सहप्रसरण
सांख्यिकी में सहप्रसरण दो यादृच्छिक चरों के लिये संयुक्त परिवर्तनशीलता का उपाय होता है।[1] इस प्रकार यदि एक चर के बड़े मान मुख्य रूप से दूसरे चर के बड़े मानों के अनुरूप होते हैं, और वही कम मानों के लिए उपयोग होते हैं (अर्थात,चर समान व्यवहार दिखाते हैं), सहप्रसरण सकारात्मक होता है।[2] इस विपरीत स्थिति में जब चरों के अधिक मूल्य मुख्य रूप से दूसरे के कम मानों के अनुरूप होते हैं अर्थात चर विपरीत दिखायी देते हैं, तब सहप्रसरण ऋणात्मक होते हैं। सहप्रसरण का चिन्ह इसलिए चरों के बीच रैखिक संबंध में प्रवृत्ति को दर्शाता हैं। सहप्रसरण का परिमाण उन प्रसरणों का ज्यामितीय माध्य होता है जो दो यादृच्छिक चरों के लिए सामान्य होता हैं। पियर्सन गुणनफल-आघूर्ण सहसंबंध गुणांक दो यादृच्छिक चरों के लिए कुल प्रसरणों के ज्यामितीय माध्य से विभाजित करके सहप्रसरण को सामान्य करता है।
समीकरम (1) दो यादृच्छिक चरों के सहप्रसरण के बीच अंतर किया जाना चाहिए, जो सांख्यिकीय जनसंख्या के लिए सांख्यिकीय पैरामीटर के द्वारा परिभाषित होता है जिसे संयुक्त संभाव्यता वितरण की संपत्ति के रूप में देखा जा सकता है, और समीकरण (2) में सांख्यिकी सहप्रसरण जो इसके अतिरिक्त प्रमाणों के लिए वर्णनकर्ता के रूप में सेवा करने के लिए जनसंख्या पैरामीटर के सांख्यिकीय अनुमान मान के रूप में भी कार्य करता है।
परिभाषा
दो संयुक्त वितरण के लिए वास्तविक संख्या मूल्यवान यादृच्छिक चरों के लिए और परिमित दूसरे क्षणों के साथ, सहप्रसरण को उनके व्यक्तिगत अपेक्षित मानों से उनके विचलन के उत्पाद के अपेक्षित मूल्य (या माध्य) के रूप में परिभाषित किया गया है:[3][4]: p. 119
किन्तु यह समीकरण विनाशकारी निरस्त स्थिति के लिए अतिसंवेदनशील है, (यहाँ पर नीचे सहप्रसरण संख्यात्मक संगणना पर अनुभाग देखें)।
सहप्रसरण की माप की इकाई के समय के हैं। इसके विपरीत सहसंबंध जो सहप्रसरण पर निर्भर करता है, रैखिक निर्भरता का आयाम रहित संख्या माप है। (वास्तव में सहसंबंध गुणांक सहप्रसरण के सामान्यीकृत संस्करण के रूप में समझा जा सकता है।)
जटिल यादृच्छिक चरों के लिए परिभाषा
दो जटिल यादृच्छिक चरों के बीच सहप्रसरण परिभाषित किया जाता है[4]: p. 119
परिभाषा में दूसरे कारक के जटिल संयुग्मन पर ध्यान दें।
इस प्रकार संबंधित यादृच्छिक सहप्रसरण को भी परिभाषित किया जा सकता है।
असतत यादृच्छिक चरों
यदि (वास्तविक) यादृच्छिक चरों के लिए संयुग्म के मान को प्राप्त कर सकते हैं। इस प्रकार के लिए , समान संभावनाओं के साथ के रूप में निरूपित होता हैं, तो साधन के संदर्भ में सहप्रसरण को समान रूप से और द्वारा लिखा जा सकता है।
यह सीधे तौर पर साधनों के लिए साक्ष्य के बिना समान रूप से व्यक्त किया जा सकता है।[5]
सामान्यतः यदि यहाँ की संभावित प्राप्ति , अर्थात् द्वारा की जाती हैं किन्तु संभवतः असमान संभावनाओं के साथ के लिए , तो सहप्रसरण इस प्रकार होता है।
उदाहरण
3 स्वतंत्र यादृच्छिक चरों और दो स्थिरांक पर विचार करने पर यह समीकरण प्राप्त होता हैं।
विशेष स्थितियों में, और , के बीच सहप्रसरण और , केवल का विचरण है और सहप्रसरण पूरी तरह उपयुक्त होता है।
इस प्रकार यह माना जा सकता है कि और निम्नलिखित संयुक्त संभाव्यता वितरण है,[6] जिसमें छह केंद्रीय कोशिकाएं असतत संयुक्त संभावनाएं देती हैं। इस प्रकार छह काल्पनिक स्थितियों में :
x | ||||||
---|---|---|---|---|---|---|
5 | 6 | 7 | ||||
y | 8 | 0 | 0.4 | 0.1 | 0.5 | |
9 | 0.3 | 0 | 0.2 | 0.5 | ||
0.3 | 0.4 | 0.3 | 1 |
यहाँ पर मुख्य रूप से तीन मानों के लिए (5, 6 और 7) ले सकते हैं तथा के लिए दो मान (8 और 9) ले सकते हैं। इसके साधन और . हैं, इस प्रकार,
गुण
स्वयं के साथ सहप्रसरण
विचरण सहप्रसरण की विशेष स्थिति है जिसमें दो चरों समान होते हैं (अर्थात, जिसमें चरों हमेशा दूसरे के समान मान लेता है):[4]: 121
रैखिक संयोजनों का सहप्रसरण
यदि , , , और वास्तविक-मूल्यवान यादृच्छिक चरों हैं, और वास्तविक-मूल्यवान स्थिरांक हैं, तो निम्नलिखित तथ्य सहप्रसरण की परिभाषा के परिणाम हैं:
इस क्रम के लिए वास्तविक-मूल्यवान और स्थिरांक में यादृच्छिक चरों , इस प्रकार हमारे पास उक्त समीकरण प्राप्त होता हैं।
हॉफडिंग की सहप्रसरण पहचान
दो यादृच्छिक चरों के बीच सहप्रसरण की गणना करने के लिए उपयोगी पहचान होफ़डिंग की सहप्रसरण पहचान है:[7]
कहाँ यादृच्छिक सदिश का संयुक्त संचयी बंटन फलन और है जिसे सीमांत वितरण कहा जाता हैं।
असंबद्धता और स्वतंत्रता
यादृच्छिक चरों जिनका सहप्रसरण शून्य होता है, असंबद्ध कहलाते हैं।[4]: p. 121 इसी प्रकार यादृच्छिक सदिशों के घटक जिनका सहप्रसरण आव्यूह मुख्य विकर्ण के बाहर प्रत्येक प्रविष्टि में शून्य रहता है, यह असंबद्ध भी कहलाते हैं।
यदि और सांख्यिकीय स्वतंत्रता हैं, तो उनका सहप्रसरण मान शून्य रहता है।[4]: p. 123 [8] यह इस प्रकार है क्योंकि स्वतंत्रता के अनुसार,
चूँकि, सामान्यतः इसका विलोम सत्य नहीं है। उदाहरण के लिए में समान रूप से वितरित होने पर और जाने रहता हैं इस प्रकार स्पष्ट रूप से, और स्वतंत्र नहीं रहते हैं, किन्तु
इन स्थितियों में संबंधित और क्षैतिज रहते हैं, जबकि सहसंबंध और सहप्रसरण दो यादृच्छिक चरों के बीच रैखिक निर्भरता के लिए उपयोग किया जाता हैं। इस उदाहरण से पता चलता है कि यदि दो यादृच्छिक चरों असंबंधित रहते हैं, तो इसका अर्थ यह नहीं है कि वे स्वतंत्र हैं। चूँकि यदि दो चरों बहुभिन्नरूपी सामान्य वितरण हैं (किन्तु यदि वे केवल सामान्य रूप से वितरित नहीं हैं और असंबद्ध स्वतंत्र नहीं हैं), तो असंबद्धता का अर्थ स्वतंत्रता से रहता हैं।
आंतरिक उत्पादों से संबंध
सहप्रसरण के कई गुणों को यह देखकर सुरुचिपूर्ण विधि से निकाला जा सकता है कि यह आंतरिक उत्पाद के समान गुणों को संतुष्ट करता है:
- बिलिनियर ऑपरेटर: स्थिरांक के लिए और और यादृच्छिक चरों
- सममित:
- निश्चित द्विरेखीय रूप|सकारात्मक अर्ध-निश्चित: सभी यादृच्छिक चरों के लिए , और इसका आशय है स्थिर लगभग निश्चित है।
वास्तव में इन गुणों का अर्थ है कि सहप्रसरण भागफल स्थान (रैखिक बीजगणित) पर आंतरिक उत्पाद को परिमित दूसरे क्षण के साथ यादृच्छिक चरों के उप-स्थान को ले कर प्राप्त करता है और किसी भी दो की पहचान करता है जो स्थिरांक से भिन्न होता है। (यह पहचान सकारात्मक अर्ध-निश्चितता को सकारात्मक निश्चितता में परिवर्तन करती हैं।) इस भागफल में सदिश स्थान के लिए परिमित स्थिति पर दूसरे क्षण और शून्य के साथ यादृच्छिक चरों के उप-स्थान के लिए आइसोमोर्फिक विधि का उपयोग किया जाता है, उस उप-स्थान पर, सहप्रसरण ठीक Lp स्थान है। यहाँ पर L2 के स्थान पर वास्तविक-मूल्यवान कार्यों का आंतरिक उत्पाद प्राप्त होता हैं।
परिणाम स्वरुप, परिमित भिन्नता वाले यादृच्छिक चरों के लिए, असमानता इस प्रकार हैं।
कॉची श्वार्ज़ असमानता के माध्यम से है।
प्रमाण: यदि , तो यह तुच्छ रूप से धारण करता है। अन्यथा, यादृच्छिक चरों दें
तो हमें उक्त समीकरण प्राप्त होता हैं।
प्रमाणिक सहप्रसरण की गणना
बीच में प्रमाणिक सहप्रसरण पर आधारित चरों अन्यथा अप्राप्य आबादी से खींची गई प्रत्येक की टिप्पणियों द्वारा दी जाती हैं। इस प्रकार आव्यूह (गणित) प्रविष्टियों के साथ
जो चरों के बीच सहप्रसरण का अनुमान और चरों है।
प्रमाणिक माध्य और प्रमाणिक सहप्रसरण आव्यूह माध्य के अनुमानक और यादृच्छिक सदिश के सहप्रसरण आव्यूह के पूर्वाग्रह हैं, सदिश जिसका jवाँ तत्व यादृच्छिक चरों में से है। प्रमाणिक सहप्रसरण आव्यूह का कारण है। इस प्रकार के अतिरिक्त भाजक में अनिवार्य रूप से जनसंख्या का अर्थ है का मान ज्ञात नहीं है और इसे प्रमाणिक माध्य से परिवर्तित कर दिया गया है। इस प्रकार जनसंख्या का आशय यह है कि ज्ञात है, तथा इसके अनुरूप निष्पक्ष अनुमान उक्त समीकरण द्वारा दिया गया है-
- .
सामान्यीकरण
वास्तविक यादृच्छिक वैक्टर के ऑटो-सहप्रसरण आव्यूह
वेक्टर के लिए का परिमित दूसरे क्षणों के साथ संयुक्त रूप से वितरित रैंडम चरों, इसका ऑटो-कोवैरियंस आव्यूह (जिसे वैरियंस-कॉवैरियंस आव्यूह या बस कोवैरियंस आव्यूह के रूप में भी जाना जाता है), इस प्रकार (द्वारा भी दर्शाया गया है या ) परिभाषित किया जाता है[9]: p.335
यहाँ पर सहप्रसरण आव्यूह के साथ यादृच्छिक वेक्टर Σ बनाता हैं, और A आव्यूह जो के बाईं ओर कार्य करते हैं। इन आव्यूह वेक्टर उत्पाद का सहप्रसरण आव्यूह A X होता है:
यह अपेक्षित मूल्य की रैखिकता का प्रत्यक्ष परिणाम है और इसलिए ये उपयोगी होते हैं।
किसी रैखिक परिवर्तन लागू करते समय जैसे सफ़ेद परिवर्तन, सदिश के लिए इसका ध्यान रखा जाता हैं।
वास्तविक यादृच्छिक सदिशों का क्रॉस-सहप्रसरण आव्यूह
वास्तविक यादृच्छिक वैक्टर के लिए और , क्रॉस-कोवैरियंस आव्यूह के बराबर होता है[9]: p.336
|
(Eq.2) |
जहाँ वेक्टर . (या आव्यूह) का स्थानान्तरण है, इस आव्यूह का वां>-वां तत्व सहप्रसरण के बराबर होता है। बीच i- का अदिश घटक और यह j- का अदिश घटक . विशेष रूप से, का स्थानान्तरण होता है।
वास्तविक या जटिल हिल्बर्ट तल में यादृच्छिक वैक्टर का क्रॉस-सहप्रसरण रैखिक रूप
अधिक सामान्य स्थिति में और , हिल्बर्ट तल निरस्त हो जाता हैं इस प्रकार या साथ पहले चरों में विरोधी रेखीय रूप में प्रदर्शित होता हैं, इस प्रकार तथा का मान यादृच्छिक चरों पर निर्भर करता हैं। इस स्थिति में सहप्रसरण और पर रैखिक रूप है। जिसका पहले चरों में विरोधी रेखीय इस प्रकार दी जाती हैं।
संख्यात्मक गणना
इस प्रकार जब के समान होता हैं तब समीकरण विनाशकारी निरस्तीकरण की संभावना रहती है। इस प्रकार यदि और त्रुटिहीन रूप से गणना नहीं की जाती है और इस प्रकार कंप्यूटर प्रोग्राम से बचा जाना चाहिए जब डेटा पहले केंद्रित नहीं किया जाता हैं।[10] इस स्थितियों में प्रसरण सहप्रसरण की गणना के लिए एल्गोरिदम को प्राथमिकता दी जाती हैं।[11]
टिप्पणियाँ
सहप्रसरण को कभी-कभी दो यादृच्छिक चरों के बीच रैखिक निर्भरता का माप कहा जाता है। इसका कोई अर्थ नहीं है जो रैखिक बीजगणित के संदर्भ में है। जब सहप्रसरण सामान्यीकृत होता है, तो पियर्सन सहसंबंध गुणांक प्राप्त होता है, जो चरों के बीच संबंध का वर्णन करने वाले सर्वोत्तम संभव रैखिक फ़ंक्शन के लिए उपयुक्तता प्रदान करता है। इस अर्थ में सहप्रसरण निर्भरता का रेखीय गेज रहता हैं।
अनुप्रयोग
आनुवंशिकी और आणविक जीव विज्ञान में
सहप्रसरण जीव विज्ञान में महत्वपूर्ण उपाय है। डीएनए के कुछ अनुक्रम प्रजातियों के बीच दूसरों की तुलना में अधिक संरक्षित रहते हैं, और इस प्रकार प्रोटीन या आरएनए संरचनाओं की द्वितीयक और तृतीयक संरचनाओं का अध्ययन करने के लिए, अनुक्रमों की बारीकी से संबंधित प्रजातियों में तुलना की जाती है। यदि अनुक्रम परिवर्तन पाए जाते हैं या गैर-कोडिंग आरएनए (जैसे कि माइक्रो आरएनए) में कोई परिवर्तन नहीं किया जाता है, तो आरएनए लूप जैसे सामान्य संरचनात्मक रूपांकनों के लिए अनुक्रम आवश्यक पाए जाते हैं। आनुवांशिकी में, सहप्रसरण आनुवंशिक संबंध आव्यूह (जीआरएम) (सह आव्यूह) की गणना के लिए आधार प्रदान करता है, जो किसी ज्ञात समीपस्थ के साथ जटिल लक्षणों की आनुवंशिकता के अनुमान पर अनुमान से जनसंख्या संरचना पर अनुमान लगाने में सक्षम बनाता है।
विकास और प्राकृतिक चयन के सिद्धांत में, मूल्य समीकरण वर्णन करता है कि समय के साथ आनुवंशिक विशेषता आवृत्ति में कैसे परिवर्तित होती है। इस विकास और प्राकृतिक चयन का गणितीय विवरण देने के लिए समीकरण विशेषता और फिटनेस (जीव विज्ञान) के बीच सहप्रसरण का उपयोग करता है। यह उन प्रभावों को समझने का विधि प्रदान करता है जो जीन संचरण और प्राकृतिक चयन का जनसंख्या की प्रत्येक नई पीढ़ी के भीतर जीन के अनुपात पर होता है।[12][13] इसके चयन पर डब्ल्यू.डी. हैमिल्टन के कार्य को फिर से व्युत्पन्न करने के लिए मूल्य समीकरण जॉर्ज आर. प्राइस द्वारा व्युत्पन्न किया गया था। विभिन्न विकासवादी स्थितियों के लिए मूल्य समीकरण उदाहरण का निर्माण किया गया है।
वित्तीय अर्थशास्त्र में
सहप्रसरण वित्तीय अर्थशास्त्र में महत्वपूर्ण भूमिका निभाते हैं, विशेष रूप से आधुनिक पोर्टफोलियो सिद्धांत और पूंजी परिसंपत्ति मूल्य निर्धारण मॉडल में इसका उपयोग किया जाता हैं। इन विभिन्न संपत्तियों के रिटर्न के बीच सहप्रसरण का उपयोग, कुछ मान्यताओं के अनुसार विभिन्न संपत्तियों की सापेक्ष मात्रा निर्धारित करने के लिए किया जाता है, जो निवेशकों को सामान्य अर्थशास्त्र में या सकारात्मक अर्थशास्त्र में विविधीकरण (वित्त) के संदर्भ में धारण करना चुनते हैं।
मौसम संबंधी और समुद्र संबंधी डेटा आत्मसात में
मौसम पूर्वानुमान मॉडल चलाने के लिए आवश्यक प्रारंभिक स्थितियों का अनुमान लगाने में सहप्रसरण आव्यूह महत्वपूर्ण है, उक्त प्रक्रिया जिसे डेटा सम्मिलन के रूप में जाना जाता है। 'पूर्वानुमान त्रुटि सहप्रसरण आव्यूह' का निर्माण सामान्यतः माध्य स्थिति (या तो जलवायु विज्ञान या पहनावा माध्य) के लिए इसकी त्रुटि के बीच किया जाता है। 'अवलोकन त्रुटि सहप्रसरण आव्यूह' का निर्माण संयुक्त अवलोकन संबंधी त्रुटियों (विकर्ण पर) और माप (विकर्ण से दूर) के बीच सहसंबद्ध त्रुटियों के परिमाण का प्रतिनिधित्व करने के लिए किया जाता हैं। यह कलमन फ़िल्टरिंग और समय-भिन्न प्रणालियों के लिए अधिक सामान्य स्थिति के अनुमान के लिए व्यापक अनुप्रयोग का उदाहरण है।
सूक्ष्म मौसम विज्ञान में
भँवर सहप्रसरण तकनीक प्रमुख वायुमंडलीय माप तकनीक है जहाँ औसत मूल्य से ऊर्ध्वाधर हवा की गति में तात्कालिक विचलन और गैस सांद्रता में तात्कालिक विचलन के बीच सहप्रसरण ऊर्ध्वाधर अशांत प्रवाह की गणना का आधार माना जाता हैं।
संकेत प्रक्रिया में
संकेतन के वर्णक्रमीय परिवर्तनशीलता को प्राप्त करने के लिए सहप्रसरण आव्यूह का उपयोग किया जाता है।[14]
सांख्यिकी और प्रतिबिंब प्रसंस्करण मे
सहप्रसरण आव्यूह का उपयोग मुख्य घटक विश्लेषण में डेटा प्रीप्रोसेसिंग में गुणों को दिशा के आधार पर कम करने के लिए किया जाता है।
यह भी देखें
- प्रसरण सहप्रसरण की गणना के लिए एल्गोरिदम
- सहप्रसरण का विश्लेषण
- स्वतःप्रसरण
- सहप्रसरण फंक्शन
- सहप्रसरण आव्यूह
- सहप्रसरण संचालक
- दूरी सहप्रसरण, या ब्राउनियन सहप्रसरण।
- कुल सहप्रसरण का नियम
- अनिश्चितता का प्रसार
संदर्भ
- ↑ Rice, John (2007). गणितीय सांख्यिकी और डेटा विश्लेषण. Belmont, CA: Brooks/Cole Cengage Learning. p. 138. ISBN 978-0534-39942-9.
- ↑ Weisstein, Eric W. "Covariance". MathWorld.
- ↑ Oxford Dictionary of Statistics, Oxford University Press, 2002, p. 104.
- ↑ 4.0 4.1 4.2 4.3 4.4 Park,Kun Il (2018). संचार के लिए अनुप्रयोगों के साथ संभाव्यता और स्टोकास्टिक प्रक्रियाओं की बुनियादी बातों. Springer. ISBN 978-3-319-68074-3.
- ↑ Yuli Zhang, Huaiyu Wu, Lei Cheng (June 2012). प्रसरण और सहप्रसरण के बारे में कुछ नए विरूपण सूत्र. Proceedings of 4th International Conference on Modelling, Identification and Control(ICMIC2012). pp. 987–992.
{{cite conference}}
: CS1 maint: uses authors parameter (link) - ↑ "Covariance of X and Y | STAT 414/415". The Pennsylvania State University. Archived from the original on August 17, 2017. Retrieved August 4, 2019.
- ↑ Papoulis (1991). संभाव्यता, यादृच्छिक चर और स्टोकेस्टिक प्रक्रियाएं. McGraw-Hill.
- ↑ Siegrist, Kyle. "सहप्रसरण और सहसंबंध". University of Alabama in Huntsville. Retrieved Oct 3, 2022.
- ↑ 9.0 9.1 Gubner, John A. (2006). इलेक्ट्रिकल और कंप्यूटर इंजीनियरों के लिए संभाव्यता और यादृच्छिक प्रक्रियाएं. Cambridge University Press. ISBN 978-0-521-86470-1.
- ↑ Donald E. Knuth (1998). The Art of Computer Programming, volume 2: Seminumerical Algorithms, 3rd edn., p. 232. Boston: Addison-Wesley.
- ↑ Schubert, Erich; Gertz, Michael (2018). "(सह-) विचरण की संख्यात्मक रूप से स्थिर समानांतर संगणना". Proceedings of the 30th International Conference on Scientific and Statistical Database Management – SSDBM '18 (in English). Bozen-Bolzano, Italy: ACM Press: 1–12. doi:10.1145/3221269.3223036. ISBN 9781450365055. S2CID 49665540.
- ↑ Price, George (1970). "चयन और सहप्रसरण". Nature. 227 (5257): 520–521. Bibcode:1970Natur.227..520P. doi:10.1038/227520a0. PMID 5428476. S2CID 4264723.
- ↑ Harman, Oren (2020). "When science mirrors life: on the origins of the Price equation". Phil. Trans. R. Soc. B. 375 (1797): 1–7. doi:10.1098/rstb.2019.0352. PMC 7133509. PMID 32146891. Retrieved 2020-05-15.
- ↑ Sahidullah, Md.; Kinnunen, Tomi (March 2016). "स्पीकर सत्यापन के लिए स्थानीय स्पेक्ट्रल परिवर्तनशीलता सुविधाएँ". Digital Signal Processing. 50: 1–11. doi:10.1016/j.dsp.2015.10.011.