फ्रोबेनियस आंतरिक गुणनफल: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(4 intermediate revisions by 3 users not shown)
Line 1: Line 1:
गणित में, फ्रोबेनियस आंतरिक गुणनफल एक द्वि आधारी संक्रिया है जो दो [[मैट्रिक्स (गणित)|आव्यूह (गणित)]] लेता है और एक अदिश (गणित) देता है। इसे प्रायः   <math>\langle \mathbf{A},\mathbf{B} \rangle_\mathrm{F}</math> निरूपित किया जाता है। संक्रिया दो आव्यूहों का एक घटक-वार आंतरिक उत्पाद है जैसे कि वे सदिश हों, और एक आंतरिक उत्पाद के लिए स्वयंसिद्धों को संतुष्ट करता है। दो आव्यूहों का आयाम समान होना चाहिए - पंक्तियों और स्तंभों की समान संख्या, परन्तु वर्ग आव्यूह तक ही सीमित नहीं है।
गणित में, फ्रोबेनियस आंतरिक गुणनफल एक द्वि आधारी संक्रिया है जो दो [[मैट्रिक्स (गणित)|आव्यूह(गणित]]) लेता है और एक अदिश(गणित) देता है। इसे प्रायः <math>\langle \mathbf{A},\mathbf{B} \rangle_\mathrm{F}</math> निरूपित किया जाता है। संक्रिया दो आव्यूहों का एक घटक-वार आंतरिक गुणनफल है जैसे कि वे सदिश हों, और एक आंतरिक गुणनफल के लिए स्वयंसिद्धों को संतुष्ट करता है। दो आव्यूहों का आयाम समान होना चाहिए - पंक्तियों और स्तंभों की समान संख्या, परन्तु वर्ग आव्यूह तक ही सीमित नहीं है।


== परिभाषा ==
== परिभाषा ==


दो [[जटिल संख्या]]-मानित   n × m आव्यूह 'A' और 'B' को स्पष्ट रूप से
दो [[जटिल संख्या]]-मानित n × m आव्यूह 'A' और 'B' को स्पष्ट रूप से


:<math> \mathbf {A} ={\begin{pmatrix}A_{11}&A_{12}&\cdots &A_{1m}\\A_{21}&A_{22}&\cdots &A_{2m}\\\vdots &\vdots &\ddots &\vdots \\A_{n1}&A_{n2}&\cdots &A_{nm}\\\end{pmatrix}} \,, \quad \mathbf {B} ={\begin{pmatrix}B_{11}&B_{12}&\cdots &B_{1m}\\B_{21}&B_{22}&\cdots &B_{2m}\\\vdots &\vdots &\ddots &\vdots \\B_{n1}&B_{n2}&\cdots &B_{nm}\\\end{pmatrix}}</math>
:<math> \mathbf {A} ={\begin{pmatrix}A_{11}&A_{12}&\cdots &A_{1m}\\A_{21}&A_{22}&\cdots &A_{2m}\\\vdots &\vdots &\ddots &\vdots \\A_{n1}&A_{n2}&\cdots &A_{nm}\\\end{pmatrix}} \,, \quad \mathbf {B} ={\begin{pmatrix}B_{11}&B_{12}&\cdots &B_{1m}\\B_{21}&B_{22}&\cdots &B_{2m}\\\vdots &\vdots &\ddots &\vdots \\B_{n1}&B_{n2}&\cdots &B_{nm}\\\end{pmatrix}}</math>
के रूप में लिखा गया है, फ्रोबेनियस आंतरिक उत्पाद को  
के रूप में लिखा गया है, फ्रोबेनियस आंतरिक गुणनफल को  


:<math> \langle \mathbf{A}, \mathbf{B} \rangle_\mathrm{F} =\sum_{i,j}\overline{A_{ij}} B_{ij} \, = \mathrm{Tr}\left(\overline{\mathbf{A}^T} \mathbf{B}\right)
:<math> \langle \mathbf{A}, \mathbf{B} \rangle_\mathrm{F} =\sum_{i,j}\overline{A_{ij}} B_{ij} \, = \mathrm{Tr}\left(\overline{\mathbf{A}^T} \mathbf{B}\right)
\equiv
\equiv
\mathrm{Tr}\left(\mathbf{A}^{\!\dagger} \mathbf{B}\right)</math>
\mathrm{Tr}\left(\mathbf{A}^{\!\dagger} \mathbf{B}\right)</math>
के रूप में परिभाषित किया गया है, जहां शिरोपंक्ति जटिल संयुग्मी को दर्शाता है, और <math>\dagger</math> संयुग्म संक्रमण को दर्शाता है।<ref name=":0">{{Cite book |last=Horn |first=R.A. |title=मैट्रिक्स विश्लेषण में विषय|last2=C.R. |first2=Johnson |publisher=[[Cambridge University Press]] |year=1985 |isbn=978-0-521-83940-2 |edition=2nd |location=Cambridge |pages=321 |language=en}}</ref> स्पष्ट रूप से यह राशि
के रूप में परिभाषित किया गया है, जहां शिरोपंक्ति जटिल संयुग्मी को दर्शाता है, और <math>\dagger</math> संयुग्म संक्रमण को दर्शाता है।<ref name=":0">{{Cite book |last=Horn |first=R.A. |title=मैट्रिक्स विश्लेषण में विषय|last2=C.R. |first2=Johnson |publisher=[[Cambridge University Press]] |year=1985 |isbn=978-0-521-83940-2 |edition=2nd |location=Cambridge |pages=321 |language=en}}</ref> स्पष्ट रूप से यह राशि


:<math>\begin{align} \langle \mathbf{A}, \mathbf{B} \rangle_\mathrm{F} = & \overline{A}_{11} B_{11} + \overline{A}_{12} B_{12} + \cdots + \overline{A}_{1m} B_{1m} \\
:<math>\begin{align} \langle \mathbf{A}, \mathbf{B} \rangle_\mathrm{F} = & \overline{A}_{11} B_{11} + \overline{A}_{12} B_{12} + \cdots + \overline{A}_{1m} B_{1m} \\
Line 17: Line 17:
  & \vdots \\
  & \vdots \\
  & + \overline{A}_{n1} B_{n1} + \overline{A}_{n2} B_{n2} + \cdots + \overline{A}_{nm} B_{nm} \\
  & + \overline{A}_{n1} B_{n1} + \overline{A}_{n2} B_{n2} + \cdots + \overline{A}_{nm} B_{nm} \\
\end{align}</math> है
\end{align}</math> है
गणना [[डॉट उत्पाद|बिंदु उत्पाद]] के समान ही है, जो बदले में आंतरिक उत्पाद का एक उदाहरण है।{{Cn|date=June 2022}}
गणना [[डॉट उत्पाद|बिंदु गुणनफल]] के समान ही है, जो बदले में आंतरिक गुणनफल का एक उदाहरण है।{{Cn|date=June 2022}}


=== अन्य उत्पादों से संबंध ===
=== अन्य गुणनफलों से संबंध ===


यदि A और B प्रत्येक [[वास्तविक संख्या]]-मानित   आव्यूह हैं, तो फ्रोबेनियस आंतरिक उत्पाद [[हैडमार्ड उत्पाद (मैट्रिसेस)|हैडमार्ड उत्पाद (आव्यूह)]] की प्रविष्टियों का योग है। यदि आव्यूह [[वैश्वीकरण (गणित)|सदिशीकृत (गणित)]] हैं (अर्थात, स्तंभ सदिश में परिवर्तित, <math>  \mathrm{vec}(\cdot) </math> द्वारा निरूपित) , तो
यदि A और B प्रत्येक [[वास्तविक संख्या]]-मानित आव्यूह हैं, तो फ्रोबेनियस आंतरिक गुणनफल [[हैडमार्ड उत्पाद (मैट्रिसेस)|हैडमार्ड गुणनफल(आव्यूह]]) की प्रविष्टियों का योग है। यदि आव्यूह [[वैश्वीकरण (गणित)|सदिशीकृत(गणित]]) हैं(अर्थात, स्तंभ सदिश में परिवर्तित, <math>  \mathrm{vec}(\cdot) </math> द्वारा निरूपित) , तो


:<math> \mathrm{vec}(\mathbf {A}) = {\begin{pmatrix} A_{11} \\ A_{12} \\ \vdots \\ A_{21} \\ A_{22} \\ \vdots \\ A_{nm} \end{pmatrix}},\quad \mathrm{vec}(\mathbf {B}) = {\begin{pmatrix} B_{11} \\ B_{12} \\ \vdots \\ B_{21} \\ B_{22} \\ \vdots \\ B_{nm} \end{pmatrix}} \,, </math><math>  \quad \overline{\mathrm{vec}(\mathbf{A})}^T\mathrm{vec}(\mathbf {B}) = {\begin{pmatrix} \overline{A}_{11} & \overline{A}_{12} & \cdots & \overline{A}_{21} & \overline{A}_{22} & \cdots & \overline{A}_{nm} \end{pmatrix}} {\begin{pmatrix} B_{11} \\ B_{12} \\ \vdots \\ B_{21} \\ B_{22} \\ \vdots \\ B_{nm} \end{pmatrix}} </math>
:<math> \mathrm{vec}(\mathbf {A}) = {\begin{pmatrix} A_{11} \\ A_{12} \\ \vdots \\ A_{21} \\ A_{22} \\ \vdots \\ A_{nm} \end{pmatrix}},\quad \mathrm{vec}(\mathbf {B}) = {\begin{pmatrix} B_{11} \\ B_{12} \\ \vdots \\ B_{21} \\ B_{22} \\ \vdots \\ B_{nm} \end{pmatrix}} \,, </math><math>  \quad \overline{\mathrm{vec}(\mathbf{A})}^T\mathrm{vec}(\mathbf {B}) = {\begin{pmatrix} \overline{A}_{11} & \overline{A}_{12} & \cdots & \overline{A}_{21} & \overline{A}_{22} & \cdots & \overline{A}_{nm} \end{pmatrix}} {\begin{pmatrix} B_{11} \\ B_{12} \\ \vdots \\ B_{21} \\ B_{22} \\ \vdots \\ B_{nm} \end{pmatrix}} </math>
Line 31: Line 31:
=== गुण ===
=== गुण ===


यह चार जटिल-मानित   आव्यूहों A, B, C, D, और दो सम्मिश्र संख्याओं ''a'' और ''b'' के लिए एक अनुक्रमिक रूप है:
यह चार जटिल-मानित आव्यूहों A, B, C, D, और दो सम्मिश्र संख्याओं ''a'' और ''b'':


:<math>\langle a\mathbf{A}, b\mathbf{B} \rangle_\mathrm{F} = \overline{a}b\langle \mathbf{A}, \mathbf{B} \rangle_\mathrm{F} </math>
:<math>\langle a\mathbf{A}, b\mathbf{B} \rangle_\mathrm{F} = \overline{a}b\langle \mathbf{A}, \mathbf{B} \rangle_\mathrm{F} </math>
:<math>\langle \mathbf{A}+\mathbf{C}, \mathbf{B} + \mathbf{D} \rangle_\mathrm{F} = \langle \mathbf{A}, \mathbf{B} \rangle_\mathrm{F} + \langle \mathbf{A}, \mathbf{D} \rangle_\mathrm{F} + \langle \mathbf{C}, \mathbf{B} \rangle_\mathrm{F} + \langle \mathbf{C}, \mathbf{D} \rangle_\mathrm{F} </math>
:<math>\langle \mathbf{A}+\mathbf{C}, \mathbf{B} + \mathbf{D} \rangle_\mathrm{F} = \langle \mathbf{A}, \mathbf{B} \rangle_\mathrm{F} + \langle \mathbf{A}, \mathbf{D} \rangle_\mathrm{F} + \langle \mathbf{C}, \mathbf{B} \rangle_\mathrm{F} + \langle \mathbf{C}, \mathbf{D} \rangle_\mathrm{F} </math> के लिए एक अनुक्रमिक रूप है।
इसके अलावा, आव्यूह का आदान-प्रदान जटिल संयुग्मन के लिए होता है:
इसके अतिरिक्त, आव्यूह का आदान-प्रदान जटिल संयुग्मन के लिए होता है:


:<math>\langle \mathbf{B}, \mathbf{A} \rangle_\mathrm{F} = \overline{\langle \mathbf{A}, \mathbf{B} \rangle_\mathrm{F}} </math>
:<math>\langle \mathbf{B}, \mathbf{A} \rangle_\mathrm{F} = \overline{\langle \mathbf{A}, \mathbf{B} \rangle_\mathrm{F}} </math>
Line 45: Line 45:


=== [[फ्रोबेनियस मानदंड]] ===
=== [[फ्रोबेनियस मानदंड]] ===
आंतरिक उत्पाद फ्रोबेनियस मानदंड को प्रेरित करता है
आंतरिक गुणनफल फ्रोबेनियस मानदंड  


:<math>\|\mathbf{A}\|_\mathrm{F} = \sqrt{\langle \mathbf{A}, \mathbf{A} \rangle_\mathrm{F}} \,.</math><ref name=":0" />
:<math>\|\mathbf{A}\|_\mathrm{F} = \sqrt{\langle \mathbf{A}, \mathbf{A} \rangle_\mathrm{F}} \,</math> को प्रेरित करता है।<ref name=":0" />




== उदाहरण ==
== उदाहरण ==


=== वास्तविक-मानित   आव्यूह ===
=== वास्तविक-मानित आव्यूह ===


दो वास्तविक मानित   आव्यूहों के लिए, यदि
दो वास्तविक मानित आव्यूहों के लिए, यदि


:<math>\mathbf{A} = \begin{pmatrix} 2 & 0 & 6 \\ 1 & -1 & 2 \end{pmatrix} \,,\quad \mathbf{B} = \begin{pmatrix} 8 & -3 & 2 \\ 4 & 1 & -5 \end{pmatrix} </math>
:<math>\mathbf{A} = \begin{pmatrix} 2 & 0 & 6 \\ 1 & -1 & 2 \end{pmatrix} \,,\quad \mathbf{B} = \begin{pmatrix} 8 & -3 & 2 \\ 4 & 1 & -5 \end{pmatrix} </math>
Line 63: Line 63:




=== जटिल-मानित   आव्यूह ===
=== जटिल-मानित आव्यूह ===


दो जटिल-मानित   आव्यूह के लिए, यदि
दो जटिल-मानित आव्यूह के लिए, यदि


:<math>\mathbf{A} = \begin{pmatrix} 1+i & -2i \\ 3 & -5 \end{pmatrix} \,,\quad \mathbf{B} = \begin{pmatrix} -2 & 3i \\ 4-3i & 6 \end{pmatrix} </math>
:<math>\mathbf{A} = \begin{pmatrix} 1+i & -2i \\ 3 & -5 \end{pmatrix} \,,\quad \mathbf{B} = \begin{pmatrix} -2 & 3i \\ 4-3i & 6 \end{pmatrix} </math>
Line 76: Line 76:
:<math>\begin{align} \langle \mathbf{B} ,\mathbf{A}\rangle_\mathrm{F} & = (-2)\cdot (1+i) + (-3i)\cdot (-2i) + (4+3i)\cdot 3 + 6 \cdot (-5) \\
:<math>\begin{align} \langle \mathbf{B} ,\mathbf{A}\rangle_\mathrm{F} & = (-2)\cdot (1+i) + (-3i)\cdot (-2i) + (4+3i)\cdot 3 + 6 \cdot (-5) \\
& = -26 + 7i \end{align} </math>
& = -26 + 7i \end{align} </math>
स्वयं के साथAऔर स्वयं के साथ B के फ्रोबेनियस आंतरिक उत्पाद क्रमशः हैं
स्वयं के साथ A और स्वयं के साथ B के फ्रोबेनियस आंतरिक गुणनफल क्रमशः हैं


:<math>\langle \mathbf{A}, \mathbf{A} \rangle_\mathrm{F} = 2 + 4 + 9 + 25 = 40 </math><math>\qquad \langle \mathbf{B}, \mathbf{B} \rangle_\mathrm{F} = 4 + 9 + 25 + 36 = 74 </math>
:<math>\langle \mathbf{A}, \mathbf{A} \rangle_\mathrm{F} = 2 + 4 + 9 + 25 = 40 </math><math>\qquad \langle \mathbf{B}, \mathbf{B} \rangle_\mathrm{F} = 4 + 9 + 25 + 36 = 74 </math>
Line 83: Line 83:
== यह भी देखें ==
== यह भी देखें ==


* हैडमार्ड उत्पाद (आव्यूह)
* हैडमार्ड गुणनफल(आव्यूह)  
*हिल्बर्ट-श्मिट आंतरिक उत्पाद
*हिल्बर्ट-श्मिट आंतरिक गुणनफल
* [[क्रोनकर उत्पाद]]
* [[क्रोनकर उत्पाद|क्रोनकर गुणनफल]]
* [[मैट्रिक्स विश्लेषण|आव्यूह विश्लेषण]]
* [[मैट्रिक्स विश्लेषण|आव्यूह विश्लेषण]]
* [[मैट्रिक्स गुणन|आव्यूह गुणन]]
* [[मैट्रिक्स गुणन|आव्यूह गुणन]]
* [[मैट्रिक्स मानदंड|आव्यूह मानदंड]]
* [[मैट्रिक्स मानदंड|आव्यूह मानदंड]]
*हिल्बर्ट स्पेस का टेंसर उत्पाद - फ्रोबेनियस आंतरिक गुणनफल एक विशेष मामला है जहां वेक्टर स्पेस सामान्य यूक्लिडियन आंतरिक उत्पाद के साथ परिमित-आयामी वास्तविक या जटिल वेक्टर स्पेस होते हैं।
*हिल्बर्ट स्थान का टेंसर गुणनफल - फ्रोबेनियस आंतरिक गुणनफल एक विशेष स्थिति है जहां सदिश स्थान सामान्य यूक्लिडियन आंतरिक गुणनफल के साथ परिमित-आयामी वास्तविक या जटिल सदिश स्थान होते हैं।


== संदर्भ ==
== संदर्भ ==
Line 96: Line 96:
{{algebra-footer}}
{{algebra-footer}}


{{DEFAULTSORT:Matrix Multiplication}}[[Category: मैट्रिक्स सिद्धांत]] [[Category: द्विरेखीय मानचित्र]] [[Category: गुणा]] [[Category: संख्यात्मक रैखिक बीजगणित]]
{{DEFAULTSORT:Matrix Multiplication}}


 
[[Category:All articles with unsourced statements|Matrix Multiplication]]
 
[[Category:Articles with unsourced statements from June 2022|Matrix Multiplication]]
[[Category: Machine Translated Page]]
[[Category:CS1 English-language sources (en)]]
[[Category:Created On 17/03/2023]]
[[Category:Created On 17/03/2023|Matrix Multiplication]]
[[Category:Machine Translated Page|Matrix Multiplication]]
[[Category:Templates Translated in Hindi|Matrix Multiplication]]
[[Category:Templates Vigyan Ready|Matrix Multiplication]]
[[Category:गुणा|Matrix Multiplication]]
[[Category:द्विरेखीय मानचित्र|Matrix Multiplication]]
[[Category:मैट्रिक्स सिद्धांत|Matrix Multiplication]]
[[Category:संख्यात्मक रैखिक बीजगणित|Matrix Multiplication]]

Latest revision as of 16:01, 9 April 2023

गणित में, फ्रोबेनियस आंतरिक गुणनफल एक द्वि आधारी संक्रिया है जो दो आव्यूह(गणित) लेता है और एक अदिश(गणित) देता है। इसे प्रायः निरूपित किया जाता है। संक्रिया दो आव्यूहों का एक घटक-वार आंतरिक गुणनफल है जैसे कि वे सदिश हों, और एक आंतरिक गुणनफल के लिए स्वयंसिद्धों को संतुष्ट करता है। दो आव्यूहों का आयाम समान होना चाहिए - पंक्तियों और स्तंभों की समान संख्या, परन्तु वर्ग आव्यूह तक ही सीमित नहीं है।

परिभाषा

दो जटिल संख्या-मानित n × m आव्यूह 'A' और 'B' को स्पष्ट रूप से

के रूप में लिखा गया है, फ्रोबेनियस आंतरिक गुणनफल को

के रूप में परिभाषित किया गया है, जहां शिरोपंक्ति जटिल संयुग्मी को दर्शाता है, और संयुग्म संक्रमण को दर्शाता है।[1] स्पष्ट रूप से यह राशि

है

गणना बिंदु गुणनफल के समान ही है, जो बदले में आंतरिक गुणनफल का एक उदाहरण है।[citation needed]

अन्य गुणनफलों से संबंध

यदि A और B प्रत्येक वास्तविक संख्या-मानित आव्यूह हैं, तो फ्रोबेनियस आंतरिक गुणनफल हैडमार्ड गुणनफल(आव्यूह) की प्रविष्टियों का योग है। यदि आव्यूह सदिशीकृत(गणित) हैं(अर्थात, स्तंभ सदिश में परिवर्तित, द्वारा निरूपित) , तो

इसलिए

[citation needed]

गुण

यह चार जटिल-मानित आव्यूहों A, B, C, D, और दो सम्मिश्र संख्याओं a और b:

के लिए एक अनुक्रमिक रूप है।

इसके अतिरिक्त, आव्यूह का आदान-प्रदान जटिल संयुग्मन के लिए होता है:

उसी आव्यूह के लिए,

,[citation needed]

और,

फ्रोबेनियस मानदंड

आंतरिक गुणनफल फ्रोबेनियस मानदंड

को प्रेरित करता है।[1]


उदाहरण

वास्तविक-मानित आव्यूह

दो वास्तविक मानित आव्यूहों के लिए, यदि

तब


जटिल-मानित आव्यूह

दो जटिल-मानित आव्यूह के लिए, यदि

तब

जबकि

स्वयं के साथ A और स्वयं के साथ B के फ्रोबेनियस आंतरिक गुणनफल क्रमशः हैं


यह भी देखें

  • हैडमार्ड गुणनफल(आव्यूह)
  • हिल्बर्ट-श्मिट आंतरिक गुणनफल
  • क्रोनकर गुणनफल
  • आव्यूह विश्लेषण
  • आव्यूह गुणन
  • आव्यूह मानदंड
  • हिल्बर्ट स्थान का टेंसर गुणनफल - फ्रोबेनियस आंतरिक गुणनफल एक विशेष स्थिति है जहां सदिश स्थान सामान्य यूक्लिडियन आंतरिक गुणनफल के साथ परिमित-आयामी वास्तविक या जटिल सदिश स्थान होते हैं।

संदर्भ

  1. 1.0 1.1 Horn, R.A.; C.R., Johnson (1985). मैट्रिक्स विश्लेषण में विषय (in English) (2nd ed.). Cambridge: Cambridge University Press. p. 321. ISBN 978-0-521-83940-2.

{{Navbox | name =बीजगणित | state =

| bodyclass = hlist

| title =बीजगणित | group1 =क्षेत्रों | list1 =

| group2 =बीजगणितीय संरचना | list2 =* समूह   ( सिद्धांत)

| group3 =लीनियर अलजेब्रा | list3 =* मैट्रिक्स और nbsp; (सिद्धांत)

| group4 =मल्टीलिनियर बीजगणित | list4 =* टेंसर बीजगणित

| group5 =विषय सूची | list5 =* सार बीजगणित

| group6 =शब्दावलियों | list6 =* रैखिक बीजगणित

| group7 =संबंधित | list7 =* अंक शास्त्र

| belowस्टाइल = फ़ॉन्ट-वेट: बोल्ड; | below =* श्रेणी

}}