जटिल विश्लेषण में, अवशिष्ट प्रमेय, जिसे कभी-कभी कौशी का अवशिष्ट प्रमेय भी कहा जाता है, बंद वक्रों पर विश्लेषणात्मक कार्यों के रेखा अभिन्न का मूल्यांकन करने के लिए एक शक्तिशाली उपकरण है; इसका उपयोग प्रायः वास्तविक अभिन्न और अनंत श्रृंखला की गणना करने के लिए भी किया जा सकता है। यह कॉशी पूर्णांकी प्रमेय और कॉची अभिन्न प्रमेय का सामान्यीकरण करता है। एक ज्यामितीय परिप्रेक्ष्य से, इसे सामान्यीकृत स्टोक्स प्रमेय की विशेष स्तिथि के रूप में देखा जा सकता है।
मान लीजिये Ua1, ..., an बिंदुओं की एक परिमित सूची वाले जटिल तल का एक सरल रूप से जुड़ा हुआ खुला उपसमुच्चय है ,
U0 = U \ {a1, …, an},
और एक फलन fU0 पर परिभाषित और पूर्णसममितिक फलन है। मान लीजिये γ में एक बंद संशोधनीय वक्रU0 है, और γ की घुमावदार संख्या को ak के आस-पास I(γ, ak) से निरूपित करें। γ के चारों ओर f का लाइन इंटीग्रल बिंदुओं पर f के अवशेषों के योग के 2πi गुणा के बराबर है, हर किसी को उतने बार गिना जाता है जितने बार γ निम्न बिंदु पर घुमाव लेता है:
यदि γवक्र अभिविन्यासजॉर्डन वक्र है तो, I(γ, ak) = 1 यदि akγ के भीतरी भाग में है, और यदि नहीं है तो 0 है,
अवशिष्ट प्रमेय का स्टोक्स प्रमेय से संबंध जॉर्डन वक्र प्रमेय द्वारा दिया गया है। सामान्य समतल वक्रγ को पहले सरल बंद वक्रों {γi} के एक सम्मुच्चय में कम किया जाना चाहिए जिसका योग γ एकीकरण उद्देश्यों के लिए बराबर है; यह आंतरिक V के साथ जॉर्डन वक्र γi के साथ fdz का समाकलन ज्ञात करने की समस्या को कम करता है। fU0 = U \ {ak}पर पूर्णसममितिक होने की आवश्यकता इस कथन के बराबर है कि बाह्य व्युत्पन्न d(fdz) = 0 पर U0 है। इस प्रकार यदि U के दो तलीय क्षेत्र V और W, {ak} के समान उपसमुच्चय {aj} को घेरते हैं, तो क्षेत्र V \ W और W \ V पूरी तरह से U0 में स्थित होते हैं, और इसलिए
अच्छी तरह से परिभाषित और शून्य के बराबर है। नतीजतन, fdz का समोच्च अभिन्न साथ में γj = ∂V पथ λj के साथ समाकलों के समुच्चय के योग के बराबर है, प्रत्येक एकल aj के चारों ओर स्वेच्छतः छोटे क्षेत्र को घेरता है -{aj} पर f के अवशेष (पारंपरिक कारक 2πi तक)। {γj} पर सारांश, हम घुमावदार संख्या {I(γ, ak)} के संदर्भ में समोच्च अभिन्न की अंतिम अभिव्यक्ति को पुनर्प्राप्त करते हैं।
वास्तविक समाकलों का मूल्यांकन करने के लिए, अवशिष्ट प्रमेय का उपयोग निम्नलिखित तरीके से किया जाता है: समाकलन को जटिल तल तक विस्तारित किया जाता है और इसके अवशेषों की गणना की जाती है (जो सामान्यतः आसान होता है), और वास्तविक अक्ष का एक हिस्सा ऊपरी या निचले अर्ध समतल में एक अर्ध-चक्र संलग्न करके एक अर्धवृत्त बनाकर एक बंद वक्र तक बढ़ाया जाता है। इस वक्र पर समाकलन की गणना अवशिष्ट प्रमेय का उपयोग करके की जा सकती है। प्रायः, समाकल का अर्ध-वृत्त भाग शून्य की ओर झुक जाता है, क्योंकि अर्ध-वृत्त की त्रिज्या बढ़ती है, केवल समाकल का वास्तविक-अक्ष भाग छोड़ता है, जिसमें हम मूल रूप से रुचि रखते थे।
उदाहरण
वास्तविक अक्ष के साथ एक अभिन्न
अभिन्न
समोच्च C.
कॉची वितरण के विशिष्ट कार्य (संभावना सिद्धांत) की गणना करते समय संभाव्यता सिद्धांत में उत्पन्न होता है। यह प्रारंभिक कलन की तकनीकों का विरोध करता है लेकिन इसे समोच्च समाकलों की सीमा के रूप में व्यक्त करके मूल्यांकन किया जा सकता है।
मान लीजिए t > 0 और समोच्च C को परिभाषित करें जो वास्तविक रेखा के साथ -a से a तक जाता है और फिर 0 से -a पर केंद्रित अर्धवृत्त के साथ वामावर्त। a को 1 से a को 1 से बड़ा लें, जिससे कि काल्पनिक इकाई i वक्र के भीतर बंद हो लें, जिससे कि काल्पनिक इकाई i वक्र के भीतर बंद हो। अब समोच्च अभिन्न पर विचार करें
चूँकि eitz एक संपूर्ण कार्य है (जटिल तल में किसी भी बिंदु पर कोई विलक्षणता नहीं है), इस कार्य में केवल एकवचन है जहाँ भाजक z2 + 1 शून्य है। चूँकि z2 + 1 = (z + i)(z − i), यह केवल वहीं होता है जहाँ z = i या z = −i। उनमें से केवल एक बिंदु इस समोच्च से घिरे क्षेत्र में है। क्योंकि f(z) निम्न है
z = i पर f(z) के अवशेष (जटिल विश्लेषण) है
अवशिष्ट प्रमेय के अनुसार, हमारे पास निम्न है
समोच्च C को सीधे भाग और घुमावदार चाप में विभाजित किया जा सकता है, ताकि
अंश पर अनुमान t> 0 के बाद से है, और चाप के साथ जटिल संख्या z के लिए (जो ऊपरी अर्ध-तल में स्थित है), z का तर्क φ 0 और π के बीच स्थित है। इसलिए,
इसलिए,
यदि t < 0 तो चाप C' के साथ एक समान तर्क जो i के स्थान पर -i के चारों ओर घूमता है, वह दिखाता है
समोच्च C′.
और अंत में हमारे पास है
(यदि t = 0 तब समाकलन प्राथमिक कलन पद्धतियों के लिए तुरंत उत्पन्न होता है और इसका मूल्य π है।)
एक अनंत राशि
यह तथ्य कि π cot(πz) में प्रत्येक पूर्णांक पर अवशेष 1 के साथ साधारण ध्रुव होते हैं जिनका उपयोग योग की गणना के लिए किया जा सकता है
उदाहरण के लिए, f(z) = z−2 पर विचार करें। मान लीजिए कि ΓN आयत है जो [−N − 1/2, N + 1/2]2 की सीमा है, जिसमें पूर्णांक N के साथ अभिविन्यास है। अवशेष सूत्र द्वारा,
बाएं हाथ की ओर N → ∞ के रूप में शून्य हो जाता है चूंकि इंटीग्रैंड में अनुक्रम है। वहीं दूसरी ओर,[2]
जहां बरनौली संख्या
(वास्तव में, z/2 cot(z/2) = iz/1 − e−iz − iz/2।) इस प्रकार, अवशेष Resz=0−π2/3 है। हम निष्कर्ष निकालते हैं:
आइज़ेंस्टीन श्रृंखला का योग स्थापित करने के लिए एक ही चाल का उपयोग किया जा सकता है:
हम f(z) = (w − z)−1 लेते हैं जिसमें w एक पूर्णांक नहीं होता है और हम उपरोक्त को w के लिए दिखाएंगे। इस स्तिथि में कठिनाई अनंत पर समोच्च समाकल के गायब होने को दर्शाने की है। अपने पास निम्न है:
चूँकि समाकलन एक समान कार्य है और इसलिए बाएँ-आधे तल में समोच्च से योगदान और दाईं ओर समोच्च एक दूसरे को रद्द कर देते हैं। इस प्रकार,
Lindelöf, Ernst L. (1905). Le calcul des résidus et ses applications à la théorie des fonctions (in français). Editions Jacques Gabay (published 1989). ISBN2-87647-060-8.
Mitrinović, Dragoslav; Kečkić, Jovan (1984). The Cauchy method of residues: Theory and applications. D. Reidel Publishing Company. ISBN90-277-1623-4.