रैखिक मॉडल: Difference between revisions
Line 9: | Line 9: | ||
:<math>Y_i = \beta_0 + \beta_1 \phi_1(X_{i1}) + \cdots + \beta_p \phi_p(X_{ip}) + \varepsilon_i \qquad i = 1, \ldots, n </math> | :<math>Y_i = \beta_0 + \beta_1 \phi_1(X_{i1}) + \cdots + \beta_p \phi_p(X_{ip}) + \varepsilon_i \qquad i = 1, \ldots, n </math> | ||
जहाँ <math> \phi_1, \ldots, \phi_p </math> [[नॉनलाइनियर सिस्टम|अरैखिक]] फलन हो सकते हैं। उपरोक्त में, मात्राएँ <math>\varepsilon_i</math> संबंध में त्रुटियों का प्रतिनिधित्व करने वाले यादृच्छिक चर हैं। पदनाम का रैखिक भाग [[प्रतिगमन गुणांक]] | जहाँ <math> \phi_1, \ldots, \phi_p </math> [[नॉनलाइनियर सिस्टम|अरैखिक]] फलन हो सकते हैं। उपरोक्त में, मात्राएँ <math>\varepsilon_i</math> संबंध में त्रुटियों का प्रतिनिधित्व करने वाले यादृच्छिक चर हैं। पदनाम का रैखिक भाग उपरोक्त संबंध में एक रैखिक तरीके से [[प्रतिगमन गुणांक]] <math>\beta_j</math> की उपस्थिति से संबंधित है। वैकल्पिक रूप से कोई यह कह सकता है कि अनुमानित मान उपरोक्त मॉडल के अनुरूप हैं | ||
:<math>\hat{Y}_i = \beta_0 + \beta_1 \phi_1(X_{i1}) + \cdots + \beta_p \phi_p(X_{ip}) \qquad (i = 1, \ldots, n), </math> | :<math>\hat{Y}_i = \beta_0 + \beta_1 \phi_1(X_{i1}) + \cdots + \beta_p \phi_p(X_{ip}) \qquad (i = 1, \ldots, n), </math> | ||
<math>\beta_j</math> के रैखिक कार्य हैं। | |||
यह देखते हुए कि अनुमान [[कम से कम वर्गों]] के विश्लेषण के आधार पर किया जाता है, अज्ञात मापदंडों का अनुमान <math>\beta_j</math> वर्गों के कार्य के योग को कम करके निर्धारित किया जाता है | '''यह देखते हुए कि अनुमान [[कम से कम वर्गों]] के विश्लेषण के आधार पर किया जाता है, अज्ञात मापदंडों का अनुमान <math>\beta_j</math> वर्गों के कार्य के योग को कम करके निर्धारित किया जाता है''' | ||
:<math>S = \sum_{i = 1}^n \left(Y_i - \beta_0 - \beta_1 \phi_1(X_{i1}) - \cdots - \beta_p \phi_p(X_{ip})\right)^2 .</math> | :<math>S = \sum_{i = 1}^n \left(Y_i - \beta_0 - \beta_1 \phi_1(X_{i1}) - \cdots - \beta_p \phi_p(X_{ip})\right)^2 .</math> | ||
इससे | इससे यह सरलता से देखा जा सकता है कि मॉडल के "रैखिक" स्वरुप का अर्थ निम्नलिखित है: | ||
:*न्यूनतम किया जाने वाला | :*न्यूनतम किया जाने वाला कार्य <math>\beta_j</math> का द्विघात फलन है जिसके लिए न्यूनीकरण एक अपेक्षाकृत सरल समस्या है; | ||
:* फलन के अवकलज | :* फलन के अवकलज <math>\beta_j</math> के रैखिक फलन हैं जो लघुतम मूल्यों को ढूंढना सरल बनाता है; | ||
:*कम से कम मान <math>\beta_j</math> प्रेक्षणों के रैखिक कार्य हैं <math>Y_i</math>; | :*कम से कम मान <math>\beta_j</math> प्रेक्षणों के रैखिक कार्य हैं <math>Y_i</math>; | ||
:*कम से कम मान <math>\beta_j</math> यादृच्छिक त्रुटियों के रैखिक कार्य हैं <math>\varepsilon_i</math> जो अनुमानित मूल्यों के सांख्यिकीय गुणों को निर्धारित करना अपेक्षाकृत आसान बनाता है <math>\beta_j</math>. | :*कम से कम मान <math>\beta_j</math> यादृच्छिक त्रुटियों के रैखिक कार्य हैं <math>\varepsilon_i</math> जो अनुमानित मूल्यों के सांख्यिकीय गुणों को निर्धारित करना अपेक्षाकृत आसान बनाता है <math>\beta_j</math>. |
Revision as of 21:34, 1 April 2023
सांख्यिकी में, रेखीय मॉडल शब्द का उपयोग संदर्भ के अनुसार भिन्न- भिन्न प्रकारों से किया जाता है। सबसे आम घटना प्रतिगमन मॉडल के संबंध में है और इस शब्द को अक्सर रैखिक प्रतिगमन मॉडल के पर्याय के रूप में लिया जाता है। हालाँकि इस शब्द का उपयोग समय श्रृंखला विश्लेषण में एक भिन्न अर्थ के साथ भी किया जाता है। प्रत्येक स्थिति में, पदनाम रैखिक का उपयोग मॉडल के एक उपवर्ग की पहचान करने के लिए किया जाता है जिसके लिए संबंधित सांख्यिकीय सिद्धांत की जटिलता में पर्याप्त कमी संभव है।
रेखीय प्रतिगमन मॉडल
प्रतिगमन की स्थिति के लिए सांख्यिकीय मॉडल इस प्रकार है। एक (यादृच्छिक) नमूना दिए जाने पर प्रेक्षणों और स्वतंत्र चर के बीच संबंध को सूत्रबद्ध किया जाता है
जहाँ अरैखिक फलन हो सकते हैं। उपरोक्त में, मात्राएँ संबंध में त्रुटियों का प्रतिनिधित्व करने वाले यादृच्छिक चर हैं। पदनाम का रैखिक भाग उपरोक्त संबंध में एक रैखिक तरीके से प्रतिगमन गुणांक की उपस्थिति से संबंधित है। वैकल्पिक रूप से कोई यह कह सकता है कि अनुमानित मान उपरोक्त मॉडल के अनुरूप हैं
के रैखिक कार्य हैं।
यह देखते हुए कि अनुमान कम से कम वर्गों के विश्लेषण के आधार पर किया जाता है, अज्ञात मापदंडों का अनुमान वर्गों के कार्य के योग को कम करके निर्धारित किया जाता है
इससे यह सरलता से देखा जा सकता है कि मॉडल के "रैखिक" स्वरुप का अर्थ निम्नलिखित है:
- न्यूनतम किया जाने वाला कार्य का द्विघात फलन है जिसके लिए न्यूनीकरण एक अपेक्षाकृत सरल समस्या है;
- फलन के अवकलज के रैखिक फलन हैं जो लघुतम मूल्यों को ढूंढना सरल बनाता है;
- कम से कम मान प्रेक्षणों के रैखिक कार्य हैं ;
- कम से कम मान यादृच्छिक त्रुटियों के रैखिक कार्य हैं जो अनुमानित मूल्यों के सांख्यिकीय गुणों को निर्धारित करना अपेक्षाकृत आसान बनाता है .
समय श्रृंखला मॉडल
एक रेखीय समय श्रृंखला मॉडल का एक उदाहरण एक ऑटोरेग्रेसिव मूविंग एवरेज मॉडल है। यहाँ मूल्यों के लिए मॉडल {} एक समय श्रृंखला के रूप में लिखा जा सकता है
जहाँ फिर से मात्राएँ नवाचार (सिग्नल प्रोसेसिंग) का प्रतिनिधित्व करने वाले यादृच्छिक चर हैं जो नए यादृच्छिक प्रभाव हैं जो एक निश्चित समय पर दिखाई देते हैं लेकिन मूल्यों को भी प्रभावित करते हैं बाद के समय में। इस उदाहरण में लीनियर मॉडल शब्द का उपयोग प्रतिनिधित्व करने में उपरोक्त संबंध की संरचना को संदर्भित करता है एक ही समय श्रृंखला के पिछले मूल्यों और नवाचारों के वर्तमान और पिछले मूल्यों के एक रैखिक कार्य के रूप में।[1] संरचना के इस विशेष पहलू का अर्थ है कि समय श्रृंखला के माध्य और सहप्रसरण गुणों के लिए संबंध प्राप्त करना अपेक्षाकृत सरल है। ध्यान दें कि यहाँ रैखिक मॉडल शब्द का रैखिक भाग गुणांकों का उल्लेख नहीं कर रहा है और , जैसा कि प्रतिगमन मॉडल के मामले में होगा, जो संरचनात्मक रूप से समान दिखता है।
सांख्यिकी में अन्य उपयोग
ऐसे कुछ अन्य उदाहरण हैं जहां "अरैखिक मॉडल" का उपयोग रैखिक रूप से संरचित मॉडल के विपरीत करने के लिए किया जाता है, हालांकि "रैखिक मॉडल" शब्द सामान्यत:अनुप्रयुक्त नहीं होता है। इसका एक उदाहरण अरैखिक विमीयता में ह्रासीकरण है।
यह भी देखें
- सामान्य रैखिक मॉडल
- सामान्यीकृत रैखिक मॉडल
- रैखिक प्राग्सूचक फलन
- रैखिक प्रणाली
- रेखीय प्रतिगमन
- सांख्यिकीय मॉडल
संदर्भ
- ↑ Priestley, M.B. (1988) Non-linear and Non-stationary time series analysis, Academic Press. ISBN 0-12-564911-8