माप अनिश्चितता: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 3: Line 3:
[[ मैट्रोलोजी |मैट्रोलोजी]] में माप अनिश्चितता, पूर्ण रूप से सुनिश्चित मात्रा के लिए उत्तरदायी मूल्यों के [[ सांख्यिकीय फैलाव |सांख्यिकीय विस्तार]] की अभिव्यक्ति होती है। सभी माप, अनिश्चितता के अधीन और परिणाम उस स्थिति में पूर्ण होता है, जब संबंधित अनिश्चितता का वर्णन होता है, जैसे कि [[ मानक विचलन |मानक विचलन]] आदि I अंतर्राष्ट्रीय अनुबंध के अनुसार, इस अनिश्चितता का आधार संभाव्य होते है, और मात्रा मूल्य के अपूर्ण सूचना को प्रदर्शित करते है। यह अन्य-नकारात्मक पैरामीटर होते है।<ref name=GUM />
[[ मैट्रोलोजी |मैट्रोलोजी]] में माप अनिश्चितता, पूर्ण रूप से सुनिश्चित मात्रा के लिए उत्तरदायी मूल्यों के [[ सांख्यिकीय फैलाव |सांख्यिकीय विस्तार]] की अभिव्यक्ति होती है। सभी माप, अनिश्चितता के अधीन और परिणाम उस स्थिति में पूर्ण होता है, जब संबंधित अनिश्चितता का वर्णन होता है, जैसे कि [[ मानक विचलन |मानक विचलन]] आदि I अंतर्राष्ट्रीय अनुबंध के अनुसार, इस अनिश्चितता का आधार संभाव्य होते है, और मात्रा मूल्य के अपूर्ण सूचना को प्रदर्शित करते है। यह अन्य-नकारात्मक पैरामीटर होते है।<ref name=GUM />


माप अनिश्चितता को प्रायः संभावित मूल्यों पर सूचना की संभावना वितरण के मानक विचलन के रूप में प्राप्त किया जाता है, जिसे पूर्ण रूप से सुनिश्चित मात्रा के लिए उत्तरदायी माना जा सकता है। सापेक्ष अनिश्चितता, पूर्ण रूप से सुनिश्चित की गई मात्रा के मान के लिए किसी विशेष एकल विकल्प के परिमाण के सापेक्ष माप अनिश्चितता होती है, जब यह विकल्प शून्य नहीं होता है। इस विशेष एकल विकल्प को सामान्यतः मापित मूल्य कहा जाता है, जो उत्तम प्रकार से परिभाषित अर्थों में इष्टतम हो सकते है (उदाहरण के लिए, माध्य, माध्यिका या [[ मोड (सांख्यिकी) |मोड (सांख्यिकी)]]) आदि। इस प्रकार, सापेक्ष माप अनिश्चितता मापित मूल्य के पूर्ण से विभाजित, माप अनिश्चितता होती है, जब मापित मूल्य शून्य नहीं होता है।
माप अनिश्चितता को प्रायः संभावित मूल्यों पर सूचना की संभावना वितरण के मानक विचलन के रूप में प्राप्त किया जाता है, जिसे पूर्ण रूप से सुनिश्चित मात्रा के लिए उत्तरदायी माना जा सकता है। सापेक्ष अनिश्चितता, पूर्ण रूप से सुनिश्चित की गई मात्रा के मान के लिए किसी विशेष एकल विकल्प के परिमाण के सापेक्ष माप अनिश्चितता होती है, जब यह विकल्प शून्य नहीं होता है। इस विशेष एकल विकल्प को सामान्यतः मापित मूल्य कहा जाता है, जो उत्तम प्रकार से परिभाषित अर्थों में इष्टतम हो सकते है (उदाहरण के लिए, माध्य, माध्यिका या [[ मोड (सांख्यिकी) |मोड (सांख्यिकी)]]) आदि, इस प्रकार, सापेक्ष माप अनिश्चितता मापित मूल्य के पूर्ण से विभाजित, माप अनिश्चितता होती है, जब मापित मूल्य शून्य नहीं होता है।


== पृष्ठभूमि ==
== पृष्ठभूमि ==
Line 22: Line 22:
उपरोक्त वर्णन, मात्रा के प्रत्यक्ष माप से संबंधित है, जो संयोग से अधिक निम्न होती है। उदाहरण के लिए, स्नानघर का माप वसंत के मापे गए विस्तार को मापक के अनुमान में परिवर्तित कर सकता है, माप पर व्यक्ति का [[ द्रव्यमान |द्रव्यमान]] विस्तार के मध्य विशेष संबंध माप के [[ अंशांकन |अंशांकन]] द्वारा निर्धारित किया जाता है। माप गणितीय प्रारूप के मात्रा मान को माप के संबंधित मूल्य में परिवर्तित करता है।
उपरोक्त वर्णन, मात्रा के प्रत्यक्ष माप से संबंधित है, जो संयोग से अधिक निम्न होती है। उदाहरण के लिए, स्नानघर का माप वसंत के मापे गए विस्तार को मापक के अनुमान में परिवर्तित कर सकता है, माप पर व्यक्ति का [[ द्रव्यमान |द्रव्यमान]] विस्तार के मध्य विशेष संबंध माप के [[ अंशांकन |अंशांकन]] द्वारा निर्धारित किया जाता है। माप गणितीय प्रारूप के मात्रा मान को माप के संबंधित मूल्य में परिवर्तित करता है।


अभ्यास में अनेक प्रकार के माप होते हैं, और इसलिए अनेक प्रारूप होते हैं। साधारण माप प्रारूप (उदाहरण माप के लिए, जहां द्रव्यमान वसंत के विस्तार के समानुपाती होता है) प्रतिदिन के घरेलू उपयोग के लिए पर्याप्त हो सकते है। वैकल्पिक रूप से, भार का अधिक परिष्कृत प्रारूप, जिसमें वायु उत्प्लावकता जैसे अतिरिक्त प्रभाव सम्मलित होते हैं, औद्योगिक या वैज्ञानिक उद्देश्यों के लिए उत्तम परिणाम देने में सक्षम होते है। प्रायः अनेक भिन्न-भिन्न मात्राएं होती हैं, उदाहरण के लिए [[ तापमान |तापमान,]] आर्द्रता और [[ विस्थापन (वेक्टर) |विस्थापन (सदिश)]] आदि, जो मापने की परिभाषा में योगदान देते है, और जिसे मापने की आवश्यकता होती है।
अभ्यास में अनेक प्रकार के माप होते हैं, और इसलिए अनेक प्रारूप होते हैं। साधारण माप प्रारूप (उदाहरण माप के लिए, जहां द्रव्यमान वसंत के विस्तार के समानुपाती होता है) प्रतिदिन के घरेलू उपयोग के लिए पर्याप्त हो सकते है। वैकल्पिक रूप से, भार का अधिक परिष्कृत प्रारूप, जिसमें वायु उत्प्लावकता जैसे अतिरिक्त प्रभाव सम्मलित होते हैं, औद्योगिक या वैज्ञानिक उद्देश्यों के लिए उत्तम परिणाम देने में सक्षम होते है। प्रायः भिन्न-भिन्न मात्राएं होती हैं, उदाहरण के लिए [[ तापमान |तापमान,]] आर्द्रता और [[ विस्थापन (वेक्टर) |विस्थापन]] आदि, जो मापने की परिभाषा में योगदान देते है, और जिसे मापने की आवश्यकता होती है।


संशोधित नियमो को माप प्रारूप में सम्मलित किया जाना चाहिए, जब माप के नियम निर्धारित नहीं होते हैं। ये शब्द व्यवस्थित त्रुटियों के अनुरूप होते हैं। संशोधन अवधि के अनुमान को देखते हुए, प्रासंगिक मात्रा को इस अनुमान से उचित किया जाना चाहिए। कि अनुमान के साथ अनिश्चितता जुड़ी होगी, भले ही अनुमान शून्य हो, जैसा कि प्रायः होता है। ऊंचाई माप में व्यवस्थित त्रुटियों के उदाहरण उत्पन्न होते हैं, जब मापने के उपकरण का संरेखण पूर्ण रूप से लंबवत नहीं होता है, और परिवेश का तापमान निर्धारित से भिन्न होता है। न तो उपकरण का संरेखण और न ही परिवेश का तापमान उचित रूप से निर्दिष्ट किया गया है, किन्तु इन प्रभावों से संबंधित सूचना उपलब्ध है, उदाहरण के लिए संरेखण की कमी अधिकतम 0.001 डिग्री है, और माप के समय परिवेश का तापमान अधिकतम 2 डिग्री सेल्सियस होता है।
संशोधित नियमो को माप प्रारूप में सम्मलित किया जाना चाहिए, जब माप के नियम निर्धारित नहीं होते हैं। ये शब्द व्यवस्थित त्रुटियों के अनुरूप होते हैं। संशोधन अवधि के अनुमान को देखते हुए, प्रासंगिक मात्रा को इस अनुमान से उचित किया जाना चाहिए I जिससे अनुमान के साथ अनिश्चितता जुड़ी होगी, भले ही अनुमान शून्य हो, जैसा कि प्रायः होता है। ऊंचाई माप में व्यवस्थित त्रुटियों के उदाहरण उत्पन्न होते हैं, जब मापने के उपकरण का संरेखण पूर्ण रूप से लंबवत नहीं होता है, और परिवेश का तापमान निर्धारित से भिन्न होता है। उपकरण का संरेखण और न ही परिवेश का तापमान उचित रूप से निर्दिष्ट किया गया है, किन्तु इन प्रभावों से संबंधित सूचना उपलब्ध है, उदाहरण के लिए संरेखण की कमी अधिकतम 0.001 डिग्री है, और माप के समय परिवेश का तापमान अधिकतम 2 डिग्री सेल्सियस होता है।


साथ ही मापित मूल्यों का प्रतिनिधित्व करने वाले कच्चे डेटा का रूप होते है, जो मापन प्रारूप में प्रायः आवश्यक होता है। कुछ ऐसे डेटा [[ भौतिक स्थिरांक |भौतिक स्थिरांकों]] का प्रतिनिधित्व करने वाली मात्राओं से संबंधित होते हैं, जिनमें से प्रत्येक को अपूर्ण रूप से जाना जाता है। उदाहरण:- [[ लोचदार मापांक |लोचदार मापांक]] और विशिष्ट ताप क्षमता आदि। संदर्भ पुस्तकों, अंशांकन प्रमाणपत्रों आदि में प्रायः अन्य प्रासंगिक डेटा दिए जाते हैं, जिन्हें अग्रिम मात्रा के अनुमान के रूप में माना जाता है।
साथ ही मापित मूल्यों का प्रतिनिधित्व करने वाले कच्चे आंकड़ों का रूप होते है, जो मापन प्रारूप में प्रायः आवश्यक होता है। कुछ ऐसे आंकड़े [[ भौतिक स्थिरांक |भौतिक स्थिरांकों]] का प्रतिनिधित्व करने वाली मात्राओं से संबंधित होते हैं, जिनमें से प्रत्येक को अपूर्ण रूप से जाना जाता है। उदाहरण:- [[ लोचदार मापांक |लोचदार मापांक]] और विशिष्ट ताप क्षमता आदि। संदर्भ पुस्तकों, अंशांकन प्रमाणपत्रों आदि में प्रायः अन्य प्रासंगिक डेटा दिए जाते हैं, जिन्हें अग्रिम मात्रा के अनुमान के रूप में माना जाता है।


मापन प्रारूप द्वारा मापने के लिए आवश्यक वस्तुओं को इनपुट मात्रा के रूप में जाना जाता है। प्रारूप को प्रायः कार्यात्मक संबंध के रूप में जाना जाता है। मापन प्रारूप में आउटपुट मात्रा मापक होता है।
मापन प्रारूप द्वारा मापने के लिए आवश्यक वस्तुओं को इनपुट मात्रा के रूप में जाना जाता है। प्रारूप को प्रायः कार्यात्मक संबंध के रूप में जाना जाता है। मापन प्रारूप में आउटपुट मात्रा मापक होता है।


औपचारिक रूप से, आउटपुट मात्रा, द्वारा निरूपित <math>Y</math>, जिसके सम्बन्ध में सूचना की आवश्यकता होती है, जो प्रायः इनपुट मात्रा से संबंधित होता है, जिसे <math>X_1,\ldots,X_N</math> द्वारा दर्शाया जाता है I जिसके सम्बन्ध में सूचना मापन प्रारूप के रूप में उपलब्ध होती है I
औपचारिक रूप से, आउटपुट मात्रा, द्वारा निरूपित <math>Y</math>, जिसके सम्बन्ध में सूचना की आवश्यकता होती है, जो प्रायः इनपुट मात्रा से संबंधित होता है, जिसे <math>X_1,\ldots,X_N</math> द्वारा दर्शाया जाता है I जिसके सम्बन्ध में सूचना मापन प्रारूप के रूप में उपलब्ध होती है I


:<math>Y = f(X_1,\ldots,X_N),</math>
:<math>Y = f(X_1,\ldots,X_N),</math>
जहाँ फंक्शन <math>f</math> माप के रूप में जाना जाता है। माप प्रारूप के लिए सामान्य अभिव्यक्ति इस प्रकार है:-
जहाँ फलन <math>f</math> माप के रूप में जाना जाता है। माप प्रारूप के लिए सामान्य अभिव्यक्ति इस प्रकार है:-


:<math>h(Y,</math> <math>X_1,\ldots,X_N) = 0.</math>
:<math>h(Y,</math> <math>X_1,\ldots,X_N) = 0.</math>
Line 42: Line 42:
इनपुट मात्राओं का उत्तम मान <math>X_1,\ldots,X_N</math> अज्ञात होता हैं। जीयूएम दृष्टिकोण में, <math>X_1,\ldots,X_N</math> संभाव्यता वितरण द्वारा विशेषता होती है, और गणितीय रूप से यादृच्छिक चर के रूप में व्यवहार करती है। ये वितरण विभिन्न अंतरालों में उपस्थित उनके वास्तविक मूल्यों की संबंधित संभावनाओं का वर्णन करते हैं, और संबंधित उपलब्ध सूचना के आधार पर आवंटित किए जाते हैं I <math>X_1,\ldots,X_N</math> कभी-कभी, कुछ या सभी {{nowrap|<math>X_1,\ldots, X_N</math>}} परस्पर संबंधित होते हैं, और प्रासंगिक वितरण, जिन्हें [[ संयुक्त संभाव्यता वितरण |संयुक्त संभाव्यता वितरण]] के रूप में जाना जाता है, जो साथ में ली गई मात्राओं पर प्रारम्भ होते हैं।
इनपुट मात्राओं का उत्तम मान <math>X_1,\ldots,X_N</math> अज्ञात होता हैं। जीयूएम दृष्टिकोण में, <math>X_1,\ldots,X_N</math> संभाव्यता वितरण द्वारा विशेषता होती है, और गणितीय रूप से यादृच्छिक चर के रूप में व्यवहार करती है। ये वितरण विभिन्न अंतरालों में उपस्थित उनके वास्तविक मूल्यों की संबंधित संभावनाओं का वर्णन करते हैं, और संबंधित उपलब्ध सूचना के आधार पर आवंटित किए जाते हैं I <math>X_1,\ldots,X_N</math> कभी-कभी, कुछ या सभी {{nowrap|<math>X_1,\ldots, X_N</math>}} परस्पर संबंधित होते हैं, और प्रासंगिक वितरण, जिन्हें [[ संयुक्त संभाव्यता वितरण |संयुक्त संभाव्यता वितरण]] के रूप में जाना जाता है, जो साथ में ली गई मात्राओं पर प्रारम्भ होते हैं।


अनुमानों पर विचार करें I <math>x_1,\ldots,x_N</math>, क्रमशः, इनपुट मात्रा का <math>X_1,\ldots,X_N</math>, प्रमाण पत्र और रिपोर्ट, निर्माताओं के विनिर्देशों, माप डेटा का विश्लेषण इसी प्रकार से प्राप्त किया गया हैं। संभाव्यता वितरण लक्षण वर्णन <math>X_1,\ldots,X_N</math> ऐसे चयन किये जाते हैं कि, अनुमान <math>x_1,\ldots,x_N</math>, क्रमशः <math>X_1,\ldots,X_N</math> का [[ अपेक्षित मूल्य |अपेक्षित मूल्य]] होता हैं I<ref name="JCGM 101">[http://www.bipm.org/utils/common/documents/jcgm/JCGM_101_2008_E.pdf JCGM 101:2008. Evaluation of measurement data – Supplement 1 to the "Guide to the expression of uncertainty in measurement" – Propagation of distributions using a Monte Carlo method]. Joint Committee for Guides in Metrology.</ref> इसके अतिरिक्त, <math>i</math>वें इनपुट मात्रा के लिए, तथाकथित मानक अनिश्चितता पर विचार करें I <math>u(x_i)</math> मानक विचलन के रूप में <math>X_i</math> को परिभाषित किया गया है I<ref name="JCGM 101" /> इस मानक अनिश्चितता को <math>x_i</math> से जुड़ा हुआ कहा जाता है I
<math>x_1,\ldots,x_N</math>, क्रमशः, इनपुट मात्रा का <math>X_1,\ldots,X_N</math>, प्रमाण पत्र और रिपोर्ट, निर्माताओं के विनिर्देशों, माप डेटा का विश्लेषण इसी प्रकार से प्राप्त किया गया हैं। संभाव्यता वितरण लक्षण वर्णन <math>X_1,\ldots,X_N</math> ऐसे चयन किये जाते हैं कि, अनुमान <math>x_1,\ldots,x_N</math>, क्रमशः <math>X_1,\ldots,X_N</math> का [[ अपेक्षित मूल्य |अपेक्षित मूल्य]] होता हैं I<ref name="JCGM 101">[http://www.bipm.org/utils/common/documents/jcgm/JCGM_101_2008_E.pdf JCGM 101:2008. Evaluation of measurement data – Supplement 1 to the "Guide to the expression of uncertainty in measurement" – Propagation of distributions using a Monte Carlo method]. Joint Committee for Guides in Metrology.</ref> इसके अतिरिक्त, <math>i</math>वें इनपुट मात्रा के लिए, तथाकथित मानक अनिश्चितता पर विचार करें I <math>u(x_i)</math> मानक विचलन के रूप में <math>X_i</math> को परिभाषित किया गया है I<ref name="JCGM 101" /> इस मानक अनिश्चितता को <math>x_i</math> से जुड़ा हुआ कहा जाता है I


ब्याज की प्रत्येक मात्रा को चिह्नित करके संभाव्यता वितरण स्थापित करने के लिए उपलब्ध सूचना का उपयोग प्रारम्भ होता है I <math>X_i</math> और <math>Y</math> पश्चात् की स्थिति में, विशेषता के लिए <math>Y</math> संभाव्यता वितरण के साथ माप प्रारूप द्वारा निर्धारित किया जाता है I <math>X_i</math> के लिए संभाव्यता वितरण का निर्धारण <math>Y</math> होता है I इस सूचना को वितरण के प्रसार के रूप में जाना जाता है।<ref name="JCGM 101" />
ब्याज की प्रत्येक मात्रा को चिह्नित करके संभाव्यता वितरण स्थापित करने के लिए उपलब्ध सूचना का उपयोग प्रारम्भ होता है I <math>X_i</math> और <math>Y</math> पश्चात् की स्थिति में, विशेषता के लिए <math>Y</math> संभाव्यता वितरण के साथ माप प्रारूप द्वारा निर्धारित किया जाता है I <math>X_i</math> के लिए संभाव्यता वितरण का निर्धारण <math>Y</math> होता है I इस सूचना को वितरण के प्रसार के रूप में जाना जाता है।<ref name="JCGM 101" />
Line 51: Line 51:
[[/index.php?title=Special:MathShowImage&hash=0d5fa3f335333b23d4aaf795d1336587&mode=mathml|दो इनपुट मात्राओं के साथ योज्य माप फ़ंक्शन <math>X_1</math> और <math>X_2</math> आयताकार संभाव्यता वितरण द्वारा]] इनपुट मात्रा <math>X_1,\ldots,X_N</math> दी गई है, और माप प्रारूप विकसित किया गया है, मापने के लिए संभावना वितरण <math>Y</math> के संदर्भ में पूर्ण रूप से निर्दिष्ट होता है। विशेष रूप से <math>Y</math> के अनुमान के रूप में प्रयोग किया जाता है, <math>Y</math> का मानक विचलन इस अनुमान से जुड़ी अनिश्चितता के रूप में होता है।
[[/index.php?title=Special:MathShowImage&hash=0d5fa3f335333b23d4aaf795d1336587&mode=mathml|दो इनपुट मात्राओं के साथ योज्य माप फ़ंक्शन <math>X_1</math> और <math>X_2</math> आयताकार संभाव्यता वितरण द्वारा]] इनपुट मात्रा <math>X_1,\ldots,X_N</math> दी गई है, और माप प्रारूप विकसित किया गया है, मापने के लिए संभावना वितरण <math>Y</math> के संदर्भ में पूर्ण रूप से निर्दिष्ट होता है। विशेष रूप से <math>Y</math> के अनुमान के रूप में प्रयोग किया जाता है, <math>Y</math> का मानक विचलन इस अनुमान से जुड़ी अनिश्चितता के रूप में होता है।


<math>Y</math> प्रायः अंतराल युक्त निर्दिष्ट संभावना के साथ आवश्यक होता है। इस प्रकार के अंतराल को आवृत्त क्षेत्र के संभाव्यता वितरण से घटाया जा सकता है I <math>Y</math> निर्दिष्ट को आवृत्त क्षेत्र संभावना के रूप में जाना जाता है। किसी दिए गए आवृत्त क्षेत्र की प्रायिकता के लिए अधिक क्षेत्र अंतराल होते हैं। संभाव्य रूप से सममित आवृत्त क्षेत्र अंतराल है, जिसके लिए अंतराल के बाईं और दाईं ओर के मूल्य की संभावनाएं समान होती हैं। सबसे छोटा आवृत्त क्षेत्र अंतराल ऐसा है, जिसके लिए समान आवृत्त क्षेत्र संभावना अंतरालों पर लंबाई सबसे निम्न होती है।
<math>Y</math> प्रायः अंतराल युक्त निर्दिष्ट संभावना के साथ आवश्यक होता है। इस प्रकार के अंतराल को आवृत्त क्षेत्र के संभाव्यता वितरण से घटाया जा सकता है I <math>Y</math> निर्दिष्ट को आवृत्त क्षेत्र संभावना के रूप में जाना जाता है। किसी दिए गए आवृत्त क्षेत्र की प्रायिकता के लिए अधिक क्षेत्र अंतराल होते हैं। संभाव्य रूप से सममित आवृत्त क्षेत्र अंतराल है, जिसके लिए अंतराल के बाईं और दाईं ओर के मूल्य की संभावनाएं समान होती हैं। सबसे छोटा आवृत्त क्षेत्र अंतराल है, जिसके लिए समान आवृत्त क्षेत्र संभावना अंतरालों पर लंबाई निम्न होती है।


आउटपुट मात्रा के उचित मूल्य के सम्बन्ध में पूर्व सूचना <math>Y</math> भी माना जा सकता है। घरेलू मापन के लिए, तथ्य यह है कि व्यक्ति का द्रव्यमान सकारात्मक है, और यह मोटर कार के अतिरिक्त व्यक्ति का द्रव्यमान होता है, जिसे मापा जा रहा है, दोनों माप के संभावित मूल्यों के सम्बन्ध में पूर्व सूचना का गठन करते हैं। इस प्रकार की अतिरिक्त सूचना का उपयोग संभाव्यता वितरण प्रदान करने के लिए किया जा सकता है I <math>Y</math> के लिए एक छोटा मानक विचलन <math>Y</math> दे सकते है, और इसलिए <math>Y</math> के अनुमान से जुड़ी छोटी मानक अनिश्चितता होती है I<ref>Bernardo, J., and Smith, A. "Bayesian Theory". John Wiley & Sons, New York, USA, 2000. 3.20</ref><ref>{{Cite journal|doi = 10.1088/0026-1394/44/2/002|title = Calculation of uncertainty in the presence of prior knowledge|year = 2007|last1 = Elster|first1 = Clemens|journal = Metrologia|volume = 44|issue = 2|pages = 111–116|bibcode = 2007Metro..44..111E| s2cid=123445853 }}</ref><ref>[http://www.measurementuncertainty.org/guide/index.html EURACHEM/CITAC. "Quantifying uncertainty in analytical measurement"]. Tech. Rep. Guide CG4, EU-RACHEM/CITEC, EURACHEM/CITAC Guide&#93;, 2000. Second edition.</ref>
आउटपुट मात्रा के उचित मूल्य के सम्बन्ध में पूर्व सूचना <math>Y</math> भी माना जा सकता है। घरेलू मापन के लिए, तथ्य यह है कि व्यक्ति का द्रव्यमान सकारात्मक है, और यह मोटर कार के अतिरिक्त व्यक्ति का द्रव्यमान होता है, जिसे मापा जा रहा है, दोनों माप के संभावित मूल्यों के सम्बन्ध में पूर्व सूचना का गठन करते हैं। इस प्रकार की अतिरिक्त सूचना का उपयोग संभाव्यता वितरण प्रदान करने के लिए किया जा सकता है I <math>Y</math> के लिए एक छोटा मानक विचलन <math>Y</math> दे सकते है, और इसलिए <math>Y</math> के अनुमान से जुड़ी छोटी मानक अनिश्चितता होती है I<ref>Bernardo, J., and Smith, A. "Bayesian Theory". John Wiley & Sons, New York, USA, 2000. 3.20</ref><ref>{{Cite journal|doi = 10.1088/0026-1394/44/2/002|title = Calculation of uncertainty in the presence of prior knowledge|year = 2007|last1 = Elster|first1 = Clemens|journal = Metrologia|volume = 44|issue = 2|pages = 111–116|bibcode = 2007Metro..44..111E| s2cid=123445853 }}</ref><ref>[http://www.measurementuncertainty.org/guide/index.html EURACHEM/CITAC. "Quantifying uncertainty in analytical measurement"]. Tech. Rep. Guide CG4, EU-RACHEM/CITEC, EURACHEM/CITAC Guide&#93;, 2000. Second edition.</ref>
== टाइप ए और टाइप बी अनिश्चितता का मूल्यांकन ==
== टाइप ए और टाइप बी अनिश्चितता का मूल्यांकन ==


इनपुट मात्रा के सम्बन्ध में <math>X_i</math> बार-बार मापित मूल्यों (अनिश्चितता का टाइप मूल्यांकन), वैज्ञानिक निर्णय या मात्रा के संभावित मूल्यों का संबंधित अन्य सूचना (अनिश्चितता का टाइप बी मूल्यांकन) से अनुमान लगाया जाता है।
इनपुट मात्रा के सम्बन्ध में <math>X_i</math> बार-बार मापित मूल्यों (अनिश्चितता का टाइप a मूल्यांकन), वैज्ञानिक निर्णय या मात्रा के संभावित मूल्यों का संबंधित अन्य सूचना (अनिश्चितता का टाइप बी मूल्यांकन) से अनुमान लगाया जाता है।


माप अनिश्चितता के टाइप ए मूल्यांकन में, प्रायः यह धारणा निर्मित की जाती है कि, वितरण इनपुट मात्रा का उचित वर्णन करता है I <math>X</math> इसका बार-बार मापा गया [[ सामान्य वितरण |सामान्य वितरण]] मान होता है। <math>X</math> तब औसत मापित मूल्य और मानक विचलन के समान होता है। मापित मानों की छोटी संख्या से अनिश्चितता का मूल्यांकन किया जाता है I (गाऊसी वितरण द्वारा वर्णित मात्रा के उदाहरणों के रूप में माना जाता है), संबंधित वितरण को छात्र के टी-वितरण के रूप में लिया जा सकता है।<ref name="JCGM 104">[http://www.bipm.org/utils/common/documents/jcgm/JCGM_104_2009_E.pdf JCGM 104:2009. Evaluation of measurement data – An introduction to the "Guide to the expression of uncertainty in measurement" and related documents]. Joint Committee for Guides in Metrology.</ref> अन्य विचार तब प्रारम्भ होते हैं, जब मापित मूल्य स्वतंत्र रूप से प्राप्त नहीं होते हैं।
माप अनिश्चितता के टाइप ए मूल्यांकन में, प्रायः यह धारणा निर्मित की जाती है कि, वितरण इनपुट मात्रा का उचित वर्णन करता है I <math>X</math> इसका बार-बार मापा गया [[ सामान्य वितरण |सामान्य वितरण]] मान होता है। <math>X</math> तब औसत मापित मूल्य और मानक विचलन के समान होता है। मापित मानों की छोटी संख्या से अनिश्चितता का मूल्यांकन किया जाता है I (गाऊसी वितरण द्वारा वर्णित मात्रा के उदाहरणों के रूप में माना जाता है), संबंधित वितरण को छात्र के टी-वितरण के रूप में लिया जा सकता है।<ref name="JCGM 104">[http://www.bipm.org/utils/common/documents/jcgm/JCGM_104_2009_E.pdf JCGM 104:2009. Evaluation of measurement data – An introduction to the "Guide to the expression of uncertainty in measurement" and related documents]. Joint Committee for Guides in Metrology.</ref> अन्य विचार तब प्रारम्भ होते हैं, जब मापित मूल्य स्वतंत्र रूप से प्राप्त नहीं होते हैं।
Line 63: Line 63:
== संवेदनशीलता गुणांक ==
== संवेदनशीलता गुणांक ==
{{Main|संवेदनशीलता का विश्लेषण}}
{{Main|संवेदनशीलता का विश्लेषण}}
संवेदनशीलता गुणांक <math>c_1,\ldots,c_N</math> वर्णन करते हैं कि अनुमान कैसे लगाया जाता है <math>y</math> का <math>Y</math> अनुमानों में छोटे परिवर्तन से प्रभावित होंगे <math>x_1,\ldots,x_N</math> इनपुट मात्राओं की <math>X_1,\ldots,X_N</math> के लिए मॉडल किया गया है।
संवेदनशीलता गुणांक <math>c_1,\ldots,c_N</math> वर्णन करते हैं कि अनुमान कैसे लगाया जाता है, <math>y</math> का <math>Y</math> अनुमानों में छोटे परिवर्तन से प्रभावित होंगे <math>x_1,\ldots,x_N</math> इनपुट मात्राओं की <math>X_1,\ldots,X_N</math> के लिए प्रारूप निर्मित  किया गया है।


माप प्रारूप के लिए <math>Y = f(X_1,\ldots,X_N)</math>, संवेदनशीलता गुणांक <math>c_i</math> के पूर्व क्रम के[[ आंशिक व्युत्पन्न | आंशिक व्युत्पन्न]] के समान है <math>f</math> संबंध में <math>X_i</math> पर मूल्यांकन किया गया <math>X_1 = x_1</math>, <math>X_2 = x_2</math>, आदि।
माप प्रारूप के लिए <math>Y = f(X_1,\ldots,X_N)</math>, संवेदनशीलता गुणांक <math>c_i</math> के पूर्व क्रम के[[ आंशिक व्युत्पन्न | आंशिक व्युत्पन्न]] के समान होते है, <math>f</math> संबंध में <math>X_i</math> पर मूल्यांकन <math>X_1 = x_1</math>, <math>X_2 = x_2</math> किया गया है।


रेखीय फ़ंक्शन मापन प्रारूप के लिए
रेखीय फ़ंक्शन मापन प्रारूप के लिए


:<math>Y = c_1 X_1 + \cdots + c_N X_N,</math>
:<math>Y = c_1 X_1 + \cdots + c_N X_N,</math>
<math>X_1,\ldots,X_N</math> स्वतंत्र, में परिवर्तन <math>x_i</math> के समान <math>u(x_i)</math> में परिवर्तन <math>c_i u(x_i)</math> के लिए <math>y.</math> देगा।
<math>X_1,\ldots,X_N</math> में स्वतंत्र परिवर्तन <math>x_i</math> के समान <math>u(x_i)</math> में परिवर्तन <math>c_i u(x_i)</math> के लिए <math>y.</math> है।


यह कथन सामान्यतः माप प्रारूप के लिए अनुमानित होगा <math>Y = f(X_1,\ldots,X_N)</math>नियम के सापेक्ष परिमाण <math>|c_i|u(x_i)</math> इनपुट मात्रा से मानक अनिश्चितता के संबंधित योगदान का आकलन करने में उपयोगी होते हैं <math>u(y)</math>, <math>y</math> के साथ जुड़े होते है।
यह कथन सामान्यतः माप प्रारूप के लिए अनुमानित होगा <math>Y = f(X_1,\ldots,X_N)</math> नियम के सापेक्ष परिमाण <math>|c_i|u(x_i)</math> इनपुट मात्रा से मानक अनिश्चितता के संबंधित योगदान का आकलन करने में उपयोगी होते हैं <math>u(y)</math>, <math>y</math> के साथ जुड़े होते है।


मानक अनिश्चितता <math>u(y)</math> अनुमान से जुड़ा हुआ है <math>y</math> आउटपुट मात्रा का <math>Y</math> के योग से नहीं दिया जाता है <math>|c_i|u(x_i)</math>, किन्तु ये शब्द चतुर्भुज में संयुक्त हैं,<ref name="GUM">[http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf JCGM 100:2008. Evaluation of measurement data – Guide to the expression of uncertainty in measurement], Joint Committee for Guides in Metrology.</ref> अर्थात् अभिव्यक्ति द्वारा सामान्यतः माप प्रारूप के लिए अनुमानित होती है <math>Y = f(X_1,\ldots,X_N)</math>:
मानक अनिश्चितता <math>u(y)</math> अनुमान से जुड़ा हुआ होता है, <math>y</math> आउटपुट मात्रा का <math>Y</math> के योग से नहीं दिया जाता है <math>|c_i|u(x_i)</math>, किन्तु ये शब्द चतुर्भुज में संयुक्त होते हैं,<ref name="GUM">[http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf JCGM 100:2008. Evaluation of measurement data – Guide to the expression of uncertainty in measurement], Joint Committee for Guides in Metrology.</ref> अर्थात् अभिव्यक्ति द्वारा सामान्यतः माप प्रारूप के लिए <math>Y = f(X_1,\ldots,X_N)</math> अनुमानित होते है :


:<math>u^2(y) = c_1^2u^2(x_1) + \cdots + c_N^2u^2(x_N),</math>
:<math>u^2(y) = c_1^2u^2(x_1) + \cdots + c_N^2u^2(x_N),</math>
जिसे अनिश्चितता के प्रसार के नियम के रूप में जाना जाता है।
जिसे अनिश्चितता के प्रसार के नियम के रूप में जाना जाता है।


जब इनपुट मात्रा <math>X_i</math> निर्भरताएँ सम्मलित हैं, उपरोक्त सूत्र को[[ सहप्रसरण | सहप्रसरण]] वाले शब्दों द्वारा संवर्धित किया गया है,<ref name=GUM />जो बढ़ या घट सकता है <math>u(y)</math>.
जब इनपुट मात्रा <math>X_i</math> निर्भरताएँ सम्मलित हैं, उपरोक्त सूत्र को[[ सहप्रसरण | सहप्रसरण]] वाले शब्दों द्वारा संवर्धित किया गया है,<ref name=GUM /> <math>u(y)</math> जो बढ़ या घट सकता है I


== अनिश्चितता मूल्यांकन ==
== अनिश्चितता मूल्यांकन ==
Line 98: Line 98:
# जीयूएम अनिश्चितता प्रारूप, में नियम के आवेदन का गठन, और आउटपुट मात्रा का लक्षण वर्णन <math>Y</math> गॉसियन द्वारा, या a <math>t</math>-वितरण है।
# जीयूएम अनिश्चितता प्रारूप, में नियम के आवेदन का गठन, और आउटपुट मात्रा का लक्षण वर्णन <math>Y</math> गॉसियन द्वारा, या a <math>t</math>-वितरण है।
#विश्लेषणात्मक विधियाँ, जिनमें गणितीय विश्लेषण का उपयोग संभाव्यता वितरण के लिए बीजगणितीय रूप <math>Y</math> प्राप्त करने के लिए किया जाता है।
#विश्लेषणात्मक विधियाँ, जिनमें गणितीय विश्लेषण का उपयोग संभाव्यता वितरण के लिए बीजगणितीय रूप <math>Y</math> प्राप्त करने के लिए किया जाता है।
#a [[ मोंटे कार्लो विधि |मोंटे कार्लो विधि,]]<ref name="JCGM 101" />जिसमें वितरण फंक्शन के लिए <math>Y</math> इनपुट मात्राओं के लिए संभाव्यता वितरण से यादृच्छिक प्रारूप निर्मित करके और परिणामी मूल्यों पर प्रारूप का मूल्यांकन करके संख्यात्मक रूप से स्थापित किया जाता है।
#a [[ मोंटे कार्लो विधि |मोंटे कार्लो विधि,]]<ref name="JCGM 101" />जिसमें वितरण फलन के लिए <math>Y</math> इनपुट मात्राओं के लिए संभाव्यता वितरण से यादृच्छिक प्रारूप निर्मित करके और परिणामी मूल्यों पर प्रारूप का मूल्यांकन करके संख्यात्मक रूप से स्थापित किया जाता है।


किसी विशेष अनिश्चितता मूल्यांकन समस्या के लिए, दृष्टिकोण 1), 2) या 3) (या कुछ अन्य दृष्टिकोण) का उपयोग किया जाता है, 1) सामान्यतः अनुमानित, 2) उचित, और 3) संख्यात्मक समाधान प्रदान करते है, जिसे नियंत्रित किया जा सकता है।
किसी विशेष अनिश्चितता मूल्यांकन समस्या के लिए, दृष्टिकोण 1), 2) या 3) (या कुछ अन्य दृष्टिकोण) का उपयोग किया जाता है, 1) सामान्यतः अनुमानित, 2) उचित, और 3) संख्यात्मक समाधान प्रदान करते है, जिसे नियंत्रित किया जा सकता है।
Line 109: Line 109:
{{see also|विश्वास अंतराल}}
{{see also|विश्वास अंतराल}}


माप अनिश्चितता का सामान्य दृष्टिकोण मात्रा के लिए गणितीय प्रारूप के रूप में यादृच्छिक चर का उपयोग करता है, और माप अनिश्चितताओं का प्रतिनिधित्व करने के लिए सरल संभाव्यता वितरण पर्याप्त होती है। चूँकि, कुछ स्थितियों में, गणितीय अंतराल संभाव्यता की तुलना में अनिश्चितता का उत्तम प्रारूप हो सकता है। इसमें आवधिक माप, [[ डेटा बिनिंग |डेटा बिनिंग,]] डेटा मान, [[ सेंसरिंग (सांख्यिकी) |सेंसरिंग (सांख्यिकी),]] शोध सीमा, या माप की धनात्मक-ऋणात्मक सीमा सम्मलित हो सकती हैं, जहाँ कोई विशेष संभाव्यता वितरण उचित नहीं लगता है या जहाँ कोई यह नहीं मान सकता है कि व्यक्तिगत मापों में त्रुटियां पूर्ण रूप से स्वतंत्र होती हैं।{{citation needed|date=December 2015}} ऐसे विषयों में माप अनिश्चितता का वर्णन सांख्यिकी प्रतिनिधित्व अंतराल से किया जा सकता है।<ref name=Manski-2003>Manski, C.F. (2003); ''Partial Identification of Probability Distributions'', Springer Series in Statistics, Springer, New York</ref><ref name=Ferson-etal-2007>Ferson, S., V. Kreinovich, J. Hajagos, W. Oberkampf, and L. Ginzburg (2007); [http://www.ramas.com/intstats.pdf ''Experimental Uncertainty Estimation and Statistics for Data Having Interval Uncertainty''], Sandia National Laboratories SAND 2007-0939</ref> अंतराल [a, b] समान श्रेणी पर आयताकार या समान संभाव्यता वितरण से भिन्न होते है I जिसमें पश्चात् में विचार देता है कि उत्तम मूल्य श्रेणी के दाहिने अर्ध भाग के अंदर है, [(a+ b)/2, b] संभाव्यता के साथ अर्ध, और [a, b] के अंदर उपअंतराल की चौड़ाई को b − a से विभाजित करने की संभावना होती है I अंतराल ऐसा कोई आशय नहीं करता है, इसके अतिरिक्त माप अंतराल अंदर कहीं होती है। इस प्रकार माप अंतराल के वितरण को संभाव्यता बक्से और डेम्पस्टर-शफर सिद्धांत के रूप में संसाधित किया जा सकता है। वास्तविक संख्याओं पर डेम्पस्टर-शाफर संरचनाएं, जो अनिश्चितता मात्राकरण दोनों को सम्मलित करती हैं।
माप अनिश्चितता का सामान्य दृष्टिकोण मात्रा के लिए गणितीय प्रारूप के रूप में यादृच्छिक चर का उपयोग करता है, और माप अनिश्चितताओं का प्रतिनिधित्व करने के लिए सरल संभाव्यता वितरण पर्याप्त होती है। चूँकि, कुछ स्थितियों में, गणितीय अंतराल संभाव्यता की तुलना में अनिश्चितता का उत्तम प्रारूप हो सकता है। इसमें आवधिक माप, [[ डेटा बिनिंग |आंकड़े बिनिंग,]] डेटा मान, [[ सेंसरिंग (सांख्यिकी) |सेंसरिंग (सांख्यिकी),]] शोध सीमा, या माप की धनात्मक-ऋणात्मक सीमा सम्मलित हो सकती हैं, जहाँ कोई विशेष संभाव्यता वितरण उचित नहीं लगता है या जहाँ कोई यह नहीं मान सकता है कि व्यक्तिगत मापों में त्रुटियां पूर्ण रूप से स्वतंत्र होती हैं।{{citation needed|date=December 2015}} ऐसे विषयों में माप अनिश्चितता का वर्णन सांख्यिकी प्रतिनिधित्व अंतराल से किया जा सकता है।<ref name=Manski-2003>Manski, C.F. (2003); ''Partial Identification of Probability Distributions'', Springer Series in Statistics, Springer, New York</ref><ref name=Ferson-etal-2007>Ferson, S., V. Kreinovich, J. Hajagos, W. Oberkampf, and L. Ginzburg (2007); [http://www.ramas.com/intstats.pdf ''Experimental Uncertainty Estimation and Statistics for Data Having Interval Uncertainty''], Sandia National Laboratories SAND 2007-0939</ref> अंतराल [a, b] समान श्रेणी पर आयताकार या समान संभाव्यता वितरण से भिन्न होते है I जिसमें पश्चात् में विचार देता है कि उत्तम मूल्य श्रेणी के दाहिने अर्ध भाग के अंदर है, [(a+ b)/2, b] संभाव्यता के साथ अर्ध, और [a, b] के अंदर उपअंतराल की चौड़ाई को b − a से विभाजित करने की संभावना होती है I अंतराल ऐसा कोई आशय नहीं करता है, इसके अतिरिक्त माप अंतराल अंदर कहीं होती है। इस प्रकार माप अंतराल के वितरण को संभाव्यता बक्से और डेम्पस्टर-शफर सिद्धांत के रूप में संसाधित किया जा सकता है। वास्तविक संख्याओं पर डेम्पस्टर-शाफर संरचनाएं, जो अनिश्चितता मात्राकरण दोनों को सम्मलित करती हैं।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 23:02, 29 March 2023

मैट्रोलोजी में माप अनिश्चितता, पूर्ण रूप से सुनिश्चित मात्रा के लिए उत्तरदायी मूल्यों के सांख्यिकीय विस्तार की अभिव्यक्ति होती है। सभी माप, अनिश्चितता के अधीन और परिणाम उस स्थिति में पूर्ण होता है, जब संबंधित अनिश्चितता का वर्णन होता है, जैसे कि मानक विचलन आदि I अंतर्राष्ट्रीय अनुबंध के अनुसार, इस अनिश्चितता का आधार संभाव्य होते है, और मात्रा मूल्य के अपूर्ण सूचना को प्रदर्शित करते है। यह अन्य-नकारात्मक पैरामीटर होते है।[1]

माप अनिश्चितता को प्रायः संभावित मूल्यों पर सूचना की संभावना वितरण के मानक विचलन के रूप में प्राप्त किया जाता है, जिसे पूर्ण रूप से सुनिश्चित मात्रा के लिए उत्तरदायी माना जा सकता है। सापेक्ष अनिश्चितता, पूर्ण रूप से सुनिश्चित की गई मात्रा के मान के लिए किसी विशेष एकल विकल्प के परिमाण के सापेक्ष माप अनिश्चितता होती है, जब यह विकल्प शून्य नहीं होता है। इस विशेष एकल विकल्प को सामान्यतः मापित मूल्य कहा जाता है, जो उत्तम प्रकार से परिभाषित अर्थों में इष्टतम हो सकते है (उदाहरण के लिए, माध्य, माध्यिका या मोड (सांख्यिकी)) आदि, इस प्रकार, सापेक्ष माप अनिश्चितता मापित मूल्य के पूर्ण से विभाजित, माप अनिश्चितता होती है, जब मापित मूल्य शून्य नहीं होता है।

पृष्ठभूमि

मापन का उद्देश्य ब्याज की मात्रा के सम्बन्ध में सूचना प्रदान करना होता है I मापक उदाहरण के लिए माप, बेलनाकार विशेषता का आकार, बर्तन का आयतन, बैटरी के टर्मिनलों के मध्य संभावित अंतर या पानी के फ्लास्क में शीशे की द्रव्यमान सांद्रता (रसायन विसूचना) हो सकती है।

कोई माप उचित नहीं है। जब मात्रा को मापा जाता है, तो परिणाम माप प्रणाली, माप प्रक्रिया, प्रचालक के कौशल, पर्यावरण और अन्य प्रभावों पर निर्भर करता है।[2] यहां तक ​​​​कि यदि मात्रा को अनेक बार मापा जाता है, तो उसी प्रकार समान परिस्थितियों में, सामान्य रूप से भिन्न मापित मूल्य प्रत्येक बार प्राप्त किया जाता है, यह मानते हुए कि माप प्रणाली में मूल्यों के मध्य अंतर करने के लिए पर्याप्त समाधान होता है।

मापित मूल्यों का विस्तार इस विचार से संबंधित होगा कि माप को कितने उचित प्रकार से किया जाता है। औसत मात्रा के वास्तविक मूल्य का अनुमान प्रदान करेगा जो सामान्यतः व्यक्तिगत मापित मूल्य से अधिक विश्वसनीय होता है। विस्तार और मापित मूल्यों की संख्या वास्तविक मूल्य के अनुमान के रूप में औसत मूल्य से संबंधित सूचना प्रदान करती है। चूँकि, यह सूचना सामान्यतः पर्याप्त नहीं होती है।

मापने की प्रणाली मापित मूल्य प्रदान कर सकती है, जो वास्तविक मूल्य के सम्बन्ध में नहीं विस्तारित हुए हैं, किन्तु इसके सम्बन्ध में कुछ मूल्य शून्य में समायोजित होते हैं। घरेलू स्केल लें और मान ले कि यह शून्य दिखाने के लिए स्थिर नहीं है किन्तु शून्य से कुछ मूल्य ऑफसेट दिखाने के लिए जब मापक पर कोई नहीं है। फिर, इसमें कोई भिन्नता नहीं होती हैं कि व्यक्ति का द्रव्यमान कितनी बार फिर से मापा गया, इस ऑफसेट का प्रभाव स्वाभाविक रूप से मूल्यों के औसत में उपस्तिथ होता है।

मापन में अनिश्चितता की अभिव्यक्ति के लिए मार्गदर्शिका इस विषय पर निश्चित प्रपत्र होता है। जीयूएम को सभी प्रमुख राष्ट्रीय मापन संस्थानों और अंतर्राष्ट्रीय प्रयोगशाला मान्यता मानकों जैसे आईएसओ/आईईसी 17025 परीक्षण और अंशांकन प्रयोगशालाओं की क्षमता के लिए सामान्य आवश्यकताओं द्वारा अपनाया गया है, जो अंतर्राष्ट्रीय प्रयोगशाला प्रत्यायन सहयोग के लिए आवश्यक होती है; माप विधियों और प्रौद्योगिकी पर अधिकांश आधुनिक राष्ट्रीय और अंतर्राष्ट्रीय वृत्तचित्र मानकों में कार्यरत है। मैट्रोलोजी में गाइड के लिए संयुक्त समिति देखें।

माप अनिश्चितता के अंशांकन और गतिविधियों के लिए महत्वपूर्ण आर्थिक परिणाम होते हैं। अंशांकन विवरण में, अनिश्चितता के परिमाण को प्रायः प्रयोगशाला की गुणवत्ता के संकेत के रूप में प्राप्त किया जाता है, और अनिश्चितता के छोटे मान सामान्यतः उच्च मूल्य के होते हैं। एएसएमइ ने माप अनिश्चितता के विभिन्न विचारों को संबोधित करते हुए मानकों का प्रारूप निर्मित किया है। उदाहरण के लिए, माप परिणाम और उत्पाद विनिर्देश के आधार पर उत्पादों को स्वीकार या अस्वीकार करते समय माप अनिश्चितता की भूमिका को संबोधित करने के लिए एएसएमइ मानकों का उपयोग किया जाता है,[3] आयामी माप अनिश्चितता के मूल्यांकन के लिए सरलीकृत दृष्टिकोण (जीयूएम के सापेक्ष) प्रदान करते है,[4] माप अनिश्चितता विवरण के परिमाण पर असहमति का समाधान करते है,[5] या किसी भी उत्पाद की स्वीकृति या अस्वीकृति के निर्णय में सम्मलित विपत्तियों पर मार्गदर्शन प्रदान करते है।[6]

अप्रत्यक्ष माप

उपरोक्त वर्णन, मात्रा के प्रत्यक्ष माप से संबंधित है, जो संयोग से अधिक निम्न होती है। उदाहरण के लिए, स्नानघर का माप वसंत के मापे गए विस्तार को मापक के अनुमान में परिवर्तित कर सकता है, माप पर व्यक्ति का द्रव्यमान विस्तार के मध्य विशेष संबंध माप के अंशांकन द्वारा निर्धारित किया जाता है। माप गणितीय प्रारूप के मात्रा मान को माप के संबंधित मूल्य में परिवर्तित करता है।

अभ्यास में अनेक प्रकार के माप होते हैं, और इसलिए अनेक प्रारूप होते हैं। साधारण माप प्रारूप (उदाहरण माप के लिए, जहां द्रव्यमान वसंत के विस्तार के समानुपाती होता है) प्रतिदिन के घरेलू उपयोग के लिए पर्याप्त हो सकते है। वैकल्पिक रूप से, भार का अधिक परिष्कृत प्रारूप, जिसमें वायु उत्प्लावकता जैसे अतिरिक्त प्रभाव सम्मलित होते हैं, औद्योगिक या वैज्ञानिक उद्देश्यों के लिए उत्तम परिणाम देने में सक्षम होते है। प्रायः भिन्न-भिन्न मात्राएं होती हैं, उदाहरण के लिए तापमान, आर्द्रता और विस्थापन आदि, जो मापने की परिभाषा में योगदान देते है, और जिसे मापने की आवश्यकता होती है।

संशोधित नियमो को माप प्रारूप में सम्मलित किया जाना चाहिए, जब माप के नियम निर्धारित नहीं होते हैं। ये शब्द व्यवस्थित त्रुटियों के अनुरूप होते हैं। संशोधन अवधि के अनुमान को देखते हुए, प्रासंगिक मात्रा को इस अनुमान से उचित किया जाना चाहिए I जिससे अनुमान के साथ अनिश्चितता जुड़ी होगी, भले ही अनुमान शून्य हो, जैसा कि प्रायः होता है। ऊंचाई माप में व्यवस्थित त्रुटियों के उदाहरण उत्पन्न होते हैं, जब मापने के उपकरण का संरेखण पूर्ण रूप से लंबवत नहीं होता है, और परिवेश का तापमान निर्धारित से भिन्न होता है। उपकरण का संरेखण और न ही परिवेश का तापमान उचित रूप से निर्दिष्ट किया गया है, किन्तु इन प्रभावों से संबंधित सूचना उपलब्ध है, उदाहरण के लिए संरेखण की कमी अधिकतम 0.001 डिग्री है, और माप के समय परिवेश का तापमान अधिकतम 2 डिग्री सेल्सियस होता है।

साथ ही मापित मूल्यों का प्रतिनिधित्व करने वाले कच्चे आंकड़ों का रूप होते है, जो मापन प्रारूप में प्रायः आवश्यक होता है। कुछ ऐसे आंकड़े भौतिक स्थिरांकों का प्रतिनिधित्व करने वाली मात्राओं से संबंधित होते हैं, जिनमें से प्रत्येक को अपूर्ण रूप से जाना जाता है। उदाहरण:- लोचदार मापांक और विशिष्ट ताप क्षमता आदि। संदर्भ पुस्तकों, अंशांकन प्रमाणपत्रों आदि में प्रायः अन्य प्रासंगिक डेटा दिए जाते हैं, जिन्हें अग्रिम मात्रा के अनुमान के रूप में माना जाता है।

मापन प्रारूप द्वारा मापने के लिए आवश्यक वस्तुओं को इनपुट मात्रा के रूप में जाना जाता है। प्रारूप को प्रायः कार्यात्मक संबंध के रूप में जाना जाता है। मापन प्रारूप में आउटपुट मात्रा मापक होता है।

औपचारिक रूप से, आउटपुट मात्रा, द्वारा निरूपित , जिसके सम्बन्ध में सूचना की आवश्यकता होती है, जो प्रायः इनपुट मात्रा से संबंधित होता है, जिसे द्वारा दर्शाया जाता है I जिसके सम्बन्ध में सूचना मापन प्रारूप के रूप में उपलब्ध होती है I

जहाँ फलन माप के रूप में जाना जाता है। माप प्रारूप के लिए सामान्य अभिव्यक्ति इस प्रकार है:-

यह लिया जाता है कि गणना के लिए प्रक्रिया उपस्थित है I दिया गया , और इस समीकरण द्वारा विशिष्ट रूप से परिभाषित किया गया है।

वितरण का प्रचार

इनपुट मात्राओं का उत्तम मान अज्ञात होता हैं। जीयूएम दृष्टिकोण में, संभाव्यता वितरण द्वारा विशेषता होती है, और गणितीय रूप से यादृच्छिक चर के रूप में व्यवहार करती है। ये वितरण विभिन्न अंतरालों में उपस्थित उनके वास्तविक मूल्यों की संबंधित संभावनाओं का वर्णन करते हैं, और संबंधित उपलब्ध सूचना के आधार पर आवंटित किए जाते हैं I कभी-कभी, कुछ या सभी परस्पर संबंधित होते हैं, और प्रासंगिक वितरण, जिन्हें संयुक्त संभाव्यता वितरण के रूप में जाना जाता है, जो साथ में ली गई मात्राओं पर प्रारम्भ होते हैं।

, क्रमशः, इनपुट मात्रा का , प्रमाण पत्र और रिपोर्ट, निर्माताओं के विनिर्देशों, माप डेटा का विश्लेषण इसी प्रकार से प्राप्त किया गया हैं। संभाव्यता वितरण लक्षण वर्णन ऐसे चयन किये जाते हैं कि, अनुमान , क्रमशः का अपेक्षित मूल्य होता हैं I[7] इसके अतिरिक्त, वें इनपुट मात्रा के लिए, तथाकथित मानक अनिश्चितता पर विचार करें I मानक विचलन के रूप में को परिभाषित किया गया है I[7] इस मानक अनिश्चितता को से जुड़ा हुआ कहा जाता है I

ब्याज की प्रत्येक मात्रा को चिह्नित करके संभाव्यता वितरण स्थापित करने के लिए उपलब्ध सूचना का उपयोग प्रारम्भ होता है I और पश्चात् की स्थिति में, विशेषता के लिए संभाव्यता वितरण के साथ माप प्रारूप द्वारा निर्धारित किया जाता है I के लिए संभाव्यता वितरण का निर्धारण होता है I इस सूचना को वितरण के प्रसार के रूप में जाना जाता है।[7]

नीचे दिया गया आंकड़ा माप प्रारूप को दर्शाता है I स्थिति में जहां और प्रत्येक आयताकार, या समान वितरण (निरंतर) ,संभाव्यता वितरण द्वारा विशेषता होती है।

  इस स्थिति में सममित ट्रेपोज़ाइडल संभाव्यता वितरण होता है।

दो इनपुट मात्राओं के साथ योज्य माप फ़ंक्शन और आयताकार संभाव्यता वितरण द्वारा इनपुट मात्रा दी गई है, और माप प्रारूप विकसित किया गया है, मापने के लिए संभावना वितरण के संदर्भ में पूर्ण रूप से निर्दिष्ट होता है। विशेष रूप से के अनुमान के रूप में प्रयोग किया जाता है, का मानक विचलन इस अनुमान से जुड़ी अनिश्चितता के रूप में होता है।

प्रायः अंतराल युक्त निर्दिष्ट संभावना के साथ आवश्यक होता है। इस प्रकार के अंतराल को आवृत्त क्षेत्र के संभाव्यता वितरण से घटाया जा सकता है I निर्दिष्ट को आवृत्त क्षेत्र संभावना के रूप में जाना जाता है। किसी दिए गए आवृत्त क्षेत्र की प्रायिकता के लिए अधिक क्षेत्र अंतराल होते हैं। संभाव्य रूप से सममित आवृत्त क्षेत्र अंतराल है, जिसके लिए अंतराल के बाईं और दाईं ओर के मूल्य की संभावनाएं समान होती हैं। सबसे छोटा आवृत्त क्षेत्र अंतराल है, जिसके लिए समान आवृत्त क्षेत्र संभावना अंतरालों पर लंबाई निम्न होती है।

आउटपुट मात्रा के उचित मूल्य के सम्बन्ध में पूर्व सूचना भी माना जा सकता है। घरेलू मापन के लिए, तथ्य यह है कि व्यक्ति का द्रव्यमान सकारात्मक है, और यह मोटर कार के अतिरिक्त व्यक्ति का द्रव्यमान होता है, जिसे मापा जा रहा है, दोनों माप के संभावित मूल्यों के सम्बन्ध में पूर्व सूचना का गठन करते हैं। इस प्रकार की अतिरिक्त सूचना का उपयोग संभाव्यता वितरण प्रदान करने के लिए किया जा सकता है I के लिए एक छोटा मानक विचलन दे सकते है, और इसलिए के अनुमान से जुड़ी छोटी मानक अनिश्चितता होती है I[8][9][10]

टाइप ए और टाइप बी अनिश्चितता का मूल्यांकन

इनपुट मात्रा के सम्बन्ध में बार-बार मापित मूल्यों (अनिश्चितता का टाइप a मूल्यांकन), वैज्ञानिक निर्णय या मात्रा के संभावित मूल्यों का संबंधित अन्य सूचना (अनिश्चितता का टाइप बी मूल्यांकन) से अनुमान लगाया जाता है।

माप अनिश्चितता के टाइप ए मूल्यांकन में, प्रायः यह धारणा निर्मित की जाती है कि, वितरण इनपुट मात्रा का उचित वर्णन करता है I इसका बार-बार मापा गया सामान्य वितरण मान होता है। तब औसत मापित मूल्य और मानक विचलन के समान होता है। मापित मानों की छोटी संख्या से अनिश्चितता का मूल्यांकन किया जाता है I (गाऊसी वितरण द्वारा वर्णित मात्रा के उदाहरणों के रूप में माना जाता है), संबंधित वितरण को छात्र के टी-वितरण के रूप में लिया जा सकता है।[11] अन्य विचार तब प्रारम्भ होते हैं, जब मापित मूल्य स्वतंत्र रूप से प्राप्त नहीं होते हैं।

अनिश्चितता के टाइप बी मूल्यांकन के लिए, प्रायः यही उपलब्ध सूचना है I निर्दिष्ट अंतराल (गणित) [] में होता निहित है। ऐसी स्थिति में, मात्रा का सूचना समान वितरण (निरंतर) द्वारा वर्णित किया जा सकता है I[11]सीमा के साथ और से यदि भिन्न-भिन्न सूचना उपलब्ध होती हैं, तो उस सूचना के अनुरूप संभाव्यता वितरण का उपयोग किया जाता है।[12]

संवेदनशीलता गुणांक

संवेदनशीलता गुणांक वर्णन करते हैं कि अनुमान कैसे लगाया जाता है, का अनुमानों में छोटे परिवर्तन से प्रभावित होंगे इनपुट मात्राओं की के लिए प्रारूप निर्मित किया गया है।

माप प्रारूप के लिए , संवेदनशीलता गुणांक के पूर्व क्रम के आंशिक व्युत्पन्न के समान होते है, संबंध में पर मूल्यांकन , किया गया है।

रेखीय फ़ंक्शन मापन प्रारूप के लिए

में स्वतंत्र परिवर्तन के समान में परिवर्तन के लिए है।

यह कथन सामान्यतः माप प्रारूप के लिए अनुमानित होगा नियम के सापेक्ष परिमाण इनपुट मात्रा से मानक अनिश्चितता के संबंधित योगदान का आकलन करने में उपयोगी होते हैं , के साथ जुड़े होते है।

मानक अनिश्चितता अनुमान से जुड़ा हुआ होता है, आउटपुट मात्रा का के योग से नहीं दिया जाता है , किन्तु ये शब्द चतुर्भुज में संयुक्त होते हैं,[1] अर्थात् अभिव्यक्ति द्वारा सामान्यतः माप प्रारूप के लिए अनुमानित होते है :

जिसे अनिश्चितता के प्रसार के नियम के रूप में जाना जाता है।

जब इनपुट मात्रा निर्भरताएँ सम्मलित हैं, उपरोक्त सूत्र को सहप्रसरण वाले शब्दों द्वारा संवर्धित किया गया है,[1] जो बढ़ या घट सकता है I

अनिश्चितता मूल्यांकन

अनिश्चितता के मूल्यांकन के मुख्य चरणों में सूत्रीकरण और गणना सम्मलित होती है, उत्तरार्द्ध में प्रसार और सारांश सम्मलित होते हैं, और सूत्रीकरण चरण बनता है I

  1. आउटपुट मात्रा को परिभाषित करना (माप), पर निर्भर करता है I
  2. इनपुट मात्रा की पहचान करना जिस पर निर्भर करता है I
  3. संबंधित मापन प्रारूप का विकास करना इनपुट मात्रा के लिए होता है I
  4. उपलब्ध सूचना के आधार पर, संभाव्यता वितरण-गाऊसी, आयताकार, आदि- इनपुट मात्राओं को निर्दिष्ट करना (या उन इनपुट मात्राओं के लिए संयुक्त संभाव्यता वितरण जो स्वतंत्र नहीं हैं)।

गणना चरण में आउटपुट मात्रा के लिए संभाव्यता वितरण प्राप्त करने के लिए माप प्रारूप के माध्यम से इनपुट मात्रा के लिए संभाव्यता वितरण का प्रचार करना सम्मलित होता है। प्राप्त करने के लिए इस वितरण का उपयोग करके सारांशित करना चाहिए I

  1. की अपेक्षा अनुमान के रूप में लिया गया का है।
  2. का मानक विचलन मानक अनिश्चितता के रूप में लिया गया के साथ जुड़े है I
  3. a आवृत्त क्षेत्र अंतराल युक्त निर्दिष्ट संभावना के साथ है।

अनिश्चितता मूल्यांकन के प्रचार चरण को वितरण के रूप में जाना जाता है, जिसके लिए विभिन्न दृष्टिकोण उपलब्ध हैं, जिनमें सम्मलित हैं:-

  1. जीयूएम अनिश्चितता प्रारूप, में नियम के आवेदन का गठन, और आउटपुट मात्रा का लक्षण वर्णन गॉसियन द्वारा, या a -वितरण है।
  2. विश्लेषणात्मक विधियाँ, जिनमें गणितीय विश्लेषण का उपयोग संभाव्यता वितरण के लिए बीजगणितीय रूप प्राप्त करने के लिए किया जाता है।
  3. a मोंटे कार्लो विधि,[7]जिसमें वितरण फलन के लिए इनपुट मात्राओं के लिए संभाव्यता वितरण से यादृच्छिक प्रारूप निर्मित करके और परिणामी मूल्यों पर प्रारूप का मूल्यांकन करके संख्यात्मक रूप से स्थापित किया जाता है।

किसी विशेष अनिश्चितता मूल्यांकन समस्या के लिए, दृष्टिकोण 1), 2) या 3) (या कुछ अन्य दृष्टिकोण) का उपयोग किया जाता है, 1) सामान्यतः अनुमानित, 2) उचित, और 3) संख्यात्मक समाधान प्रदान करते है, जिसे नियंत्रित किया जा सकता है।

उत्पादन मात्रा की किसी भी संख्या के साथ प्रारूप

जब माप प्रारूप बहुभिन्नरूपी होता है, अर्थात, इसमें किसी भी संख्या में आउटपुट मात्राएँ होती हैं, तो उपरोक्त अवधारणाओं को बढ़ाया जा सकता है।[13] आउटपुट मात्राओं को संयुक्त संभाव्यता वितरण द्वारा वर्णित किया जाता है, आवृत्त क्षेत्र अंतराल बन जाता है, अनिश्चितता के प्रसार के नियम में प्राकृतिक सामान्यीकरण होता है, और गणना प्रक्रिया जो बहुभिन्नरूपी मोंटे कार्लो पद्धति को प्रारम्भ या उपलब्ध करती है।

अंतराल के रूप में अनिश्चितता

माप अनिश्चितता का सामान्य दृष्टिकोण मात्रा के लिए गणितीय प्रारूप के रूप में यादृच्छिक चर का उपयोग करता है, और माप अनिश्चितताओं का प्रतिनिधित्व करने के लिए सरल संभाव्यता वितरण पर्याप्त होती है। चूँकि, कुछ स्थितियों में, गणितीय अंतराल संभाव्यता की तुलना में अनिश्चितता का उत्तम प्रारूप हो सकता है। इसमें आवधिक माप, आंकड़े बिनिंग, डेटा मान, सेंसरिंग (सांख्यिकी), शोध सीमा, या माप की धनात्मक-ऋणात्मक सीमा सम्मलित हो सकती हैं, जहाँ कोई विशेष संभाव्यता वितरण उचित नहीं लगता है या जहाँ कोई यह नहीं मान सकता है कि व्यक्तिगत मापों में त्रुटियां पूर्ण रूप से स्वतंत्र होती हैं।[citation needed] ऐसे विषयों में माप अनिश्चितता का वर्णन सांख्यिकी प्रतिनिधित्व अंतराल से किया जा सकता है।[14][15] अंतराल [a, b] समान श्रेणी पर आयताकार या समान संभाव्यता वितरण से भिन्न होते है I जिसमें पश्चात् में विचार देता है कि उत्तम मूल्य श्रेणी के दाहिने अर्ध भाग के अंदर है, [(a+ b)/2, b] संभाव्यता के साथ अर्ध, और [a, b] के अंदर उपअंतराल की चौड़ाई को b − a से विभाजित करने की संभावना होती है I अंतराल ऐसा कोई आशय नहीं करता है, इसके अतिरिक्त माप अंतराल अंदर कहीं होती है। इस प्रकार माप अंतराल के वितरण को संभाव्यता बक्से और डेम्पस्टर-शफर सिद्धांत के रूप में संसाधित किया जा सकता है। वास्तविक संख्याओं पर डेम्पस्टर-शाफर संरचनाएं, जो अनिश्चितता मात्राकरण दोनों को सम्मलित करती हैं।

यह भी देखें


संदर्भ

  1. 1.0 1.1 1.2 JCGM 100:2008. Evaluation of measurement data – Guide to the expression of uncertainty in measurement, Joint Committee for Guides in Metrology.
  2. Bell, S. Measurement Good Practice Guide No. 11. A Beginner's Guide to Uncertainty of Measurement. Tech. rep., National Physical Laboratory, 1999.
  3. ASME B89.7.3.1, Guidelines for Decision Rules in Determining Conformance to Specifications
  4. ASME B89.7.3.2, Guidelines for the Evaluation of Dimensional Measurement Uncertainty
  5. ASME B89.7.3.3, Guidelines for Assessing the Reliability of Dimensional Measurement Uncertainty Statements
  6. ASME B89.7.4, Measurement Uncertainty and Conformance Testing: Risk Analysis
  7. 7.0 7.1 7.2 7.3 JCGM 101:2008. Evaluation of measurement data – Supplement 1 to the "Guide to the expression of uncertainty in measurement" – Propagation of distributions using a Monte Carlo method. Joint Committee for Guides in Metrology.
  8. Bernardo, J., and Smith, A. "Bayesian Theory". John Wiley & Sons, New York, USA, 2000. 3.20
  9. Elster, Clemens (2007). "Calculation of uncertainty in the presence of prior knowledge". Metrologia. 44 (2): 111–116. Bibcode:2007Metro..44..111E. doi:10.1088/0026-1394/44/2/002. S2CID 123445853.
  10. EURACHEM/CITAC. "Quantifying uncertainty in analytical measurement". Tech. Rep. Guide CG4, EU-RACHEM/CITEC, EURACHEM/CITAC Guide], 2000. Second edition.
  11. 11.0 11.1 JCGM 104:2009. Evaluation of measurement data – An introduction to the "Guide to the expression of uncertainty in measurement" and related documents. Joint Committee for Guides in Metrology.
  12. Weise, K.; Woger, W. (1993). "A Bayesian theory of measurement uncertainty". Measurement Science and Technology. 4 (1): 1–11. Bibcode:1993MeScT...4....1W. doi:10.1088/0957-0233/4/1/001. S2CID 250751314.
  13. Joint Committee for Guides in Metrology (2011). JCGM 102: Evaluation of Measurement Data – Supplement 2 to the "Guide to the Expression of Uncertainty in Measurement" – Extension to Any Number of Output Quantities (PDF) (Technical report). JCGM. Retrieved 13 February 2013.
  14. Manski, C.F. (2003); Partial Identification of Probability Distributions, Springer Series in Statistics, Springer, New York
  15. Ferson, S., V. Kreinovich, J. Hajagos, W. Oberkampf, and L. Ginzburg (2007); Experimental Uncertainty Estimation and Statistics for Data Having Interval Uncertainty, Sandia National Laboratories SAND 2007-0939


आगे की पढाई


बाहरी कड़ियाँ