गुरुत्वाकर्षण क्षमता: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Fundamental study of potential theory}} {{redirect|Gravity potential|Earth's gravity potential|Geopotential|the field of gravity potentials|Gravitational f...")
 
No edit summary
Line 1: Line 1:
{{Short description|Fundamental study of potential theory}}
{{Short description|Fundamental study of potential theory}}
{{redirect|Gravity potential|Earth's gravity potential|Geopotential|the field of gravity potentials|Gravitational field}}
{{redirect|गुरुत्वाकर्षण क्षमता|पृथ्वी की गुरुत्वाकर्षण क्षमता|भू-क्षमता|गुरुत्वाकर्षण क्षमता का क्षेत्र|गुरुत्वाकर्षण क्षेत्र}}


[[File:GravityPotential.jpg|thumb|300px|एक समान गोलाकार पिंड में और उसके आसपास गुरुत्वाकर्षण क्षमता के द्वि-आयामी स्लाइस का प्लॉट। अनुप्रस्थ काट के विभक्ति बिंदु शरीर की सतह पर होते हैं।]][[शास्त्रीय यांत्रिकी]] में, अंतरिक्ष में एक बिंदु पर गुरुत्वाकर्षण क्षमता [[कार्य (भौतिकी)]] ([[ऊर्जा]] हस्तांतरित) प्रति इकाई [[द्रव्यमान]] के बराबर होती है, जो किसी वस्तु को एक निश्चित संदर्भ बिंदु से उस बिंदु पर ले जाने के लिए आवश्यक होगी। यह आवेश (भौतिकी) की भूमिका निभाने वाले द्रव्यमान के साथ विद्युत क्षमता के [[अनुरूप]] है। संदर्भ बिंदु, जहां क्षमता शून्य है, सम्मेलन द्वारा किसी भी द्रव्यमान से [[असीम]] रूप से दूर है, जिसके परिणामस्वरूप किसी भी विकट: परिमित दूरी पर नकारात्मक क्षमता होती है।
[[File:GravityPotential.jpg|thumb|300px|एक समान गोलाकार पिंड में और उसके आसपास गुरुत्वाकर्षण क्षमता के द्वि-आयामी स्लाइस का प्लॉट। अनुप्रस्थ काट के विभक्ति बिंदु शरीर की सतह पर होते हैं।]][[शास्त्रीय यांत्रिकी]] में, अंतरिक्ष में एक बिंदु पर गुरुत्वाकर्षण क्षमता [[कार्य (भौतिकी)]] ([[ऊर्जा]] हस्तांतरित) प्रति इकाई [[द्रव्यमान]] के बराबर होती है, जो किसी वस्तु को एक निश्चित संदर्भ बिंदु से उस बिंदु पर ले जाने के लिए आवश्यक होगी। यह आवेश (भौतिकी) की भूमिका निभाने वाले द्रव्यमान के साथ विद्युत क्षमता के [[अनुरूप]] है। संदर्भ बिंदु, जहां क्षमता शून्य है, सम्मेलन द्वारा किसी भी द्रव्यमान से [[असीम]] रूप से दूर है, जिसके परिणामस्वरूप किसी भी विकट: परिमित दूरी पर नकारात्मक क्षमता होती है।
Line 8: Line 8:


== संभावित ऊर्जा ==
== संभावित ऊर्जा ==
{{main|Gravitational potential energy}}
{{main|गुरुत्वाकर्षण स्थितिज ऊर्जा}}
किसी स्थान पर गुरुत्वीय विभव (V) प्रति इकाई द्रव्यमान में उस स्थान पर गुरुत्वीय स्थितिज ऊर्जा (U) है:
किसी स्थान पर गुरुत्वीय विभव (V) प्रति इकाई द्रव्यमान में उस स्थान पर गुरुत्वीय स्थितिज ऊर्जा (U) है:


Line 49: Line 49:


== सामान्य सापेक्षता ==
== सामान्य सापेक्षता ==
{{see also|Gravitational acceleration#General relativity|Gravitational field#General relativity}}
{{see also|गुरुत्वीय त्वरण#सामान्य सापेक्षता|गुरुत्वाकर्षण क्षेत्र#सामान्य सापेक्षता}}


[[सामान्य सापेक्षता]] में, गुरुत्वाकर्षण क्षमता को [[मीट्रिक टेंसर (सामान्य सापेक्षता)]] द्वारा प्रतिस्थापित किया जाता है। जब गुरुत्वाकर्षण क्षेत्र कमजोर होता है और प्रकाश-गति की तुलना में स्रोत बहुत धीमी गति से आगे बढ़ रहे होते हैं, तो सामान्य सापेक्षता न्यूटोनियन गुरुत्वाकर्षण में कम हो जाती है, और गुरुत्वाकर्षण क्षमता के संदर्भ में मीट्रिक टेंसर का विस्तार किया जा सकता है।<ref name="Newtonian or gravitoelectric potential">{{citation|last1=Grøn|first1=Øyvind|last2=Hervik|first2=Sigbjorn|title=Einstein's General Theory of Relativity: With Modern Applications in Cosmology|url=https://books.google.com/books?id=IyJhCHAryuUC&pg=PA201|year=2007 |publisher=Springer Science & Business Media|isbn=978-0-387-69200-5|page=201}}</ref>
[[सामान्य सापेक्षता]] में, गुरुत्वाकर्षण क्षमता को [[मीट्रिक टेंसर (सामान्य सापेक्षता)]] द्वारा प्रतिस्थापित किया जाता है। जब गुरुत्वाकर्षण क्षेत्र कमजोर होता है और प्रकाश-गति की तुलना में स्रोत बहुत धीमी गति से आगे बढ़ रहे होते हैं, तो सामान्य सापेक्षता न्यूटोनियन गुरुत्वाकर्षण में कम हो जाती है, और गुरुत्वाकर्षण क्षमता के संदर्भ में मीट्रिक टेंसर का विस्तार किया जा सकता है।<ref name="Newtonian or gravitoelectric potential">{{citation|last1=Grøn|first1=Øyvind|last2=Hervik|first2=Sigbjorn|title=Einstein's General Theory of Relativity: With Modern Applications in Cosmology|url=https://books.google.com/books?id=IyJhCHAryuUC&pg=PA201|year=2007 |publisher=Springer Science & Business Media|isbn=978-0-387-69200-5|page=201}}</ref>
Line 55: Line 55:


== मल्टीपोल विस्तार ==
== मल्टीपोल विस्तार ==
{{main|Spherical multipole moments|Multipole expansion}}
{{main|गोलाकार बहुध्रुव क्षण|मल्टीपोल विस्तार}}
एक बिंदु पर क्षमता {{math|'''x'''}} द्वारा दिया गया है
एक बिंदु पर क्षमता {{math|'''x'''}} द्वारा दिया गया है
<math display="block">V(\mathbf{x}) = - \int_{\R^3} \frac{G}{|\mathbf{x}-\mathbf{r}|}\ dm(\mathbf{r}).</math>
<math display="block">V(\mathbf{x}) = - \int_{\R^3} \frac{G}{|\mathbf{x}-\mathbf{r}|}\ dm(\mathbf{r}).</math>
Line 77: Line 77:
इससे पता चलता है कि अगर हम द्रव्यमान के केंद्र से समान दूरी वाले मामलों की तुलना करते हैं, तो एक गोलाकार द्रव्यमान के कारण क्षमता की तुलना में शरीर के बढ़ाव से बढ़ाव की दिशा में कम क्षमता और लंबवत दिशाओं में उच्च क्षमता का कारण बनता है। (यदि हम सतह से समान दूरी वाले मामलों की तुलना करते हैं, तो विपरीत सत्य है।)
इससे पता चलता है कि अगर हम द्रव्यमान के केंद्र से समान दूरी वाले मामलों की तुलना करते हैं, तो एक गोलाकार द्रव्यमान के कारण क्षमता की तुलना में शरीर के बढ़ाव से बढ़ाव की दिशा में कम क्षमता और लंबवत दिशाओं में उच्च क्षमता का कारण बनता है। (यदि हम सतह से समान दूरी वाले मामलों की तुलना करते हैं, तो विपरीत सत्य है।)


== संख्यात्मक मान ==
== संख्यात्मक मूल्य ==
से गुरुत्वाकर्षण के संबंध में कई स्थानों पर गुरुत्वाकर्षण क्षमता का पूर्ण मूल्य {{Clarify|date=May 2012}} पृथ्वी, सूर्य और [[आकाशगंगा]] निम्न तालिका में दी गई है; यानी पृथ्वी की सतह पर एक वस्तु को पृथ्वी के गुरुत्वाकर्षण क्षेत्र को छोड़ने के लिए 60 MJ/kg की आवश्यकता होगी, अन्य 900 MJ/kg को सूर्य के गुरुत्वाकर्षण क्षेत्र को छोड़ने के लिए और मिल्की वे के गुरुत्वाकर्षण क्षेत्र को छोड़ने के लिए 130 GJ/kg से अधिक की आवश्यकता होगी। संभावित पलायन वेग का आधा वर्ग है।
पृथ्वी, सूर्य और [[आकाशगंगा]] वे से गुरुत्वाकर्षण के संबंध में कई स्थानों पर गुरुत्वाकर्षण क्षमता का पूर्ण मूल्य निम्नलिखित तालिका में दिया गया है; यानी पृथ्वी की सतह पर एक वस्तु को पृथ्वी के गुरुत्वाकर्षण क्षेत्र को "छोड़ने" के लिए 60 MJ/kg की आवश्यकता होगी, अन्य 900 MJ/kg को सूर्य के गुरुत्वाकर्षण क्षेत्र को छोड़ने के लिए और मिल्की वे के गुरुत्वाकर्षण क्षेत्र को छोड़ने के लिए 130 GJ/kg से अधिक की आवश्यकता होगी। संभावित पलायन वेग का आधा वर्ग है।
<!--
theoretically, the square of the escape velocity is the potential relatively to infinity (i.e. where the inverse distance vanishes), but what means "with respect" to the central body is unclear.
--Incnis Mrsi
Isn't the rows the location of the observer and the column the centre of the potential well? (I rephrased the sentence somewhat; though I am not sure if it is any clearer now)
--Gunnar Larsson
-->
 
{| class="wikitable"
{| class="wikitable"
|-
|-
! rowspan="2" | Location
! rowspan="2" | जगह
! colspan="3" | with respect to
! colspan="3" | इसके संबंध में
|-
|-
! [[Earth]] !! [[Sun]] !! [[Milky Way]]
! [[Earth|धरती]] !! [[Sun|सूर्य]] !! [[Milky Way|आकाशगंगा]]
|-
|-
| Earth's surface || 60 MJ/kg || 900 MJ/kg || ≥ 130 GJ/kg
| पृथ्वी की सतह || 60 MJ/kg || 900 MJ/kg || ≥ 130 GJ/kg
|-
|-
| [[Low Earth orbit|LEO]] || 57 MJ/kg || 900 MJ/kg || ≥ 130 GJ/kg
| [[Low Earth orbit|लियो]] || 57 MJ/kg || 900 MJ/kg || ≥ 130 GJ/kg
|-
|-
| [[Voyager 1]] (17,000 million km from Earth) || 23 J/kg || 8 MJ/kg || ≥ 130 GJ/kg
| [[Voyager 1|वायेजर 1]] (पृथ्वी से 17,000 मिलियन किमी) || 23 J/kg || 8 MJ/kg || ≥ 130 GJ/kg
|-
|-
| 0.1 [[light-year]] from Earth || 0.4 J/kg || 140 kJ/kg || ≥ 130 GJ/kg
| पृथ्वी से 0.1 [[light-year|प्रकाश वर्ष]]|| 0.4 J/kg || 140 kJ/kg || ≥ 130 GJ/kg
|}
|}
माइक्रो-जी पर्यावरण # गुरुत्वाकर्षण की अनुपस्थिति की तुलना करें।<!-- BTW another original research, even worse one -->
इन स्थानों पर गुरुत्वाकर्षण की तुलना होती है।
 
 
== यह भी देखें ==
== यह भी देखें ==
* लीजेंड्रे बहुपद # लीजेंड्रे बहुपद के अनुप्रयोग
* लीजेंड्रे बहुपद # लीजेंड्रे बहुपद के अनुप्रयोग

Revision as of 13:46, 17 March 2023

एक समान गोलाकार पिंड में और उसके आसपास गुरुत्वाकर्षण क्षमता के द्वि-आयामी स्लाइस का प्लॉट। अनुप्रस्थ काट के विभक्ति बिंदु शरीर की सतह पर होते हैं।

शास्त्रीय यांत्रिकी में, अंतरिक्ष में एक बिंदु पर गुरुत्वाकर्षण क्षमता कार्य (भौतिकी) (ऊर्जा हस्तांतरित) प्रति इकाई द्रव्यमान के बराबर होती है, जो किसी वस्तु को एक निश्चित संदर्भ बिंदु से उस बिंदु पर ले जाने के लिए आवश्यक होगी। यह आवेश (भौतिकी) की भूमिका निभाने वाले द्रव्यमान के साथ विद्युत क्षमता के अनुरूप है। संदर्भ बिंदु, जहां क्षमता शून्य है, सम्मेलन द्वारा किसी भी द्रव्यमान से असीम रूप से दूर है, जिसके परिणामस्वरूप किसी भी विकट: परिमित दूरी पर नकारात्मक क्षमता होती है।

गणित में, गुरुत्वाकर्षण क्षमता को न्यूटोनियन क्षमता के रूप में भी जाना जाता है और संभावित सिद्धांत के अध्ययन में मौलिक है। इसका उपयोग समान रूप से आवेशित या ध्रुवीकृत दीर्घवृत्त निकायों द्वारा उत्पन्न इलेक्ट्रोस्टैटिक और मैग्नेटोस्टैटिक क्षेत्रों को हल करने के लिए भी किया जा सकता है।[1]


संभावित ऊर्जा

किसी स्थान पर गुरुत्वीय विभव (V) प्रति इकाई द्रव्यमान में उस स्थान पर गुरुत्वीय स्थितिज ऊर्जा (U) है:

जहाँ m वस्तु का द्रव्यमान है। स्थितिज ऊर्जा गुरुत्वाकर्षण क्षेत्र द्वारा किए गए कार्य के बराबर (परिमाण में, लेकिन ऋणात्मक) होती है जो किसी पिंड को अनंत से अंतरिक्ष में उसकी दी गई स्थिति तक ले जाती है। यदि पिंड का द्रव्यमान 1 किलोग्राम है, तो उस पिंड को सौंपी जाने वाली संभावित ऊर्जा गुरुत्वाकर्षण क्षमता के बराबर होती है। तो क्षमता की व्याख्या अनंत से एक इकाई द्रव्यमान को स्थानांतरित करने वाले गुरुत्वाकर्षण क्षेत्र द्वारा किए गए कार्य के ऋणात्मक के रूप में की जा सकती है।

कुछ स्थितियों में, एक ऐसा क्षेत्र मानकर समीकरणों को सरल बनाया जा सकता है जो स्थिति से लगभग स्वतंत्र है। उदाहरण के लिए, पृथ्वी की सतह के करीब के क्षेत्र में, गुरुत्वाकर्षण त्वरण, g, को स्थिर माना जा सकता है। उस मामले में, संभावित ऊर्जा में एक ऊंचाई से दूसरे तक का अंतर, एक अच्छा सन्निकटन है, रैखिक रूप से ऊंचाई में अंतर से संबंधित है:


गणितीय रूप

द्रव्यमान M के एक बिंदु कण से x दूरी पर गुरुत्वीय अदिश विभव V को उस कार्य W के रूप में परिभाषित किया जा सकता है जिसे एक इकाई द्रव्यमान को अनंत से उस बिंदु तक लाने के लिए बाहरी एजेंट द्वारा करने की आवश्यकता होती है:[2][3][4][5]

जहाँ G गुरुत्वाकर्षण स्थिरांक है, और 'F' गुरुत्वाकर्षण बल है। उत्पाद जीएम मानक गुरुत्वाकर्षण पैरामीटर है और अक्सर जी या एम की तुलना में अलग से उच्च परिशुद्धता के लिए जाना जाता है। क्षमता में प्रति द्रव्यमान ऊर्जा की इकाइयाँ होती हैं, उदाहरण के लिए, MKS सिस्टम ऑफ़ यूनिट्स सिस्टम में J/kg। परिपाटी के अनुसार, जहाँ इसे परिभाषित किया गया है, यह हमेशा ऋणात्मक होता है, और जैसे ही x अनंत की ओर जाता है, यह शून्य की ओर बढ़ता है।

गुरुत्वाकर्षण क्षेत्र, और इस प्रकार विशाल वस्तु के चारों ओर अंतरिक्ष में एक छोटे से पिंड का त्वरण, गुरुत्वाकर्षण क्षमता का नकारात्मक ढाल है। इस प्रकार एक नकारात्मक ढाल का नकारात्मक एक विशाल वस्तु की ओर सकारात्मक त्वरण उत्पन्न करता है। क्योंकि विभव का कोई कोणीय घटक नहीं है, इसकी प्रवणता है

जहां x लंबाई 'x' का वेक्टर है जो बिंदु द्रव्यमान से छोटे शरीर की ओर इशारा करता है और एक इकाई वेक्टर है जो बिंदु द्रव्यमान से छोटे शरीर की ओर इशारा करता है। इसलिए त्वरण का परिमाण एक व्युत्क्रम वर्ग नियम का पालन करता है:
बड़े पैमाने पर वितरण से जुड़ी क्षमता बिंदु द्रव्यमान की क्षमता का सुपरपोजिशन है। यदि द्रव्यमान वितरण बिंदु द्रव्यमान का एक परिमित संग्रह है, और यदि बिंदु द्रव्यमान बिंदु x पर स्थित है1, ..., एक्सn और जनता एम है1, ..., एमn, तो बिंदु x पर वितरण की क्षमता है

अंक x और r, r के साथ वितरित द्रव्यमान (ग्रे) और अंतर द्रव्यमान dm(r) बिंदु r पर स्थित है।

यदि द्रव्यमान वितरण को त्रि-आयामी यूक्लिडियन अंतरिक्ष 'आर' पर द्रव्यमान बोरेल माप डीएम के रूप में दिया जाता है3, तो विभव का कनवल्शन है G/|r| डीएम के साथ।[6] अच्छे मामलों में[clarification needed] यह अभिन्न के बराबर है

कहाँ |xr| बिंदु x और r के बीच की यूक्लिडियन दूरी है। यदि r पर वितरण के घनत्व का प्रतिनिधित्व करने वाला कोई फ़ंक्शन ρ(r) है, ताकि dm(r) = ρ(r) dv(r), जहाँ dv('r') यूक्लिडियन आयतन तत्व है, तो गुरुत्वाकर्षण क्षमता आयतन अभिन्न है
यदि V एक सतत द्रव्यमान वितरण ρ('r') से आने वाला एक संभावित कार्य है, तो लाप्लास ऑपरेटर का उपयोग करके ρ को पुनर्प्राप्त किया जा सकता है, Δ:
जब भी ρ निरंतर होता है और एक बंधे हुए सेट के बाहर शून्य होता है, तो यह बिंदुवार होता है। सामान्य तौर पर, बड़े पैमाने पर माप डीएम को उसी तरह से पुनर्प्राप्त किया जा सकता है यदि लाप्लास ऑपरेटर को वितरण (गणित) के अर्थ में लिया जाता है। परिणामस्वरूप, गुरुत्वाकर्षण क्षमता पोइसन के समीकरण को संतुष्ट करती है। तीन चर लाप्लास समीकरण और न्यूटोनियन क्षमता के लिए ग्रीन का कार्य भी देखें।

सममित और पतित सहित सभी दीर्घवृत्ताकार आकृतियों के लिए ज्ञात पारलौकिक कार्यों के संदर्भ में अभिन्न को व्यक्त किया जा सकता है।[7] इनमें गोला शामिल है, जहां तीन अर्ध अक्ष बराबर हैं; चपटा (संदर्भ दीर्घवृत्ताभ देखें) और लम्बी गोलभ, जहां दो अर्द्ध अक्ष बराबर हैं; पतित वाले जहां एक अर्ध अक्ष अनंत (अण्डाकार और गोलाकार सिलेंडर) और असीमित शीट जहां दो अर्ध अक्ष अनंत हैं। इन सभी आकृतियों का व्यापक रूप से विद्युत चुंबकत्व के लिए गुरुत्वाकर्षण क्षमता अभिन्न (स्थिर G के अलावा, 𝜌 एक स्थिर आवेश घनत्व होने के कारण) के अनुप्रयोगों में उपयोग किया जाता है।

गोलाकार समरूपता

एक गोलाकार रूप से सममित द्रव्यमान वितरण वितरण के बाहर पूरी तरह से एक पर्यवेक्षक के साथ व्यवहार करता है जैसे कि सभी द्रव्यमान केंद्र में केंद्रित थे, और इस प्रकार प्रभावी रूप से एक बिंदु द्रव्यमान के रूप में, शेल प्रमेय द्वारा। पृथ्वी की सतह पर, त्वरण तथाकथित मानक गुरुत्व g द्वारा दिया जाता है, लगभग 9.8 मी/से2, हालांकि यह मान अक्षांश और ऊंचाई के साथ थोड़ा भिन्न होता है। त्वरण का परिमाण भूमध्य रेखा की तुलना में ध्रुवों पर थोड़ा बड़ा होता है क्योंकि पृथ्वी एक चपटी गोलाकार है।

एक गोलाकार रूप से सममित द्रव्यमान वितरण के भीतर, गुरुत्वाकर्षण के लिए गॉस के नियम को हल करना संभव है#पोइसन का समीकरण और गुरुत्वाकर्षण क्षमता|गोलीय निर्देशांक में पॉइसन का समीकरण। त्रिज्या R, घनत्व ρ, और द्रव्यमान m के एक समान गोलाकार शरीर के भीतर, गोले के अंदर गुरुत्वाकर्षण बल g केंद्र से दूरी r के साथ रैखिक रूप से भिन्न होता है, जो गोले के अंदर गुरुत्वाकर्षण क्षमता देता है, जो है[8][9]

जो भिन्न रूप से गोले के बाहर के लिए संभावित कार्य से जुड़ता है (शीर्ष पर चित्र देखें)।

सामान्य सापेक्षता

सामान्य सापेक्षता में, गुरुत्वाकर्षण क्षमता को मीट्रिक टेंसर (सामान्य सापेक्षता) द्वारा प्रतिस्थापित किया जाता है। जब गुरुत्वाकर्षण क्षेत्र कमजोर होता है और प्रकाश-गति की तुलना में स्रोत बहुत धीमी गति से आगे बढ़ रहे होते हैं, तो सामान्य सापेक्षता न्यूटोनियन गुरुत्वाकर्षण में कम हो जाती है, और गुरुत्वाकर्षण क्षमता के संदर्भ में मीट्रिक टेंसर का विस्तार किया जा सकता है।[10]


मल्टीपोल विस्तार

एक बिंदु पर क्षमता x द्वारा दिया गया है

सदिश x और r के मूल के रूप में द्रव्यमान के केंद्र के साथ एक बड़े पैमाने पर वितरण (ग्रे) का चित्रण और वह बिंदु जिस पर सदिश x के शीर्ष पर क्षमता की गणना की जा रही है।

लीजेंड्रे बहुपदों की एक श्रृंखला में क्षमता का विस्तार किया जा सकता है। द्रव्यमान के केंद्र के सापेक्ष स्थिति वैक्टर के रूप में बिंदु x और r का प्रतिनिधित्व करें। अभिन्न में भाजक को देने के लिए वर्ग के वर्गमूल के रूप में व्यक्त किया जाता है

जहां, अंतिम अभिन्न में, r = |r| और θ x और r के बीच का कोण है।

(गणितीय रूप देखें।) इंटीग्रैंड को टेलर श्रृंखला के रूप में विस्तारित किया जा सकता है Z = r/|x|, गुणांकों की स्पष्ट गणना द्वारा। सामान्यीकृत द्विपद प्रमेय का उपयोग करके समान परिणाम प्राप्त करने का एक कम श्रमसाध्य तरीका है।[11] परिणामी श्रृंखला लीजेंड्रे बहुपदों के लिए जनरेटिंग फ़ंक्शन है:

के लिए मान्य |X| ≤ 1 और |Z| < 1. गुणांक पीn घात n वाले लीजेंड्रे बहुपद हैं। इसलिए, समाकलन के टेलर गुणांकों को लेजेंड्रे बहुपदों द्वारा दिया जाता है X = cos θ. तो क्षमता को एक श्रृंखला में विस्तारित किया जा सकता है जो स्थिति x के लिए अभिसरण है जैसे कि r < |x| सिस्टम के सभी द्रव्यमान तत्वों के लिए (अर्थात, एक गोले के बाहर, द्रव्यमान के केंद्र पर केंद्रित, जो सिस्टम को घेरता है):
अभिन्न में द्रव्यमान के केंद्र का घटक है x दिशा; यह गायब हो जाता है क्योंकि सदिश x द्रव्यमान के केंद्र से निकलता है। अत: समाकल को योग के चिन्ह के नीचे लाने पर प्राप्त होता है
इससे पता चलता है कि अगर हम द्रव्यमान के केंद्र से समान दूरी वाले मामलों की तुलना करते हैं, तो एक गोलाकार द्रव्यमान के कारण क्षमता की तुलना में शरीर के बढ़ाव से बढ़ाव की दिशा में कम क्षमता और लंबवत दिशाओं में उच्च क्षमता का कारण बनता है। (यदि हम सतह से समान दूरी वाले मामलों की तुलना करते हैं, तो विपरीत सत्य है।)

संख्यात्मक मूल्य

पृथ्वी, सूर्य और आकाशगंगा वे से गुरुत्वाकर्षण के संबंध में कई स्थानों पर गुरुत्वाकर्षण क्षमता का पूर्ण मूल्य निम्नलिखित तालिका में दिया गया है; यानी पृथ्वी की सतह पर एक वस्तु को पृथ्वी के गुरुत्वाकर्षण क्षेत्र को "छोड़ने" के लिए 60 MJ/kg की आवश्यकता होगी, अन्य 900 MJ/kg को सूर्य के गुरुत्वाकर्षण क्षेत्र को छोड़ने के लिए और मिल्की वे के गुरुत्वाकर्षण क्षेत्र को छोड़ने के लिए 130 GJ/kg से अधिक की आवश्यकता होगी। संभावित पलायन वेग का आधा वर्ग है।

जगह इसके संबंध में
धरती सूर्य आकाशगंगा
पृथ्वी की सतह 60 MJ/kg 900 MJ/kg ≥ 130 GJ/kg
लियो 57 MJ/kg 900 MJ/kg ≥ 130 GJ/kg
वायेजर 1 (पृथ्वी से 17,000 मिलियन किमी) 23 J/kg 8 MJ/kg ≥ 130 GJ/kg
पृथ्वी से 0.1 प्रकाश वर्ष 0.4 J/kg 140 kJ/kg ≥ 130 GJ/kg

इन स्थानों पर गुरुत्वाकर्षण की तुलना होती है।

यह भी देखें

टिप्पणियाँ

  1. Solivérez, C.E. (2016). Electrostatics and magnetostatics of polarized ellipsoidal bodies: the depolarization tensor method (1st English ed.). Free Scientific Information. ISBN 978-987-28304-0-3.
  2. Marion, J.B.; Thornton, S.T. (1995). कणों और प्रणालियों की शास्त्रीय गतिशीलता (4th ed.). Harcourt Brace & Company. p. 192. ISBN 0-03-097302-3.
  3. Arfken, George B.; Weber, Hans J. (2005). भौतिकविदों अंतर्राष्ट्रीय छात्र संस्करण के लिए गणितीय तरीके (6th ed.). Academic Press. p. 72. ISBN 978-0-08-047069-6.
  4. Sang, David; Jones, Graham; Chadha, Gurinder; Woodside, Richard; Stark, Will; Gill, Aidan (2014). कैम्ब्रिज इंटरनेशनल एएस और ए लेवल फिजिक्स कोर्सबुक (illustrated ed.). Cambridge University Press. p. 276. ISBN 978-1-107-69769-0.
  5. Muncaster, Roger (1993). ए-लेवल फिजिक्स (illustrated ed.). Nelson Thornes. p. 106. ISBN 978-0-7487-1584-8.
  6. Vladimirov 1984, §7.8
  7. MacMillan, W.D. (1958). क्षमता का सिद्धांत. Dover Press.
  8. Lowrie, William Lowrie (2011). भूभौतिकीय समीकरणों के लिए एक छात्र की गाइड. Cambridge University Press. p. 69. ISBN 978-1-139-49924-8. Extract of page 68
  9. Sanchez-Lavega, Agustin (2011). ग्रहों के वातावरण का परिचय (illustrated ed.). CRC Press. p. 19. ISBN 978-1-4200-6735-4. Extract of page 19
  10. Grøn, Øyvind; Hervik, Sigbjorn (2007), Einstein's General Theory of Relativity: With Modern Applications in Cosmology, Springer Science & Business Media, p. 201, ISBN 978-0-387-69200-5
  11. Wylie, C. R. Jr. (1960). उन्नत इंजीनियरिंग गणित (2nd ed.). New York: McGraw-Hill. p. 454 [Theorem 2, Section 10.8].


संदर्भ