सूचकांक: सूचकांक संकेतन का उपयोग करके गणितीय सूत्रीकरण के लिए सूचकांकों का उपयोग किया जाता है।

आकार

भौतिक राशियों के अलग-अलग आकार हो सकते हैं, जैसे अदिश, सदिश या टेन्सर।

अदिश

अदिश (भौतिकी) भौतिक मात्रा है जिसमें परिमाण होता है लेकिन कोई दिशा नहीं होती है। भौतिक राशियों के प्रतीक सामान्यतः लैटिन वर्णमाला या ग्रीक वर्णमाला के अक्षर के रूप में चुने जाते हैं, और इटैलिक प्रकार में मुद्रित होते हैं।

सदिश

सदिश (गणित और भौतिकी) भौतिक राशियाँ हैं जिनमें परिमाण और दिशा दोनों होते हैं और जिनकी संक्रियाएँ सदिश स्थान के स्वयंसिद्धों का पालन करती हैं। सदिश भौतिक राशियों के प्रतीक बोल्ड प्रकार में, रेखांकित या ऊपर तीर के साथ होते हैं। उदाहरण के लिए, यदि u किसी कण की गति है, तो उसके वेग के लिए सरल संकेत 'u', u, या हैं।

टेन्सर

अदिश और सदिश सबसे सरल टेन्सर हैं, जिनका उपयोग अधिक सामान्य भौतिक राशियों का वर्णन करने के लिए किया जा सकता है। उदाहरण के लिए, कॉची तनाव टेन्सर में परिमाण, दिशा और अभिविन्यास गुण होते हैं।

संख्याएं और प्राथमिक कार्य

संख्यात्मक मात्राएँ, यहाँ तक कि अक्षरों द्वारा निरूपित भी, सामान्यतः रोमन (ईमानदार) प्रकार में मुद्रित होती हैं, हालाँकि कभी-कभी इटैलिक में। प्रारंभिक कार्यों के लिए प्रतीक (परिपत्र त्रिकोणमितीय, अतिशयोक्तिपूर्ण, लघुगणक आदि), Δ में Δy जैसी मात्रा में परिवर्तन या dx में d जैसे ऑपरेटरों को भी रोमन प्रकार में मुद्रित करने की सिफारिश की जाती है।

उदाहरण:

  • वास्तविक संख्याएँ, जैसे 1 या 2,
  • ई, प्राकृतिक लघुगणक का आधार,
  • मैं, काल्पनिक संख्या इकाई,
  • π इसके व्यास के लिए वृत्त की परिधि के अनुपात के लिए, 3.14159265358979323846264338327950288...
  • δx, Δy, dz, मात्रा x, y और z में अंतर (परिमित या अन्यथा) का प्रतिनिधित्व करते हैं
  • sin α, sinh γ, log x 1,

इकाइयां और आयाम

इकाइयां

अक्सर इकाई का विकल्प होता है, चूंकि माप की SI इकाइयाँ (मूल इकाई के अवगुणों और गुणकों सहित) सामान्यतः उनके उपयोग में आसानी, अंतर्राष्ट्रीय परिचितता और नुस्खे के कारण वैज्ञानिक संदर्भों में उपयोग की जाती हैं। उदाहरण के लिए, द्रव्यमान की मात्रा को प्रतीक m द्वारा दर्शाया जा सकता है, और इसे किलोग्राम (kg), पौंड (द्रव्यमान)द्रव्यमान) (lb), या परमाणु द्रव्यमान इकाई (Da) में व्यक्त किया जा सकता है।

आयाम

भौतिक मात्रा के आयाम की धारणा 1822 में जोसेफ फूरियर द्वारा प्रस्तुत की गई थी।[1] सम्मेलन के अनुसार, भौतिक राशियों को आधार मात्राओं पर निर्मित आयामी प्रणाली में व्यवस्थित किया जाता है, जिनमें से प्रत्येक को अपने स्वयं के आयाम के रूप में माना जाता है।

आधार मात्रा

आधार मात्राएँ वे मात्राएँ हैं जो प्रकृति में भिन्न हैं और कुछ मामलों में ऐतिहासिक रूप से अन्य मात्राओं के संदर्भ में परिभाषित नहीं की गई हैं। आधार राशियाँ वे राशियाँ हैं जिनके आधार पर अन्य राशियों को व्यक्त किया जा सकता है। मात्रा की अंतर्राष्ट्रीय प्रणाली (आईएसक्यू) की सात मूल मात्राएँ और उनकी संबंधित SI इकाइयाँ और आयाम निम्नलिखित तालिका में सूचीबद्ध हैं। अन्य सम्मेलनों में आधार इकाई (माप) की अलग संख्या हो सकती है (उदाहरण के लिए इकाइयों की इकाइयों की सीजीएस और एमकेएस प्रणाली)।

मात्रा आधार मात्रा की अंतर्राष्ट्रीय प्रणाली
राशि एसआई मात्रक परिणामी
प्रतीक
नाम (सामान्य) प्रतीक नाम प्रतीक
लंबाई, चौड़ाई, ऊंचाई, गहराई, दूरी a, b, c, d, h, l, r, s, w, x, y, z मीटर m L
समय t, τ सेकंड s T
द्रव्यमान m किलोग्राम kg M
ऊष्मागतिकी तापमान T, θ केल्विन K Θ
पदार्थ की मात्रा n मोल mol N
विद्युत प्रवाह i, I ऐंपियर A I
ज्योति तीव्रता Iv कैन्डेला cd J
समतल कोण α, β, γ, θ, φ, χ रेडियन rad कुछ नही
ठोस कोण ω, Ω स्टेरेडियन sr कुछ नही

अंतिम दो कोणीय इकाइयाँ, समतल कोण और ठोस कोण, एसआई में सहायक इकाइयाँ हैं, लेकिन इन्हें आयाम रहित माना जाता है। सहायक इकाइयों का उपयोग वास्तव में आयाम रहित मात्रा (शुद्ध संख्या) और कोण के बीच अंतर करने की सुविधा के लिए किया जाता है, जो अलग-अलग माप हैं।

सामान्य व्युत्पन्न मात्रा

व्युत्पन्न राशियाँ वे होती हैं जिनकी परिभाषाएँ अन्य भौतिक राशियों (आधार राशियों) पर आधारित होती हैं।

अंतरिक्ष

स्थान और समय के लिए महत्वपूर्ण लागू आधार इकाइयां नीचे हैं। क्षेत्र और मात्रा इस प्रकार, निश्चित रूप से, लंबाई से प्राप्त होते हैं, लेकिन पूर्णता के लिए शामिल होते हैं क्योंकि वे कई व्युत्पन्न मात्राओं में, विशेष घनत्व में अक्सर होते हैं।

राशि एसआई मात्रक आयामी
विवरण प्रतीक
(स्थानिक) स्थिति (वेक्टर) r, R, a, d m L
कोणीय स्थिति, घूर्णन का कोण (सदिश या अदिश के रूप में माना जा सकता है) θ, θ rad कुछ नही
क्षेत्र, अनुप्रस्थ काट A, S, Ω m2 L2
वेक्टर क्षेत्र (सतह क्षेत्र का परिमाण, सतह के स्पर्शरेखा तल के लिए सामान्य निर्देशित) m2 L2
आयतन τ, V m3 L3


घनत्व, प्रवाह, ढाल और क्षण

महत्वपूर्ण और सुविधाजनक व्युत्पन्न मात्राएँ जैसे घनत्व, प्रवाह, द्रव गतिकी, विद्युत धाराएँ कई मात्राओं से जुड़ी होती हैं। कभी-कभी अलग-अलग शब्द जैसे धारा घनत्व और प्रवाह घनत्व, दर, आवृत्ति और धारा, ही संदर्भ में परस्पर विनिमय के लिए उपयोग किए जाते हैं, कभी-कभी वे विशिष्ट रूप से उपयोग किए जाते हैं।

इन प्रभावी टेम्प्लेट-व्युत्पन्न मात्राओं को स्पष्ट करने के लिए, हम q को संदर्भ के कुछ सीमा के अन्दर कोई भी मात्रा मानते हैं (जरूरी नहीं कि आधार मात्राएं) और कुछ सबसे अधिक उपयोग किए जाने वाले प्रतीकों के नीचे तालिका में उपस्थित हैं जहां उनकी परिभाषाएं SI इकाइयों और SI आयामों का उपयोग करती हैं जहां [q ] q के आयाम को दर्शाता है।

समय व्युत्पन्न, विशिष्ट, मोलर, और मात्रा के फ्लक्स घनत्व के लिए, कोई प्रतीक नहीं है, नामकरण विषय पर निर्भर करता है, चूंकि समय व्युत्पन्न को सामान्यतः ओवरडॉट टिप्पणी का उपयोग करके लिखा जा सकता है। व्यापकता के लिए हम क्रमशः qm, qn और F का उपयोग करते हैं अदिश क्षेत्र के ढाल के लिए किसी प्रतीक की आवश्यकता नहीं है, क्योंकि केवल नाबला/डेल ऑपरेटर ऑपरेटर ∇ या ग्रेडिएंट को लिखने की आवश्यकता है। स्थानिक घनत्व, धारा, धारा घनत्व और प्रवाह के लिए, अंकन संदर्भ से दूसरे संदर्भ में सामान्य होते हैं, केवल सबस्क्रिप्ट में परिवर्तन से भिन्न होते हैं।

धारा घनत्व के लिए, प्रवाह की दिशा में इकाई सदिश है, अर्थात् प्रवाह रेखा के लिए स्पर्शरेखा है। सतह के लिए सामान्य इकाई के साथ डॉट उत्पाद पर ध्यान दें, क्योंकि क्षेत्र के लिए धारा सामान्य नहीं होने पर सतह से निकलने वाली धारा की मात्रा कम हो जाती है। केवल सतह से लंबवत निकलने वाली धारा सतह से निकलने वाली धारा में योगदान करती है, सतह के (स्पर्शरेखा) तल में कोई धारा नहीं गुजरती है।

नीचे दिए गए कैलकुलस टिप्पणी को पर्यायवाची के रूप में उपयोग किया जा सकता है।

यदि X एक n-वैरिएबल फलन (गणित) है, तो

अवकल अवकल एन-स्पेसमात्रा तत्व है,

समाकलित: एन-स्पेस मान पर X का विभिन्न समाकलित है।
राशि विशिष्ट प्रतीक परिभाषा अर्थ, उपयोग आयाम
राशि q q किसी गुण की राशि [q]
मात्रा के परिवर्तन की दर, समय व्युत्पन्न समय के संबंध में गुण के परिवर्तन की दर [q]T−1
मात्रा स्थानिक घनत्व ρ = आयतन घनत्व (n = 3), σ = सतह घनत्व (n = 2), λ = रैखिक घनत्व (n = 1)

n-अंतरिक्ष घनत्व के लिए कोई सामान्य प्रतीक नहीं है, यहाँ ρn का उपयोग किया गया है।

गुण की मात्रा प्रति इकाई एन-स्पेस

(लंबाई, क्षेत्रफल, आयतन या उच्च आयाम)

[q]Ln
विशिष्ट मात्रा qm प्रति इकाई द्रव्यमान में गुण की मात्रा [q]M−1
मोलर मात्रा qn पदार्थ के प्रति मोल गुण की मात्रा [q]N−1
मात्रा प्रवणता (यदि q एक अदिश क्षेत्र है)। स्थिति के संबंध में गुण के परिवर्तन की दर [q]L−1
स्पेक्ट्रल मात्रा (ईएम तरंगों के लिए) qv, qν, qλ आवृत्ति और तरंग दैर्ध्य के लिए दो परिभाषाओं का उपयोग किया जाता है:


प्रति इकाई तरंग दैर्ध्य या आवृत्ति की गुण की मात्रा। [q]L−1 (qλ)

[q]T (qν)

प्रवाह, प्रवाह (समानार्थक) ΦF, F दो परिभाषाओं का उपयोग किया जाता है;

परिवहन यांत्रिकी, परमाणु भौतिकी/कण भौतिकी:

सदिश क्षेत्र:

अनुप्रस्थ-काट/सतह सीमा के माध्यम से गुण का प्रवाह। [q]T−1L−2, [F]L2
फ्लक्स का घनत्व F एक गुण का प्रवाह हालांकि एक क्रॉस-सेक्शन/सतह सीमा प्रति इकाई अनुप्रस्थ काट/सतह क्षेत्र [F]
धारा i, I एक क्रॉस के माध्यम से गुण के प्रवाह की दर

खंड / सतह सीमा

[q]T−1
धारा घनत्व (कभी-कभी परिवहन यांत्रिकी में प्रवाह घनत्व कहा जाता है) j, J प्रति इकाई क्रॉस-सेक्शन / सतह क्षेत्र में गुण के प्रवाह की दर [q]T−1L−2
आघूर्ण की मात्रा m, M दो परिभाषाओं का उपयोग किया जा सकता है;

q एक अदिश: है
q एक सदिश: है

स्थिति r पर मात्रा में एक बिंदु या अक्ष के बारे में एक क्षण होता है, जो अक्सर रोटेशन या संभावित ऊर्जा की प्रवृत्ति से संबंधित होता है। [q]L

भौतिक मात्रा शब्द का अर्थ सामान्यतः अच्छी तरह से समझा जाता है (हर कोई समझता है कि आवधिक घटना की आवृत्ति, या विद्युत तार के प्रतिरोध का क्या अर्थ है)। भौतिक मात्रा शब्द का अर्थ भौतिक रूप से अपरिवर्तनीय मात्रा नहीं है। उदाहरण के लिए लंबाई भौतिक मात्रा है, फिर भी यह विशेष और सामान्य सापेक्षता में समन्वय परिवर्तन के अंतर्गत भिन्न है। भौतिक राशियों की धारणा विज्ञान के क्षेत्र में इतनी मूलभूत और सहज ज्ञान युक्त है कि इसे स्पष्ट रूप से लिखने या यहां तक ​​कि उल्लेख करने की आवश्यकता नहीं है। यह सार्वभौमिक रूप से समझा जाता है कि वैज्ञानिक गुणात्मक डेटा के विपरीत मात्रात्मक डेटा से निपटेंगे। भौतिक मात्राओं का स्पष्ट उल्लेख और चर्चा किसी भी मानक विज्ञान कार्यक्रम का हिस्सा नहीं है, और विज्ञान या दर्शन कार्यक्रम के दर्शन के लिए अधिक अनुकूल है।

भौतिक मात्राओं की धारणा भौतिकी में शायद ही कभी प्रयोग की जाती है, न ही यह मानक भौतिकी का हिस्सा है। यह विचार अक्सर भ्रामक होता है, क्योंकि इसके नाम का तात्पर्य ऐसी मात्रा से है जिसे भौतिक रूप से मापा जा सकता है, फिर भी अक्सर गलत तरीके से अपरिवर्तनीय (भौतिकी) का उपयोग किया जाता है। भौतिकी की समृद्ध जटिलता के कारण, कई अलग-अलग क्षेत्रों में अलग-अलग भौतिक आक्रमणकारी होते हैं। भौतिकी के सभी संभव क्षेत्रों में कोई ज्ञात भौतिक अपरिवर्तनीय पवित्र नहीं है। ऊर्जा, स्थान, संवेग, बल आघूर्ण, स्थिति, और लंबाई (बस कुछ नाम रखने के लिए) सभी कुछ विशेष पैमाने और प्रणाली में प्रयोगात्मक रूप से भिन्न पाए जाते हैं। इसके अतिरिक्त, धारणा है कि भौतिक मात्रा को मापना संभव है, विशेष रूप से क्वांटम क्षेत्र सिद्धांत और सामान्यीकरण तकनीकों में प्रश्न में आता है। जैसा कि सिद्धांत द्वारा इन्फिनिटी का उत्पादन किया जाता है, किए गए वास्तविक माप वास्तव में भौतिक ब्रह्मांड के नहीं होते हैं (क्योंकि हम अनंत को माप नहीं सकते हैं), वे पुनर्सामान्यीकरण योजना के हैं जो स्पष्ट रूप से हमारी माप योजना, समन्वय प्रणाली और मीट्रिक प्रणाली पर निर्भर हैं।

यह भी देखें

संदर्भ

  1. Fourier, Joseph. Théorie analytique de la chaleur, Firmin Didot, Paris, 1822. (In this book, Fourier introduces the concept of physical dimensions for the physical quantities.)



कंप्यूटर कार्यान्वयन

  • DEVLIB सी शार्प (प्रोग्रामिंग लैंग्वेज) में प्रोजेक्ट | सी# प्रोग्रामिंग लैंग्वेज और [[ डेल्फी (प्रोग्रामिंग भाषा) ]] प्रोग्रामिंग लैंग्वेज
  • Physical Quantities सी शार्प (प्रोग्रामिंग लैंग्वेज) में प्रोजेक्ट| कोडप्लेक्स में सी# प्रोग्रामिंग लैंग्वेज
  • Physical Measure C# लाइब्रेरी सी शार्प (प्रोग्रामिंग लैंग्वेज) में प्रोजेक्ट| कोडप्लेक्स में सी# प्रोग्रामिंग लैंग्वेज
  • नैतिक उपाय सी शार्प (प्रोग्रामिंग भाषा) में परियोजना| कोडप्लेक्स में सी# प्रोग्रामिंग भाषा
  • Engineer JS भौतिक मात्राओं का समर्थन करने वाला ऑनलाइन गणना और स्क्रिप्टिंग टूल।

स्रोत

  • कुक, एलन एच। द ऑब्जर्वेशनल फाउंडेशन्स ऑफ फिजिक्स, कैम्ब्रिज, 1994। ISBN 0-521-45597-9
  • भौतिकी के आवश्यक सिद्धांत, पी.एम. व्हेलन, एम.जे. हॉजसन, दूसरा संस्करण, 1978, जॉन मुरे, ISBN 0-7195-3382-1
  • भौतिकी का विश्वकोश, रीता जी. लर्नर|आर.जी. लर्नर, जी.एल. ट्रिग, दूसरा संस्करण, वीएचसी पब्लिशर्स, हंस वारलिमोंट, स्प्रिंगर, 2005, पीपी 12–13
  • वैज्ञानिकों और इंजीनियरों के लिए भौतिकी: आधुनिक भौतिकी के साथ (छठा संस्करण), पी.ए. टिपलर, जी. मोस्का, डब्ल्यू.एच. फ्रीमैन एंड कंपनी, 2008, 9-781429-202657


श्रेणी:भौतिक मात्रा