अवशिष्ट प्रमेय: Difference between revisions

From Vigyanwiki
(text)
(text)
Line 15: Line 15:
अवशिष्ट प्रमेय का स्टोक्स प्रमेय से संबंध [[जॉर्डन वक्र प्रमेय]] द्वारा दिया गया है। सामान्य [[समतल वक्र]] {{mvar|γ}} को पहले सरल बंद वक्रों {{math|{{mset|''γ''<sub>''i''</sub>}}}} के एक सम्मुच्चय में कम किया जाना चाहिए जिसका योग {{mvar|γ}} एकीकरण उद्देश्यों के लिए बराबर है; यह आंतरिक {{mvar|V}} के साथ जॉर्डन वक्र {{math|''γ''<sub>''i''</sub>}} के साथ {{math|''f'' ''dz''}} का समाकलन ज्ञात करने की समस्या को कम करता है।  {{mvar|f}} {{math|1=''U''<sub>0</sub> = ''U'' \ {{mset|''a''<sub>''k''</sub>}}}}पर पूर्णसममितिक होने की आवश्यकता इस कथन के बराबर है कि बाह्य व्युत्पन्न {{math|1=''d''(''f'' ''dz'') = 0}} पर {{math|''U''<sub>0</sub>}} है। इस प्रकार यदि U के दो तलीय क्षेत्र V और W, {{math|{{mset|''a''<sub>''k''</sub>}}}} के समान उपसमुच्चय {{math|{{mset|''a''<sub>''j''</sub>}}}} को घेरते हैं, तो क्षेत्र V \ W और W \ V पूरी तरह से {{math|''U''<sub>0</sub>}} में स्थित होते हैं, और इसलिए
अवशिष्ट प्रमेय का स्टोक्स प्रमेय से संबंध [[जॉर्डन वक्र प्रमेय]] द्वारा दिया गया है। सामान्य [[समतल वक्र]] {{mvar|γ}} को पहले सरल बंद वक्रों {{math|{{mset|''γ''<sub>''i''</sub>}}}} के एक सम्मुच्चय में कम किया जाना चाहिए जिसका योग {{mvar|γ}} एकीकरण उद्देश्यों के लिए बराबर है; यह आंतरिक {{mvar|V}} के साथ जॉर्डन वक्र {{math|''γ''<sub>''i''</sub>}} के साथ {{math|''f'' ''dz''}} का समाकलन ज्ञात करने की समस्या को कम करता है।  {{mvar|f}} {{math|1=''U''<sub>0</sub> = ''U'' \ {{mset|''a''<sub>''k''</sub>}}}}पर पूर्णसममितिक होने की आवश्यकता इस कथन के बराबर है कि बाह्य व्युत्पन्न {{math|1=''d''(''f'' ''dz'') = 0}} पर {{math|''U''<sub>0</sub>}} है। इस प्रकार यदि U के दो तलीय क्षेत्र V और W, {{math|{{mset|''a''<sub>''k''</sub>}}}} के समान उपसमुच्चय {{math|{{mset|''a''<sub>''j''</sub>}}}} को घेरते हैं, तो क्षेत्र V \ W और W \ V पूरी तरह से {{math|''U''<sub>0</sub>}} में स्थित होते हैं, और इसलिए
<math display="block">\int_{V \setminus W} d(f \, dz) - \int_{W \setminus V} d(f \, dz)</math>
<math display="block">\int_{V \setminus W} d(f \, dz) - \int_{W \setminus V} d(f \, dz)</math>
अच्छी तरह से परिभाषित और शून्य के बराबर है। नतीजतन, {{math|''f'' ''dz''}} का समोच्च अभिन्न साथ में {{math|1=''γ''<sub>''j''</sub> = ∂''V''}} पथ {{math|''λ''<sub>''j''</sub>}} के साथ समाकलों के समुच्चय के योग के बराबर है, प्रत्येक एकल {{math|''a''<sub>''j''</sub>}} के चारों ओर स्वेच्छतः छोटे क्षेत्र को घेरता है - '''के अवशेष {{mvar|f}} (पारंपरिक कारक तक {{math|2''πi''}}) पर {{math|{{mset|''a''<sub>''j''</sub>}}}}'''. संक्षेप में {{math|{{mset|''γ''<sub>''j''</sub>}}}}, हम वाइंडिंग नंबरों के संदर्भ में समोच्च अभिन्न की अंतिम अभिव्यक्ति को पुनर्प्राप्त करते हैं {{math|{{mset|I(''γ'', ''a''<sub>''k''</sub>)}}}}.
अच्छी तरह से परिभाषित और शून्य के बराबर है। नतीजतन, {{math|''f'' ''dz''}} का समोच्च अभिन्न साथ में {{math|1=''γ''<sub>''j''</sub> = ∂''V''}} पथ {{math|''λ''<sub>''j''</sub>}} के साथ समाकलों के समुच्चय के योग के बराबर है, प्रत्येक एकल {{math|''a''<sub>''j''</sub>}} के चारों ओर स्वेच्छतः छोटे क्षेत्र को घेरता है -{{math|{{mset|''a''<sub>''j''</sub>}}}} पर {{mvar|f}} के अवशेष (पारंपरिक कारक {{math|2''πi''}} तक)। {{math|{{mset|''γ''<sub>''j''</sub>}}}} पर सारांश, हम घुमावदार संख्या {{math|{{mset|I(''γ'', ''a''<sub>''k''</sub>)}}}} के संदर्भ में समोच्च अभिन्न की अंतिम अभिव्यक्ति को पुनर्प्राप्त करते हैं।


वास्तविक समाकलों का मूल्यांकन करने के लिए, अवशिष्ट प्रमेय का उपयोग निम्नलिखित तरीके से किया जाता है: समाकलन को जटिल तल तक विस्तारित किया जाता है और इसके अवशेषों की गणना की जाती है (जो आमतौर पर आसान होता है), और वास्तविक अक्ष का एक हिस्सा एक बंद वक्र तक बढ़ाया जाता है ऊपरी या निचले आधे विमान में एक अर्धवृत्त संलग्न करके, एक अर्धवृत्त बनाते हुए। इस वक्र पर समाकलन की गणना अवशिष्ट प्रमेय का उपयोग करके की जा सकती है। प्रायः, समाकल का अर्ध-वृत्त भाग शून्य की ओर झुक जाता है, क्योंकि अर्ध-वृत्त की त्रिज्या बढ़ती है, केवल समाकल का वास्तविक-अक्ष भाग छोड़ता है, जिसमें हम मूल रूप से रुचि रखते थे।
वास्तविक समाकलों का मूल्यांकन करने के लिए, अवशिष्ट प्रमेय का उपयोग निम्नलिखित तरीके से किया जाता है: समाकलन को जटिल तल तक विस्तारित किया जाता है और इसके अवशेषों की गणना की जाती है (जो सामान्यतः आसान होता है), और वास्तविक अक्ष का एक हिस्सा ऊपरी या निचले अर्ध समतल में एक अर्ध-चक्र संलग्न करके एक अर्धवृत्त बनाकर एक बंद वक्र तक बढ़ाया जाता है। इस वक्र पर समाकलन की गणना अवशिष्ट प्रमेय का उपयोग करके की जा सकती है। प्रायः, समाकल का अर्ध-वृत्त भाग शून्य की ओर झुक जाता है, क्योंकि अर्ध-वृत्त की त्रिज्या बढ़ती है, केवल समाकल का वास्तविक-अक्ष भाग छोड़ता है, जिसमें हम मूल रूप से रुचि रखते थे।


== उदाहरण ==
== उदाहरण ==
Line 27: Line 27:
[[Image:Contour example.svg|right|300px|thumb|समोच्च {{mvar|C}}.]][[कॉची वितरण]] के विशिष्ट कार्य (संभावना सिद्धांत) की [[गणना]] करते समय संभाव्यता सिद्धांत में उत्पन्न होता है। यह प्रारंभिक कलन की तकनीकों का विरोध करता है लेकिन इसे समोच्च समाकलों की सीमा के रूप में व्यक्त करके मूल्यांकन किया जा सकता है।
[[Image:Contour example.svg|right|300px|thumb|समोच्च {{mvar|C}}.]][[कॉची वितरण]] के विशिष्ट कार्य (संभावना सिद्धांत) की [[गणना]] करते समय संभाव्यता सिद्धांत में उत्पन्न होता है। यह प्रारंभिक कलन की तकनीकों का विरोध करता है लेकिन इसे समोच्च समाकलों की सीमा के रूप में व्यक्त करके मूल्यांकन किया जा सकता है।


कल्पना करना {{math|''t'' > 0}} और समोच्च परिभाषित करें {{mvar|C}} जो [[वास्तविक संख्या]] रेखा के साथ जाता है {{math|−''a''}} को {{mvar|a}} और फिर 0 पर केंद्रित अर्धवृत्त के साथ वामावर्त {{mvar|a}} को {{math|−''a''}}. लेना {{mvar|a}} 1 से अधिक होना, ताकि [[काल्पनिक संख्या]] इकाई {{mvar|i}} वक्र के भीतर संलग्न है। अब समोच्च अभिन्न पर विचार करें
मान लीजिए t > 0 और समोच्च C को परिभाषित करें जो वास्तविक रेखा के साथ -a से a तक जाता है और फिर 0 से -a पर केंद्रित अर्धवृत्त के साथ वामावर्त। a को 1 से a को 1 से बड़ा लें, जिससे कि काल्पनिक इकाई i वक्र के भीतर बंद हो लें, जिससे कि काल्पनिक इकाई i वक्र के भीतर बंद हो। अब समोच्च अभिन्न पर विचार करें
<math display="block">\int_C {f(z)}\,dz = \int_C \frac{e^{itz}}{z^2+1}\,dz.</math>
<math display="block">\int_C {f(z)}\,dz = \int_C \frac{e^{itz}}{z^2+1}\,dz.</math>
तब से {{math|''e''<sup>''itz''</sup>}} एक संपूर्ण कार्य है (जटिल तल में किसी भी बिंदु पर कोई [[गणितीय विलक्षणता]] नहीं है), इस कार्य में विलक्षणताएँ केवल वहीं हैं जहाँ भाजक {{math|''z''<sup>2</sup> + 1}} शून्य है। तब से {{math|1=''z''<sup>2</sup> + 1 = (''z'' + ''i'')(''z'' − ''i'')}}, वह केवल वहीं होता है {{math|1=''z'' = ''i''}} या {{math|1=''z'' = −''i''}}. उनमें से केवल एक बिंदु इस समोच्च से घिरे क्षेत्र में है। क्योंकि {{math|''f''(''z'')}} है
चूँकि {{math|''e''<sup>''itz''</sup>}} एक संपूर्ण कार्य है (जटिल तल में किसी भी बिंदु पर कोई विलक्षणता नहीं है), इस कार्य में केवल एकवचन है जहाँ भाजक {{math|''z''<sup>2</sup> + 1}} शून्य है। चूँकि {{math|1=''z''<sup>2</sup> + 1 = (''z'' + ''i'')(''z'' − ''i'')}}, यह केवल वहीं होता है जहाँ {{math|1=''z'' = ''i''}} या {{math|1=''z'' = −''i''}}उनमें से केवल एक बिंदु इस समोच्च से घिरे क्षेत्र में है। क्योंकि {{math|''f''(''z'')}} निम्न है
<math display="block">\begin{align}
<math display="block">\begin{align}
\frac{e^{itz}}{z^2+1} & =\frac{e^{itz}}{2i}\left(\frac{1}{z-i}-\frac{1}{z+i}\right) \\
\frac{e^{itz}}{z^2+1} & =\frac{e^{itz}}{2i}\left(\frac{1}{z-i}-\frac{1}{z+i}\right) \\
& =\frac{e^{itz}}{2i(z-i)} -\frac{e^{itz}}{2i(z+i)} ,
& =\frac{e^{itz}}{2i(z-i)} -\frac{e^{itz}}{2i(z+i)} ,
\end{align}</math>
\end{align}</math>
के अवशेष (जटिल विश्लेषण)। {{math|''f''(''z'')}} पर {{math|1=''z'' = ''i''}} है
{{math|1=''z'' = ''i''}} पर {{math|''f''(''z'')}} के अवशेष (जटिल विश्लेषण) है
<math display="block">\operatorname{Res}_{z=i}f(z)=\frac{e^{-t}}{2i}.</math>
<math display="block">\operatorname{Res}_{z=i}f(z)=\frac{e^{-t}}{2i}.</math>
अवशिष्ट प्रमेय के अनुसार, हमारे पास है
अवशिष्ट प्रमेय के अनुसार, हमारे पास निम्न है
<math display="block">\int_C f(z)\,dz=2\pi i\cdot\operatorname{Res}\limits_{z=i}f(z)=2\pi i \frac{e^{-t}}{2i} = \pi e^{-t}.</math>
<math display="block">\int_C f(z)\,dz=2\pi i\cdot\operatorname{Res}\limits_{z=i}f(z)=2\pi i \frac{e^{-t}}{2i} = \pi e^{-t}.</math>
समोच्च {{mvar|C}} को सीधे भाग और घुमावदार चाप में विभाजित किया जा सकता है, ताकि
समोच्च {{mvar|C}} को सीधे भाग और घुमावदार चाप में विभाजित किया जा सकता है, ताकि
Line 46: Line 46:
और
और
<math display="block">\lim_{a \to \infty} \frac{\pi a}{a^2-1} = 0.</math>
<math display="block">\lim_{a \to \infty} \frac{\pi a}{a^2-1} = 0.</math>
अंश पर अनुमान इस प्रकार है {{math|''t'' > 0}}, और सम्मिश्र संख्याओं के लिए {{mvar|z}} चाप के साथ (जो ऊपरी अर्ध-तल में स्थित है), तर्क {{mvar|φ}} का {{mvar|z}} 0 और के बीच स्थित है {{pi}}. इसलिए,
अंश पर अनुमान t> 0 के बाद से है, और चाप के साथ जटिल संख्या z के लिए (जो ऊपरी अर्ध-तल में स्थित है), z का तर्क φ 0 और π के बीच स्थित है। इसलिए,
<math display="block">\left|e^{itz}\right| = \left|e^{it|z|(\cos\varphi + i\sin\varphi)}\right|=\left|e^{-t|z|\sin\varphi + it|z|\cos\varphi}\right|=e^{-t|z| \sin\varphi} \le 1.</math>
<math display="block">\left|e^{itz}\right| = \left|e^{it|z|(\cos\varphi + i\sin\varphi)}\right|=\left|e^{-t|z|\sin\varphi + it|z|\cos\varphi}\right|=e^{-t|z| \sin\varphi} \le 1.</math>
इसलिए,
इसलिए,
<math display="block">\int_{-\infty}^\infty \frac{e^{itz}}{z^2+1}\,dz=\pi e^{-t}.</math>
<math display="block">\int_{-\infty}^\infty \frac{e^{itz}}{z^2+1}\,dz=\pi e^{-t}.</math>
अगर {{math|''t'' < 0}} फिर चाप के साथ एक समान तर्क {{math|{{prime|''C''}}}} जो चारों ओर घूमता है {{math|−''i''}} इसके बजाय {{math|''i''}} पता चलता है कि
यदि t < 0 तो चाप C' के साथ एक समान तर्क जो i के स्थान पर -i के चारों ओर घूमता है, वह दिखाता है


[[Image:Contour example 2.svg|right|300px|thumb|समोच्च {{math|{{prime|''C''}}}}.]]
[[Image:Contour example 2.svg|right|300px|thumb|समोच्च {{math|{{prime|''C''}}}}.]]
Line 57: Line 57:
और अंत में हमारे पास है
और अंत में हमारे पास है
<math display="block">\int_{-\infty}^\infty\frac{e^{itz}}{z^2+1}\,dz=\pi e^{-\left|t\right|}.</math>
<math display="block">\int_{-\infty}^\infty\frac{e^{itz}}{z^2+1}\,dz=\pi e^{-\left|t\right|}.</math>
(अगर {{math|1=''t'' = 0}} तब समाकलन प्राथमिक कलन पद्धतियों के लिए तुरंत उत्पन्न होता है और इसका मूल्य है {{pi}}.)
(अगर {{math|1=''t'' = 0}} तब समाकलन प्राथमिक कलन पद्धतियों के लिए तुरंत उत्पन्न होता है और इसका मूल्य {{pi}} है।)


=== एक अनंत राशि ===
=== एक अनंत राशि ===
यह तथ्य कि {{math|''π'' cot(''πz'')}} में प्रत्येक पूर्णांक पर अवशेष 1 के साथ साधारण ध्रुव होते हैं जिनका उपयोग योग की गणना के लिए किया जा सकता है
यह तथ्य कि {{math|''π'' cot(''πz'')}} में प्रत्येक पूर्णांक पर अवशेष 1 के साथ साधारण ध्रुव होते हैं जिनका उपयोग योग की गणना के लिए किया जा सकता है
<math display="block"> \sum_{n=-\infty}^\infty f(n).</math>
<math display="block"> \sum_{n=-\infty}^\infty f(n).</math>
उदाहरण के लिए विचार करें, {{math|1=''f''(''z'') = ''z''<sup>−2</sup>}}. होने देना {{math|Γ<sub>''N''</sub>}} वह आयत हो जिसकी सीमा है {{math|[−''N'' − {{sfrac|1|2}}, ''N'' + {{sfrac|1|2}}]<sup>2</sup>}} सकारात्मक अभिविन्यास के साथ, एक पूर्णांक के साथ {{mvar|N}}. अवशेष सूत्र द्वारा,
उदाहरण के लिए, f(z) = z−2 पर विचार करें। मान लीजिए कि ΓN आयत है जो {{math|[−''N'' − {{sfrac|1|2}}, ''N'' + {{sfrac|1|2}}]<sup>2</sup>}} की सीमा है, जिसमें पूर्णांक {{mvar|N}} के साथ अभिविन्यास है। अवशेष सूत्र द्वारा,


<math display="block">\frac{1}{2 \pi i} \int_{\Gamma_N} f(z) \pi \cot(\pi z) \, dz = \operatorname{Res}\limits_{z = 0} + \sum_{n = -N \atop n\ne 0}^N n^{-2}.</math>
<math display="block">\frac{1}{2 \pi i} \int_{\Gamma_N} f(z) \pi \cot(\pi z) \, dz = \operatorname{Res}\limits_{z = 0} + \sum_{n = -N \atop n\ne 0}^N n^{-2}.</math>
बाएं हाथ की ओर शून्य हो जाता है {{math|''N'' → ∞}} चूंकि इंटीग्रैंड में ऑर्डर है <math>O(n^{-2})</math>. वहीं दूसरी ओर,<ref>{{harvnb|Whittaker|Watson|1920|loc=§7.2|page=125}}. Note that the Bernoulli number <math>B_{2n}</math> is denoted by <math>B_{n}</math> in Whittaker & Watson's book.</ref>
'''बाएं हाथ की ओर शून्य हो जाता''' है {{math|''N'' → ∞}} चूंकि इंटीग्रैंड में ऑर्डर है <math>O(n^{-2})</math>. वहीं दूसरी ओर,<ref>{{harvnb|Whittaker|Watson|1920|loc=§7.2|page=125}}. Note that the Bernoulli number <math>B_{2n}</math> is denoted by <math>B_{n}</math> in Whittaker & Watson's book.</ref>


<math display="block">\frac{z}{2} \cot\left(\frac{z}{2}\right) = 1 - B_2 \frac{z^2}{2!} + \cdots </math> जहां [[बरनौली संख्या]] <math>B_2 = \frac{1}{6}.</math>
<math display="block">\frac{z}{2} \cot\left(\frac{z}{2}\right) = 1 - B_2 \frac{z^2}{2!} + \cdots </math> जहां [[बरनौली संख्या]] <math>B_2 = \frac{1}{6}.</math>

Revision as of 11:08, 24 March 2023

जटिल विश्लेषण में, अवशिष्ट प्रमेय, जिसे कभी-कभी कौशी का अवशिष्ट प्रमेय भी कहा जाता है, बंद वक्रों पर विश्लेषणात्मक कार्यों के रेखा अभिन्न का मूल्यांकन करने के लिए एक शक्तिशाली उपकरण है; इसका उपयोग प्रायः वास्तविक अभिन्न और अनंत श्रृंखला की गणना करने के लिए भी किया जा सकता है। यह कॉशी पूर्णांकी प्रमेय और कॉची अभिन्न प्रमेय का सामान्यीकरण करता है। एक ज्यामितीय परिप्रेक्ष्य से, इसे सामान्यीकृत स्टोक्स प्रमेय की विशेष स्तिथि के रूप में देखा जा सकता है।

कथन

बयान इस प्रकार है:

सम्मुच्चयिंग का चित्रण।

मान लीजिये U a1, ..., an बिंदुओं की एक परिमित सूची वाले जटिल तल का एक सरल रूप से जुड़ा हुआ खुला उपसमुच्चय है ,

U0 = U \ {a1, …, an},

और एक फलन f U0 पर परिभाषित और पूर्णसममितिक फलन है। मान लीजिये γ में एक बंद संशोधनीय वक्र U0 है, और γ की घुमावदार संख्या को ak के आस-पास I(γ, ak) से निरूपित करें। γ के चारों ओर f का लाइन इंटीग्रल बिंदुओं पर f के अवशेषों के योग के 2πi गुणा के बराबर है, हर किसी को उतने बार गिना जाता है जितने बार γ निम्न बिंदु पर घुमाव लेता है:

अगर γ वक्र अभिविन्यास जॉर्डन वक्र है तो, I(γ, ak) = 1 अगर ak γ के भीतरी भाग में है, और यदि नहीं है तो 0 है,
γ के अंदर उन ak योग के साथ है।[1]

अवशिष्ट प्रमेय का स्टोक्स प्रमेय से संबंध जॉर्डन वक्र प्रमेय द्वारा दिया गया है। सामान्य समतल वक्र γ को पहले सरल बंद वक्रों {γi} के एक सम्मुच्चय में कम किया जाना चाहिए जिसका योग γ एकीकरण उद्देश्यों के लिए बराबर है; यह आंतरिक V के साथ जॉर्डन वक्र γi के साथ f dz का समाकलन ज्ञात करने की समस्या को कम करता है। f U0 = U \ {ak}पर पूर्णसममितिक होने की आवश्यकता इस कथन के बराबर है कि बाह्य व्युत्पन्न d(f dz) = 0 पर U0 है। इस प्रकार यदि U के दो तलीय क्षेत्र V और W, {ak} के समान उपसमुच्चय {aj} को घेरते हैं, तो क्षेत्र V \ W और W \ V पूरी तरह से U0 में स्थित होते हैं, और इसलिए

अच्छी तरह से परिभाषित और शून्य के बराबर है। नतीजतन, f dz का समोच्च अभिन्न साथ में γj = ∂V पथ λj के साथ समाकलों के समुच्चय के योग के बराबर है, प्रत्येक एकल aj के चारों ओर स्वेच्छतः छोटे क्षेत्र को घेरता है -{aj} पर f के अवशेष (पारंपरिक कारक 2πi तक)। {γj} पर सारांश, हम घुमावदार संख्या {I(γ, ak)} के संदर्भ में समोच्च अभिन्न की अंतिम अभिव्यक्ति को पुनर्प्राप्त करते हैं।

वास्तविक समाकलों का मूल्यांकन करने के लिए, अवशिष्ट प्रमेय का उपयोग निम्नलिखित तरीके से किया जाता है: समाकलन को जटिल तल तक विस्तारित किया जाता है और इसके अवशेषों की गणना की जाती है (जो सामान्यतः आसान होता है), और वास्तविक अक्ष का एक हिस्सा ऊपरी या निचले अर्ध समतल में एक अर्ध-चक्र संलग्न करके एक अर्धवृत्त बनाकर एक बंद वक्र तक बढ़ाया जाता है। इस वक्र पर समाकलन की गणना अवशिष्ट प्रमेय का उपयोग करके की जा सकती है। प्रायः, समाकल का अर्ध-वृत्त भाग शून्य की ओर झुक जाता है, क्योंकि अर्ध-वृत्त की त्रिज्या बढ़ती है, केवल समाकल का वास्तविक-अक्ष भाग छोड़ता है, जिसमें हम मूल रूप से रुचि रखते थे।

उदाहरण

वास्तविक अक्ष के साथ एक अभिन्न

अभिन्न

समोच्च C.

कॉची वितरण के विशिष्ट कार्य (संभावना सिद्धांत) की गणना करते समय संभाव्यता सिद्धांत में उत्पन्न होता है। यह प्रारंभिक कलन की तकनीकों का विरोध करता है लेकिन इसे समोच्च समाकलों की सीमा के रूप में व्यक्त करके मूल्यांकन किया जा सकता है।

मान लीजिए t > 0 और समोच्च C को परिभाषित करें जो वास्तविक रेखा के साथ -a से a तक जाता है और फिर 0 से -a पर केंद्रित अर्धवृत्त के साथ वामावर्त। a को 1 से a को 1 से बड़ा लें, जिससे कि काल्पनिक इकाई i वक्र के भीतर बंद हो लें, जिससे कि काल्पनिक इकाई i वक्र के भीतर बंद हो। अब समोच्च अभिन्न पर विचार करें

चूँकि eitz एक संपूर्ण कार्य है (जटिल तल में किसी भी बिंदु पर कोई विलक्षणता नहीं है), इस कार्य में केवल एकवचन है जहाँ भाजक z2 + 1 शून्य है। चूँकि z2 + 1 = (z + i)(zi), यह केवल वहीं होता है जहाँ z = i या z = −i। उनमें से केवल एक बिंदु इस समोच्च से घिरे क्षेत्र में है। क्योंकि f(z) निम्न है
z = i पर f(z) के अवशेष (जटिल विश्लेषण) है
अवशिष्ट प्रमेय के अनुसार, हमारे पास निम्न है
समोच्च C को सीधे भाग और घुमावदार चाप में विभाजित किया जा सकता है, ताकि
और इस तरह
कुछ अनुमान लेम्मा का उपयोग करके, हमारे पास है
और
अंश पर अनुमान t> 0 के बाद से है, और चाप के साथ जटिल संख्या z के लिए (जो ऊपरी अर्ध-तल में स्थित है), z का तर्क φ 0 और π के बीच स्थित है। इसलिए,
इसलिए,
यदि t < 0 तो चाप C' के साथ एक समान तर्क जो i के स्थान पर -i के चारों ओर घूमता है, वह दिखाता है

समोच्च C.

और अंत में हमारे पास है
(अगर t = 0 तब समाकलन प्राथमिक कलन पद्धतियों के लिए तुरंत उत्पन्न होता है और इसका मूल्य π है।)

एक अनंत राशि

यह तथ्य कि π cot(πz) में प्रत्येक पूर्णांक पर अवशेष 1 के साथ साधारण ध्रुव होते हैं जिनका उपयोग योग की गणना के लिए किया जा सकता है

उदाहरण के लिए, f(z) = z−2 पर विचार करें। मान लीजिए कि ΓN आयत है जो [−N1/2, N + 1/2]2 की सीमा है, जिसमें पूर्णांक N के साथ अभिविन्यास है। अवशेष सूत्र द्वारा,

बाएं हाथ की ओर शून्य हो जाता है N → ∞ चूंकि इंटीग्रैंड में ऑर्डर है . वहीं दूसरी ओर,[2]

जहां बरनौली संख्या (वास्तव में, z/2 cot(z/2) = iz/1 − eiziz/2।) इस प्रकार, अवशेष Resz=0 है π2/3. हम निष्कर्ष निकालते हैं:

जो बेसल समस्या का प्रमाण है।

आइज़ेंस्टीन श्रृंखला का योग स्थापित करने के लिए एक ही चाल का उपयोग किया जा सकता है:

हम लेते हैं f(z) = (wz)−1 साथ w एक गैर-पूर्णांक और हम उपरोक्त के लिए दिखाएंगे w. इस मामले में कठिनाई अनंत पर समोच्च समाकल के गायब होने को दर्शाने की है। अपने पास:
चूँकि समाकलन एक समान कार्य है और इसलिए बाएँ-आधे तल में समोच्च से योगदान और दाईं ओर समोच्च एक दूसरे को रद्द कर देते हैं। इस प्रकार,
के रूप में शून्य हो जाता है N → ∞.

यह भी देखें

  • कॉची का अभिन्न सूत्र
  • ग्लासर का मास्टर प्रमेय
  • जॉर्डन की लेम्मा
  • समोच्च एकीकरण के तरीके
  • मोरेरा की प्रमेय
  • नाचबिन का प्रमेय
  • अवशेष अनंत पर
  • लघुगणक रूप

टिप्पणियाँ

  1. Whittaker & Watson 1920, p. 112, §6.1.
  2. Whittaker & Watson 1920, p. 125, §7.2. Note that the Bernoulli number is denoted by in Whittaker & Watson's book.


संदर्भ

  • Ahlfors, Lars (1979). Complex Analysis. McGraw Hill. ISBN 0-07-085008-9.
  • Lindelöf, Ernst L. (1905). Le calcul des résidus et ses applications à la théorie des fonctions (in français). Editions Jacques Gabay (published 1989). ISBN 2-87647-060-8.
  • Mitrinović, Dragoslav; Kečkić, Jovan (1984). The Cauchy method of residues: Theory and applications. D. Reidel Publishing Company. ISBN 90-277-1623-4.
  • Whittaker, E. T.; Watson, G. N. (1920). A Course of Modern Analysis (3rd ed.). Cambridge University Press.


बाहरी संबंध