ऑप्टिकल फिल्टर: Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
[[File:Filter-optics-1.jpg|thumb|right|320px|रंगीन और [[तटस्थ-घनत्व फ़िल्टर]]]] | [[File:Filter-optics-1.jpg|thumb|right|320px|रंगीन और [[तटस्थ-घनत्व फ़िल्टर]]]] | ||
[[File:Cokin Filters (Stacked Cases).jpg|thumb|right|कोकीन फिल्टर के स्टैक्ड केस]]एक ऑप्टिकल फिल्टर एक ऐसा उपकरण है जो विभिन्न [[तरंग दैर्ध्य]] के चुनिंदा संप्रेषण प्रकाश को सामान्यत:[[ऑप्टिकल पथ]] में एक ग्लास प्लेन या [[प्लास्टिक]] डिवाइस के रूप में प्रारंभ किया जाता है, जो या तो बल्क में रंगे होते हैं या हस्तक्षेप (ऑप्टिक्स) कोटिंग्स होते हैं। फिल्टर के [[ऑप्टिकल गुण]]ों को उनकी [[आवृत्ति प्रतिक्रिया]] द्वारा पूरी तरह से वर्णित किया जाता है, जो निर्दिष्ट करता है कि फ़िल्टर द्वारा आने वाले सिग्नल के प्रत्येक आवृत्ति घटक के परिमाण और चरण को कैसे संशोधित किया जाता है।<ref>[http://s1.nonlinear.ir/epublish/book/Optical_Filter_Design_and_Analysis_A_Signal_Processing_Approach_0471183733.pdf Transmission curves of many filters for monochrome photography, Schneider, p.1] Optical Filter Design and Analysis: A Signal Processing Approach, Christi K. Madsen, Jian H. Zhao, Copyright © 1999 John Wiley & Sons, Inc., ISBNs: 0-471-18373-3 (Hardback); 0-471-21375-6 (Electronic) ([[PDF]])</ref> | [[File:Cokin Filters (Stacked Cases).jpg|thumb|right|कोकीन फिल्टर के स्टैक्ड केस]]एक ऑप्टिकल फिल्टर एक ऐसा उपकरण है जो विभिन्न [[तरंग दैर्ध्य]] के चुनिंदा संप्रेषण प्रकाश को सामान्यत:[[ऑप्टिकल पथ]] में एक ग्लास प्लेन या [[प्लास्टिक]] डिवाइस के रूप में प्रारंभ किया जाता है, जो या तो बल्क में रंगे होते हैं या हस्तक्षेप (ऑप्टिक्स) कोटिंग्स होते हैं। फिल्टर के [[ऑप्टिकल गुण]]ों को उनकी [[आवृत्ति प्रतिक्रिया]] द्वारा पूरी तरह से वर्णित किया जाता है, जो निर्दिष्ट करता है कि फ़िल्टर द्वारा आने वाले सिग्नल के प्रत्येक आवृत्ति घटक के परिमाण और चरण को कैसे संशोधित किया जाता है।<ref>[http://s1.nonlinear.ir/epublish/book/Optical_Filter_Design_and_Analysis_A_Signal_Processing_Approach_0471183733.pdf Transmission curves of many filters for monochrome photography, Schneider, p.1] Optical Filter Design and Analysis: A Signal Processing Approach, Christi K. Madsen, Jian H. Zhao, Copyright © 1999 John Wiley & Sons, Inc., ISBNs: 0-471-18373-3 (Hardback); 0-471-21375-6 (Electronic) ([[PDF]])</ref> | ||
फिल्टर | फिल्टर अधिकतर दो श्रेणियों में से एक के होते हैं। सबसे सरल, शारीरिक रूप से, [[अवशोषण (विद्युत चुम्बकीय विकिरण)|अवशोषक (विद्युत चुम्बकीय विकिरण)]] फ़िल्टर है; तो वहाँ [[ हस्तक्षेप फिल्टर ]] या [[डाइक्रोइक फिल्टर]] होते हैं। [[ प्रकाशिकी ]] इमेजिंग के लिए कई ऑप्टिकल फिल्टर का उपयोग किया जाता है और [[पारदर्शिता और पारदर्शिता|पारदर्शिता]] के लिए निर्मित किया जाता है; कुछ [[प्रकाश स्रोत|प्रकाश स्रोतों]] के लिए उपयोग किए जाने वाले पारभाषी हो सकते हैं। | ||
वे सामान्यतः केवल लंबी तरंग दैर्ध्य ,केवल छोटी तरंग दैर्ध्य , या तरंग दैर्ध्य का एक बैंड, दोनों लंबी और छोटी तरंग दैर्ध्य को अवरुद्ध कर सकते हैं। पासबैंड संकरा या चौड़ा हो सकता है; अधिकतम और न्यूनतम संचरण के बीच संक्रमण या कटऑफ तीव्र या मंद हो सकता है।ये अधिक जटिल संचरण विशेषता वाले फिल्टर हैं, उदाहरण के लिए एक बैंड के अतिरिक्त दो चोटियों के सापेक्ष;<ref name="schneider">[https://web.archive.org/web/20121004041524/http://schneiderkreuznach.com/pdf/filter/bw_filter_transmission_curves.pdf Transmission curves of many filters for monochrome photography, Schneider]. See Redhancer 491 for a very complex curve with many peaks ([[PDF]])</ref> ये पारंपरिक रूप से फोटोग्राफी के लिए उपयोग किए जाने वाले प्राचीन प्रारूप हैं; अधिक नियमित विशेषताओं वाले फिल्टर वैज्ञानिक और तकनीकी कार्यों के लिए उपयोग किए जाते हैं।<ref>{{cite web|url=https://www.cvilaseroptics.com/file/general/filters.pdf|title=फ़िल्टर कैसे चुनें|publisher=IDEX Optics & Photonics Marketplace|format=[[PDF]]|url-status=dead|archive-url=https://web.archive.org/web/20181116013134/https://www.cvilaseroptics.com/file/general/filters.pdf|archive-date=16 November 2018|access-date=15 November 2018}}</ref> | |||
फ़िल्टर | ऑप्टिकल फ़िल्टर सामान्यतः फ़ोटोग्राफ़ी मै उपयोग किये जाते है। कई [[ऑप्टिकल]] उपकरणों में, और रंग [[मंच प्रकाश व्यवस्था]] के लिए उपयोग बनाया गया है। [[खगोल]] विज्ञान में ऑप्टिकल फिल्टर का उपयोग वर्णक्रमीय बैंड के रुचि में पारित प्रकाश को प्रतिबंधित करने के लिए किया जाता है, उदाहरण के लिए, दृश्य प्रकाश के बिना इन्फ्रारेड विकिरण का अध्ययन करने के लिए जो फिल्म या सेंसर को प्रभावित करेगा और वांछित इन्फ्रारेड को अभिभूत कर देगा। [[प्रतिदीप्ति माइक्रोस्कोप]] और [[प्रतिदीप्ति स्पेक्ट्रोस्कोपी]] जैसे प्रतिदीप्ति अनुप्रयोगों में ऑप्टिकल फिल्टर भी आवश्यक हैं। | ||
फ़िल्टर फ़ोटोग्राफ़ी ऑप्टिकल फ़िल्टर का एक विशेष स्थिति है, और यहाँ अत्यधिक सामग्री लागू होती है। फोटोग्राफिक फिल्टर को सटीक रूप से नियंत्रित करने के लिए ऑप्टिकल गुणों की आवश्यकता नहीं होती है तथा वैज्ञानिक कार्यों के लिए फिल्टर प्रारूप को सटीक रूप से परिभाषित करने के लिए [[संचरण वक्र]] होते हैं, और कई प्रयोगशाला फिल्टर की सापेक्ष में न्यूनतम कीमत पर बड़ी मात्रा में बेचते हैं। कुछ फोटोग्राफिक प्रभाव फिल्टर, जैसे वैज्ञानिक कार्य के लिए स्टार इफेक्ट फिल्टर, प्रासंगिक नहीं हैं। | |||
== नाप == | == नाप == | ||
सामान्य तौर पर, | सामान्य तौर पर, ऑप्टिकल फिल्टर आने वाली [[रोशनी]] का एक निश्चित प्रतिशत तरंगदैर्ध्य परिवर्तन के रूप में प्रसारित करता है।इसे एक [[स्पेक्ट्रोफोटोमेट्री]] द्वारा मापा जाता है। यह रैखिक सामग्री के रूप में, प्रत्येक तरंग दैर्ध्य के लिए अवशोषण अन्य तरंग दैर्ध्य की उपस्थिति से स्वतंत्र होता है। बहुत न्यूनतम सामग्रियां अरैखिक प्रकाशिकी हैं, और संप्रेषण घटना प्रकाश की तीव्रता और तरंग दैर्ध्य के संयोजन पर निर्भर करता है। पारदर्शी प्रतिदीप्ति सामग्री एक अवशोषण स्पेक्ट्रोस्कोपी स्पेक्ट्रम के सापेक्ष एक ऑप्टिकल फिल्टर के रूप में और उत्सर्जन स्पेक्ट्रम के सापेक्ष एक प्रकाश स्रोत के रूप में भी कार्य कर सकती है। | ||
सामान्य तौर पर सापेक्ष ही, जो प्रकाश संचरित नहीं होता है वह तीव्र प्रकाश के लिए अवशोषित हो जाता है, जो फ़िल्टर के महत्वपूर्ण ताप का कारण बन सकता है। यद्यपि, ऑप्टिकल शब्द अवशोषक घटना प्रकाश के [[क्षीणन]] को संदर्भित करता है, भले ही तंत्र की परवाह किए बिना इसे क्षीणित किया गया हो। कुछ फिल्टर, जैसे दर्पण, हस्तक्षेप फिल्टर, या धातु की जाली, [[प्रतिबिंब (भौतिकी)]] या गैर-संचरित प्रकाश का बहुत अधिक बिखराव। | |||
प्रकाश की एक विशेष तरंग दैर्ध्य पर एक फिल्टर के आयाम रहित [[ऑप्टिकल घनत्व]] को इस रूप में परिभाषित किया गया है <math display="block"> -\log_{10} T</math> कहाँ {{mvar|T}} उस तरंग दैर्ध्य पर फिल्टर का आयाम रहित संप्रेषण है। | प्रकाश की एक विशेष तरंग दैर्ध्य पर एक फिल्टर के आयाम रहित [[ऑप्टिकल घनत्व]] को इस रूप में परिभाषित किया गया है <math display="block"> -\log_{10} T</math> कहाँ {{mvar|T}} उस तरंग दैर्ध्य पर फिल्टर का आयाम रहित संप्रेषण है। | ||
== अवशोषक == | == अवशोषक == | ||
ऑप्टिकल फ़िल्टरिंग पहले तरल से भरे, कांच की दीवार वाली कोशिकाओं के | ऑप्टिकल फ़िल्टरिंग पहले तरल से भरे, कांच की दीवार वाली कोशिकाओं के सापेक्ष किया गया था वे अभी भी विशेष उद्देश्यों के लिए उपयोग किए जाते हैं। रंग-चयन की विस्तृत श्रृंखला अब रंगीन-फिल्म फिल्टर के रूप में उपलब्ध है, जो मूल रूप से पशु [[ जेलाटीन ]] से बनाई गई है, लेकिन अब सामान्यत:एक थर्मोप्लास्टिक जैसे कि [[सेलूलोज एसीटेट]], [[पॉलिमिथाइल मेथाक्रायलेट]], पॉली [[पॉलीकार्बोनेट]], या [[पॉलीथीन टैरीपिथालेट]] आवेदन पर निर्भर करता है। वे 20वीं शताब्दी की शुरुआत में [[मस्सा संख्या]] द्वारा फ़िल्टर (फ़ोटोग्राफ़ी) के उपयोग के लिए मानकीकृत किए गए थे, और [[थिएटर]] उपयोग के लिए रंगीन जेल निर्माताओं द्वारा भी। | ||
अब कांच से बने कई शोषक फिल्टर हैं जिनमें विभिन्न अकार्बनिक रसायन या कार्बनिक रसायन होते हैं जोड़ा गया। रंगीन कांच के ऑप्टिकल फिल्टर, | अब कांच से बने कई शोषक फिल्टर हैं जिनमें विभिन्न अकार्बनिक रसायन या कार्बनिक रसायन होते हैं जोड़ा गया। रंगीन कांच के ऑप्टिकल फिल्टर, यद्यपि सटीक संप्रेषण विनिर्देशों को बनाना कठिन है, एक बार निर्मित होने के बाद अधिक टिकाऊ और स्थिर होते हैं। | ||
== डाइक्रोइक फ़िल्टर == | == डाइक्रोइक फ़िल्टर == | ||
{{Main|Dichroic filter}} | {{Main|Dichroic filter}} | ||
वैकल्पिक रूप से, [[ऑप्टिकल कोटिंग]]्स की एक श्रृंखला के | वैकल्पिक रूप से, [[ऑप्टिकल कोटिंग]]्स की एक श्रृंखला के सापेक्ष एक ग्लास सब्सट्रेट को कोटिंग करके डाइक्रोइक फिल्टर (जिसे परावर्तक या पतली फिल्म या हस्तक्षेप फिल्टर भी कहा जाता है) बनाया जा सकता है। डाइक्रोइक फिल्टर सामान्यत:प्रकाश के अवांछित हिस्से को प्रतिबिंबित करते हैं और शेष को प्रसारित करते हैं। | ||
Dichroic फ़िल्टर हस्तक्षेप (तरंग प्रसार) के सिद्धांत का उपयोग करते हैं। उनकी परतें चिंतनशील गुहाओं की एक अनुक्रमिक श्रृंखला बनाती हैं जो वांछित तरंग दैर्ध्य के | Dichroic फ़िल्टर हस्तक्षेप (तरंग प्रसार) के सिद्धांत का उपयोग करते हैं। उनकी परतें चिंतनशील गुहाओं की एक अनुक्रमिक श्रृंखला बनाती हैं जो वांछित तरंग दैर्ध्य के सापेक्ष प्रतिध्वनित होती हैं। अन्य तरंग दैर्ध्य विनाशकारी रूप से रद्द या प्रतिबिंबित करते हैं क्योंकि लहरों के शिखर और गर्त ओवरलैप होते हैं। | ||
Dichroic फिल्टर विशेष रूप से सटीक वैज्ञानिक कार्य के लिए अनुकूल हैं, क्योंकि उनकी सटीक रंग सीमा को कोटिंग्स की मोटाई और अनुक्रम द्वारा नियंत्रित किया जा सकता है। वे सामान्यत:अवशोषण फिल्टर की | Dichroic फिल्टर विशेष रूप से सटीक वैज्ञानिक कार्य के लिए अनुकूल हैं, क्योंकि उनकी सटीक रंग सीमा को कोटिंग्स की मोटाई और अनुक्रम द्वारा नियंत्रित किया जा सकता है। वे सामान्यत:अवशोषण फिल्टर की सापेक्ष में बहुत अधिक महंगे और नाजुक होते हैं। | ||
उनका उपयोग [[कैमरा]] के [[डाइक्रोइक प्रिज्म]] जैसे उपकरणों में प्रकाश की किरण को अलग-अलग रंगीन घटकों में अलग करने के लिए किया जा सकता है। | उनका उपयोग [[कैमरा]] के [[डाइक्रोइक प्रिज्म]] जैसे उपकरणों में प्रकाश की किरण को अलग-अलग रंगीन घटकों में अलग करने के लिए किया जा सकता है। | ||
Line 34: | Line 35: | ||
इस प्रकार का बुनियादी वैज्ञानिक उपकरण फेब्री-पेरोट व्यतिकरणमापी है। यह एक प्रतिध्वनित गुहा स्थापित करने के लिए दो दर्पणों का उपयोग करता है। यह वेवलेंथ पास करता है जो कैविटी की रेजोनेंस फ्रीक्वेंसी का मल्टीपल होता है। | इस प्रकार का बुनियादी वैज्ञानिक उपकरण फेब्री-पेरोट व्यतिकरणमापी है। यह एक प्रतिध्वनित गुहा स्थापित करने के लिए दो दर्पणों का उपयोग करता है। यह वेवलेंथ पास करता है जो कैविटी की रेजोनेंस फ्रीक्वेंसी का मल्टीपल होता है। | ||
[[Etalon]]s एक और भिन्नता है: पारदर्शी क्यूब्स या फाइबर जिनके पॉलिश किए गए सिरे विशिष्ट तरंग दैर्ध्य के | [[Etalon]]s एक और भिन्नता है: पारदर्शी क्यूब्स या फाइबर जिनके पॉलिश किए गए सिरे विशिष्ट तरंग दैर्ध्य के सापेक्ष प्रतिध्वनित होने के लिए दर्पण का निर्माण करते हैं। इनका उपयोग अक्सर [[दूरसंचार नेटवर्क]] में चैनलों को अलग करने के लिए किया जाता है जो लंबी दूरी के [[ऑप्टिक फाइबर]] पर [[वेवलेंथ डिविज़न मल्टिप्लेक्सिंग]] का उपयोग करते हैं। | ||
== मोनोक्रोमैटिक == | == मोनोक्रोमैटिक == | ||
Line 44: | Line 45: | ||
इन्फ्रारेड-पासिंग फिल्टर दृश्य प्रकाश को अवरुद्ध करने के लिए उपयोग किए जाते हैं लेकिन इन्फ्रारेड पास करते हैं; उदाहरण के लिए, [[ अवरक्त फोटोग्राफी ]] में उनका उपयोग किया जाता है। | इन्फ्रारेड-पासिंग फिल्टर दृश्य प्रकाश को अवरुद्ध करने के लिए उपयोग किए जाते हैं लेकिन इन्फ्रारेड पास करते हैं; उदाहरण के लिए, [[ अवरक्त फोटोग्राफी ]] में उनका उपयोग किया जाता है। | ||
[[इन्फ्रारेड कट-ऑफ फिल्टर]] इन्फ्रारेड तरंगदैर्ध्य को अवरुद्ध या प्रतिबिंबित करने के लिए | [[इन्फ्रारेड कट-ऑफ फिल्टर]] इन्फ्रारेड तरंगदैर्ध्य को अवरुद्ध या प्रतिबिंबित करने के लिए प्रारूप किए गए हैं लेकिन दृश्यमान स्पेक्ट्रम प्रकाश पास करते हैं। इन्फ्रारेड विकिरण के कारण अवांछित हीटिंग को रोकने के लिए मिड-इन्फ्रारेड फिल्टर अक्सर चमकदार [[गरमागरम प्रकाश बल्ब]] (जैसे [[ स्लाइड देखने का यंत्र ]] और [[ओवरहेड प्रोजेक्टर]]) वाले उपकरणों में गर्मी-अवशोषित फ़िल्टर के रूप में उपयोग किए जाते हैं। ऐसे फिल्टर भी हैं जिनका उपयोग [[ ठोस अवस्था (इलेक्ट्रॉनिक्स) ]] वीडियो कैमरों में आईआर को ब्लॉक करने के लिए किया जाता है क्योंकि कई कैमरा चार्ज-युग्मित डिवाइस की अवांछित निकट-इन्फ्रारेड लाइट के लिए उच्च संवेदनशीलता होती है। | ||
==[[पराबैंगनी]] == | ==[[पराबैंगनी]] == | ||
पराबैंगनी (यूवी) फिल्टर पराबैंगनी विकिरण को रोकते हैं, लेकिन दृश्यमान प्रकाश को आने देते हैं। क्योंकि फोटोग्राफिक फिल्म और डिजिटल सेंसर पराबैंगनी (जो रोशनदान में प्रचुर मात्रा में है) के प्रति संवेदनशील होते हैं, लेकिन मानव आंख नहीं है, ऐसी रोशनी, अगर फ़िल्टर नहीं की जाती है, तो तस्वीरें लोगों को दिखाई देने वाले दृश्य से अलग दिखती हैं, उदाहरण के लिए दूर की छवियां बनाना पहाड़ अस्वाभाविक रूप से धुंधले दिखाई देते हैं। एक पराबैंगनी-अवरोधक फिल्टर छवियों को दृश्य के दृश्य स्वरूप के करीब प्रस्तुत करता है। | पराबैंगनी (यूवी) फिल्टर पराबैंगनी विकिरण को रोकते हैं, लेकिन दृश्यमान प्रकाश को आने देते हैं। क्योंकि फोटोग्राफिक फिल्म और डिजिटल सेंसर पराबैंगनी (जो रोशनदान में प्रचुर मात्रा में है) के प्रति संवेदनशील होते हैं, लेकिन मानव आंख नहीं है, ऐसी रोशनी, अगर फ़िल्टर नहीं की जाती है, तो तस्वीरें लोगों को दिखाई देने वाले दृश्य से अलग दिखती हैं, उदाहरण के लिए दूर की छवियां बनाना पहाड़ अस्वाभाविक रूप से धुंधले दिखाई देते हैं। एक पराबैंगनी-अवरोधक फिल्टर छवियों को दृश्य के दृश्य स्वरूप के करीब प्रस्तुत करता है। | ||
इन्फ्रारेड फिल्टर के | इन्फ्रारेड फिल्टर के सापेक्ष यूवी-ब्लॉकिंग और यूवी-पासिंग फिल्टर के बीच एक संभावित अस्पष्टता है; उत्तरार्द्ध बहुत कम आम हैं, और सामान्यत:यूवी पास फिल्टर और यूवी बैंडपास फिल्टर के रूप में स्पष्ट रूप से जाने जाते हैं।<ref>{{Cite web|url=http://www.accuteoptical.com/UV_pass_filter.shtml|title=यूवी पास और बैंडपास फिल्टर पर डेटाशीट|website=accuteoptical.com|url-status=dead|archive-url=https://web.archive.org/web/20140214201615/http://www.accuteoptical.com/UV_pass_filter.shtml|archive-date=February 14, 2014|access-date=November 19, 2019}}</ref> | ||
== तटस्थ घनत्व == | == तटस्थ घनत्व == | ||
{{main|neutral-density filter}} | {{main|neutral-density filter}} | ||
[[तटस्थ घनत्व फिल्टर]] | तटस्थ घनत्व (एनडी) फिल्टर दृश्य तरंग दैर्ध्य की सीमा में निरंतर क्षीणन होते हैं, और इसके एक हिस्से को प्रतिबिंबित या अवशोषित करके प्रकाश की तीव्रता को कम करने के लिए उपयोग किया जाता है। वे फ़िल्टर के [[ऑप्टिकल घनत्व]] (OD) द्वारा निर्दिष्ट किए जाते हैं, जो लघुगणक # सामान्य, या इनकार, [[संचरण गुणांक]] के लघुगणक का ऋणात्मक है। वे फोटोग्राफिक एक्सपोजर को लंबा करने के लिए उपयोगी हैं। एक व्यावहारिक उदाहरण | [[तटस्थ घनत्व फिल्टर]] | तटस्थ घनत्व (एनडी) फिल्टर दृश्य तरंग दैर्ध्य की सीमा में निरंतर क्षीणन होते हैं, और इसके एक हिस्से को प्रतिबिंबित या अवशोषित करके प्रकाश की तीव्रता को कम करने के लिए उपयोग किया जाता है। वे फ़िल्टर के [[ऑप्टिकल घनत्व]] (OD) द्वारा निर्दिष्ट किए जाते हैं, जो लघुगणक # सामान्य, या इनकार, [[संचरण गुणांक]] के लघुगणक का ऋणात्मक है। वे फोटोग्राफिक एक्सपोजर को लंबा करने के लिए उपयोगी हैं। एक व्यावहारिक उदाहरण तीव्र रोशनी में फोटो खिंचवाने पर जलप्रपात को धुंधला दिखाना है। वैकल्पिक रूप से, फोटोग्राफर एक बड़े एपर्चर का उपयोग करना चाह सकता है (ताकि [[क्षेत्र की गहराई]] को सीमित किया जा सके); ND फ़िल्टर जोड़ने से इसकी अनुमति मिलती है। ND फ़िल्टर चिंतनशील हो सकते हैं (जिस स्थिति में वे आंशिक रूप से परावर्तक दर्पण की तरह दिखते हैं) या अवशोषक (धूसर या काला दिखाई देते हैं)। | ||
== लॉन्गपास == | == लॉन्गपास == | ||
एक लांगपास (एलपी) फ़िल्टर एक ऑप्टिकल हस्तक्षेप या रंगीन ग्लास फ़िल्टर है जो लक्ष्य स्पेक्ट्रम (पराबैंगनी, दृश्य, या अवरक्त) की सक्रिय सीमा पर कम तरंग दैर्ध्य को कम करता है और लंबी तरंग दैर्ध्य को प्रसारित करता है। लॉन्गपास फिल्टर, जिसमें बहुत | एक लांगपास (एलपी) फ़िल्टर एक ऑप्टिकल हस्तक्षेप या रंगीन ग्लास फ़िल्टर है जो लक्ष्य स्पेक्ट्रम (पराबैंगनी, दृश्य, या अवरक्त) की सक्रिय सीमा पर कम तरंग दैर्ध्य को कम करता है और लंबी तरंग दैर्ध्य को प्रसारित करता है। लॉन्गपास फिल्टर, जिसमें बहुत तीव्र ढलान हो सकता है (जिसे एज फिल्टर कहा जाता है), कट-ऑन वेवलेंथ द्वारा पीक ट्रांसमिशन के 50 प्रतिशत पर वर्णित किया गया है। प्रतिदीप्ति माइक्रोस्कोपी में, लॉन्गपास फिल्टर का उपयोग अक्सर डाइक्रोइक दर्पण और बैरियर (उत्सर्जन) फिल्टर में किया जाता है। लॉन्गपास फिल्टर का वर्णन करने के लिए पुराने शब्द 'लो पास' का प्रयोग असामान्य हो गया है; फिल्टर को सामान्यत:आवृत्ति के बजाय तरंग दैर्ध्य के रूप में वर्णित किया जाता है, और एक [[लो पास फिल्टर]], योग्यता के बिना, एक [[इलेक्ट्रॉनिक फिल्टर]] समझा जाएगा। | ||
== बैंड-पास == | == बैंड-पास == | ||
बैंड-पास फिल्टर केवल एक निश्चित तरंग दैर्ध्य बैंड को प्रसारित करते हैं, और दूसरों को ब्लॉक करते हैं। इस तरह के एक फिल्टर की चौड़ाई तरंग दैर्ध्य रेंज में व्यक्त की जाती है, जो कि कुछ सौ नैनोमीटर से एंग्स्ट्रॉम से बहुत कम हो सकती है और कुछ भी हो सकती है। ऐसा फ़िल्टर एक LP- और एक SP फ़िल्टर को मिलाकर बनाया जा सकता है। | बैंड-पास फिल्टर केवल एक निश्चित तरंग दैर्ध्य बैंड को प्रसारित करते हैं, और दूसरों को ब्लॉक करते हैं। इस तरह के एक फिल्टर की चौड़ाई तरंग दैर्ध्य रेंज में व्यक्त की जाती है, जो कि कुछ सौ नैनोमीटर से एंग्स्ट्रॉम से बहुत कम हो सकती है और कुछ भी हो सकती है। ऐसा फ़िल्टर एक LP- और एक SP फ़िल्टर को मिलाकर बनाया जा सकता है। | ||
बैंड-पास फिल्टर के उदाहरण [[ल्योट फिल्टर]] और फेब्री-पेरोट इंटरफेरोमीटर हैं। इन दोनों फिल्टर को ट्यून करने योग्य भी बनाया जा सकता है, जैसे कि केंद्रीय तरंग दैर्ध्य को उपयोगकर्ता द्वारा चुना जा सकता है। बैंड-पास फिल्टर अक्सर खगोल विज्ञान में उपयोग किए जाते हैं जब कोई विशिष्ट संबंधित [[वर्णक्रमीय रेखा]]ओं के | बैंड-पास फिल्टर के उदाहरण [[ल्योट फिल्टर]] और फेब्री-पेरोट इंटरफेरोमीटर हैं। इन दोनों फिल्टर को ट्यून करने योग्य भी बनाया जा सकता है, जैसे कि केंद्रीय तरंग दैर्ध्य को उपयोगकर्ता द्वारा चुना जा सकता है। बैंड-पास फिल्टर अक्सर खगोल विज्ञान में उपयोग किए जाते हैं जब कोई विशिष्ट संबंधित [[वर्णक्रमीय रेखा]]ओं के सापेक्ष एक निश्चित प्रक्रिया का निरीक्षण करना चाहता है। [[डच ओपन टेलीस्कोप]]<ref>{{cite web|last=Rutten|first=Rob|title=डीओटी टोमोग्राफी|url=http://dot.astro.uu.nl/DOT_tomography.html|work=Dutch Open Telescope website|access-date=24 May 2011|archive-url=https://web.archive.org/web/20110526141349/http://dot.astro.uu.nl/DOT_tomography.html|archive-date=26 May 2011|url-status=dead}}</ref> और [[ स्वीडिश सौर टेलीस्कोप ]]<ref>{{cite web|last=Löfdahl|first=Mats|title=एसएसटी क्रिस्प छवियां|url=http://www.solarphysics.kva.se/crisp.html|work=SST website|access-date=24 May 2011|archive-url=https://web.archive.org/web/20110515052733/http://www.solarphysics.kva.se/crisp.html|archive-date=15 May 2011|url-status=dead}}</ref> ऐसे उदाहरण हैं जहां ल्योट और फेब्री-पेरोट फिल्टर का उपयोग किया जा रहा है। | ||
== शॉर्टपास == | == शॉर्टपास == | ||
एक शॉर्टपास (SP) फ़िल्टर एक ऑप्टिकल हस्तक्षेप या रंगीन ग्लास फ़िल्टर है जो लंबी तरंग दैर्ध्य को क्षीण करता है और लक्ष्य स्पेक्ट्रम (सामान्यत:पराबैंगनी और दृश्य क्षेत्र) की सक्रिय सीमा पर कम तरंग दैर्ध्य को प्रसारित (पास) करता है। प्रतिदीप्ति माइक्रोस्कोपी में, शॉर्टपास फिल्टर अक्सर डाइक्रोमैटिक दर्पण और | एक शॉर्टपास (SP) फ़िल्टर एक ऑप्टिकल हस्तक्षेप या रंगीन ग्लास फ़िल्टर है जो लंबी तरंग दैर्ध्य को क्षीण करता है और लक्ष्य स्पेक्ट्रम (सामान्यत:पराबैंगनी और दृश्य क्षेत्र) की सक्रिय सीमा पर कम तरंग दैर्ध्य को प्रसारित (पास) करता है। प्रतिदीप्ति माइक्रोस्कोपी में, शॉर्टपास फिल्टर अक्सर डाइक्रोमैटिक दर्पण और उत्तीव्रना फिल्टर में नियोजित होते हैं। | ||
== निर्देशित-मोड अनुनाद फ़िल्टर == | == निर्देशित-मोड अनुनाद फ़िल्टर == | ||
1990 के आसपास फिल्टर का एक अपेक्षाकृत नया वर्ग पेश किया गया। ये फिल्टर सामान्यत:प्रतिबिंब में फिल्टर होते हैं, यानी वे ट्रांसमिशन में पायदान फिल्टर होते हैं। वे एक सब्सट्रेट वेवगाइड और एक सबवेवलेंथ झंझरी या 2 डी छेद सरणी के अपने सबसे बुनियादी रूप में शामिल हैं। इस तरह के फिल्टर सामान्य रूप से पारदर्शी होते हैं, लेकिन जब वेवगाइड का एक टपका हुआ निर्देशित मोड उत्साहित होता है तो वे एक विशेष ध्रुवीकरण (तरंगों), कोणीय अभिविन्यास और तरंग दैर्ध्य रेंज के लिए अत्यधिक परावर्तक (99% से अधिक प्रायोगिक रूप से रिकॉर्ड) बन जाते हैं। फिल्टर के मापदंडों को झंझरी मापदंडों के उचित विकल्प द्वारा | 1990 के आसपास फिल्टर का एक अपेक्षाकृत नया वर्ग पेश किया गया। ये फिल्टर सामान्यत:प्रतिबिंब में फिल्टर होते हैं, यानी वे ट्रांसमिशन में पायदान फिल्टर होते हैं। वे एक सब्सट्रेट वेवगाइड और एक सबवेवलेंथ झंझरी या 2 डी छेद सरणी के अपने सबसे बुनियादी रूप में शामिल हैं। इस तरह के फिल्टर सामान्य रूप से पारदर्शी होते हैं, लेकिन जब वेवगाइड का एक टपका हुआ निर्देशित मोड उत्साहित होता है तो वे एक विशेष ध्रुवीकरण (तरंगों), कोणीय अभिविन्यास और तरंग दैर्ध्य रेंज के लिए अत्यधिक परावर्तक (99% से अधिक प्रायोगिक रूप से रिकॉर्ड) बन जाते हैं। फिल्टर के मापदंडों को झंझरी मापदंडों के उचित विकल्प द्वारा प्रारूप किया गया है। इस तरह के फिल्टर का लाभ अल्ट्रा-संकीर्ण बैंडविड्थ फिल्टर (डाइक्रोइक फिल्टर के विपरीत) के लिए आवश्यक कुछ परतें हैं, और 1 से अधिक मोड के उत्तीव्रित होने पर वर्णक्रमीय बैंडविड्थ और कोणीय सहिष्णुता के बीच संभावित डिकूपिंग। | ||
== धातु जाल फिल्टर == | == धातु जाल फिल्टर == | ||
{{main|धातु जाल ऑप्टिकल फिल्टर}} | {{main|धातु जाल ऑप्टिकल फिल्टर}} | ||
उप-मिलीमीटर के लिए फिल्टर और खगोल विज्ञान में अवरक्त तरंगदैर्ध्य के निकट [[धातु जाल ऑप्टिकल फिल्टर]] हैं जो इन तरंग दैर्ध्य के लिए एलपी, बीपी और एसपी फिल्टर बनाने के लिए एक | उप-मिलीमीटर के लिए फिल्टर और खगोल विज्ञान में अवरक्त तरंगदैर्ध्य के निकट [[धातु जाल ऑप्टिकल फिल्टर]] हैं जो इन तरंग दैर्ध्य के लिए एलपी, बीपी और एसपी फिल्टर बनाने के लिए एक सापेक्ष रखे जाते हैं। | ||
== [[ polarizer ]] == | == [[ polarizer ]] == |
Revision as of 11:22, 20 March 2023
एक ऑप्टिकल फिल्टर एक ऐसा उपकरण है जो विभिन्न तरंग दैर्ध्य के चुनिंदा संप्रेषण प्रकाश को सामान्यत:ऑप्टिकल पथ में एक ग्लास प्लेन या प्लास्टिक डिवाइस के रूप में प्रारंभ किया जाता है, जो या तो बल्क में रंगे होते हैं या हस्तक्षेप (ऑप्टिक्स) कोटिंग्स होते हैं। फिल्टर के ऑप्टिकल गुणों को उनकी आवृत्ति प्रतिक्रिया द्वारा पूरी तरह से वर्णित किया जाता है, जो निर्दिष्ट करता है कि फ़िल्टर द्वारा आने वाले सिग्नल के प्रत्येक आवृत्ति घटक के परिमाण और चरण को कैसे संशोधित किया जाता है।[1]
फिल्टर अधिकतर दो श्रेणियों में से एक के होते हैं। सबसे सरल, शारीरिक रूप से, अवशोषक (विद्युत चुम्बकीय विकिरण) फ़िल्टर है; तो वहाँ हस्तक्षेप फिल्टर या डाइक्रोइक फिल्टर होते हैं। प्रकाशिकी इमेजिंग के लिए कई ऑप्टिकल फिल्टर का उपयोग किया जाता है और पारदर्शिता के लिए निर्मित किया जाता है; कुछ प्रकाश स्रोतों के लिए उपयोग किए जाने वाले पारभाषी हो सकते हैं।
वे सामान्यतः केवल लंबी तरंग दैर्ध्य ,केवल छोटी तरंग दैर्ध्य , या तरंग दैर्ध्य का एक बैंड, दोनों लंबी और छोटी तरंग दैर्ध्य को अवरुद्ध कर सकते हैं। पासबैंड संकरा या चौड़ा हो सकता है; अधिकतम और न्यूनतम संचरण के बीच संक्रमण या कटऑफ तीव्र या मंद हो सकता है।ये अधिक जटिल संचरण विशेषता वाले फिल्टर हैं, उदाहरण के लिए एक बैंड के अतिरिक्त दो चोटियों के सापेक्ष;[2] ये पारंपरिक रूप से फोटोग्राफी के लिए उपयोग किए जाने वाले प्राचीन प्रारूप हैं; अधिक नियमित विशेषताओं वाले फिल्टर वैज्ञानिक और तकनीकी कार्यों के लिए उपयोग किए जाते हैं।[3]
ऑप्टिकल फ़िल्टर सामान्यतः फ़ोटोग्राफ़ी मै उपयोग किये जाते है। कई ऑप्टिकल उपकरणों में, और रंग मंच प्रकाश व्यवस्था के लिए उपयोग बनाया गया है। खगोल विज्ञान में ऑप्टिकल फिल्टर का उपयोग वर्णक्रमीय बैंड के रुचि में पारित प्रकाश को प्रतिबंधित करने के लिए किया जाता है, उदाहरण के लिए, दृश्य प्रकाश के बिना इन्फ्रारेड विकिरण का अध्ययन करने के लिए जो फिल्म या सेंसर को प्रभावित करेगा और वांछित इन्फ्रारेड को अभिभूत कर देगा। प्रतिदीप्ति माइक्रोस्कोप और प्रतिदीप्ति स्पेक्ट्रोस्कोपी जैसे प्रतिदीप्ति अनुप्रयोगों में ऑप्टिकल फिल्टर भी आवश्यक हैं।
फ़िल्टर फ़ोटोग्राफ़ी ऑप्टिकल फ़िल्टर का एक विशेष स्थिति है, और यहाँ अत्यधिक सामग्री लागू होती है। फोटोग्राफिक फिल्टर को सटीक रूप से नियंत्रित करने के लिए ऑप्टिकल गुणों की आवश्यकता नहीं होती है तथा वैज्ञानिक कार्यों के लिए फिल्टर प्रारूप को सटीक रूप से परिभाषित करने के लिए संचरण वक्र होते हैं, और कई प्रयोगशाला फिल्टर की सापेक्ष में न्यूनतम कीमत पर बड़ी मात्रा में बेचते हैं। कुछ फोटोग्राफिक प्रभाव फिल्टर, जैसे वैज्ञानिक कार्य के लिए स्टार इफेक्ट फिल्टर, प्रासंगिक नहीं हैं।
नाप
सामान्य तौर पर, ऑप्टिकल फिल्टर आने वाली रोशनी का एक निश्चित प्रतिशत तरंगदैर्ध्य परिवर्तन के रूप में प्रसारित करता है।इसे एक स्पेक्ट्रोफोटोमेट्री द्वारा मापा जाता है। यह रैखिक सामग्री के रूप में, प्रत्येक तरंग दैर्ध्य के लिए अवशोषण अन्य तरंग दैर्ध्य की उपस्थिति से स्वतंत्र होता है। बहुत न्यूनतम सामग्रियां अरैखिक प्रकाशिकी हैं, और संप्रेषण घटना प्रकाश की तीव्रता और तरंग दैर्ध्य के संयोजन पर निर्भर करता है। पारदर्शी प्रतिदीप्ति सामग्री एक अवशोषण स्पेक्ट्रोस्कोपी स्पेक्ट्रम के सापेक्ष एक ऑप्टिकल फिल्टर के रूप में और उत्सर्जन स्पेक्ट्रम के सापेक्ष एक प्रकाश स्रोत के रूप में भी कार्य कर सकती है।
सामान्य तौर पर सापेक्ष ही, जो प्रकाश संचरित नहीं होता है वह तीव्र प्रकाश के लिए अवशोषित हो जाता है, जो फ़िल्टर के महत्वपूर्ण ताप का कारण बन सकता है। यद्यपि, ऑप्टिकल शब्द अवशोषक घटना प्रकाश के क्षीणन को संदर्भित करता है, भले ही तंत्र की परवाह किए बिना इसे क्षीणित किया गया हो। कुछ फिल्टर, जैसे दर्पण, हस्तक्षेप फिल्टर, या धातु की जाली, प्रतिबिंब (भौतिकी) या गैर-संचरित प्रकाश का बहुत अधिक बिखराव।
प्रकाश की एक विशेष तरंग दैर्ध्य पर एक फिल्टर के आयाम रहित ऑप्टिकल घनत्व को इस रूप में परिभाषित किया गया है
अवशोषक
ऑप्टिकल फ़िल्टरिंग पहले तरल से भरे, कांच की दीवार वाली कोशिकाओं के सापेक्ष किया गया था वे अभी भी विशेष उद्देश्यों के लिए उपयोग किए जाते हैं। रंग-चयन की विस्तृत श्रृंखला अब रंगीन-फिल्म फिल्टर के रूप में उपलब्ध है, जो मूल रूप से पशु जेलाटीन से बनाई गई है, लेकिन अब सामान्यत:एक थर्मोप्लास्टिक जैसे कि सेलूलोज एसीटेट, पॉलिमिथाइल मेथाक्रायलेट, पॉली पॉलीकार्बोनेट, या पॉलीथीन टैरीपिथालेट आवेदन पर निर्भर करता है। वे 20वीं शताब्दी की शुरुआत में मस्सा संख्या द्वारा फ़िल्टर (फ़ोटोग्राफ़ी) के उपयोग के लिए मानकीकृत किए गए थे, और थिएटर उपयोग के लिए रंगीन जेल निर्माताओं द्वारा भी।
अब कांच से बने कई शोषक फिल्टर हैं जिनमें विभिन्न अकार्बनिक रसायन या कार्बनिक रसायन होते हैं जोड़ा गया। रंगीन कांच के ऑप्टिकल फिल्टर, यद्यपि सटीक संप्रेषण विनिर्देशों को बनाना कठिन है, एक बार निर्मित होने के बाद अधिक टिकाऊ और स्थिर होते हैं।
डाइक्रोइक फ़िल्टर
वैकल्पिक रूप से, ऑप्टिकल कोटिंग्स की एक श्रृंखला के सापेक्ष एक ग्लास सब्सट्रेट को कोटिंग करके डाइक्रोइक फिल्टर (जिसे परावर्तक या पतली फिल्म या हस्तक्षेप फिल्टर भी कहा जाता है) बनाया जा सकता है। डाइक्रोइक फिल्टर सामान्यत:प्रकाश के अवांछित हिस्से को प्रतिबिंबित करते हैं और शेष को प्रसारित करते हैं।
Dichroic फ़िल्टर हस्तक्षेप (तरंग प्रसार) के सिद्धांत का उपयोग करते हैं। उनकी परतें चिंतनशील गुहाओं की एक अनुक्रमिक श्रृंखला बनाती हैं जो वांछित तरंग दैर्ध्य के सापेक्ष प्रतिध्वनित होती हैं। अन्य तरंग दैर्ध्य विनाशकारी रूप से रद्द या प्रतिबिंबित करते हैं क्योंकि लहरों के शिखर और गर्त ओवरलैप होते हैं।
Dichroic फिल्टर विशेष रूप से सटीक वैज्ञानिक कार्य के लिए अनुकूल हैं, क्योंकि उनकी सटीक रंग सीमा को कोटिंग्स की मोटाई और अनुक्रम द्वारा नियंत्रित किया जा सकता है। वे सामान्यत:अवशोषण फिल्टर की सापेक्ष में बहुत अधिक महंगे और नाजुक होते हैं।
उनका उपयोग कैमरा के डाइक्रोइक प्रिज्म जैसे उपकरणों में प्रकाश की किरण को अलग-अलग रंगीन घटकों में अलग करने के लिए किया जा सकता है।
इस प्रकार का बुनियादी वैज्ञानिक उपकरण फेब्री-पेरोट व्यतिकरणमापी है। यह एक प्रतिध्वनित गुहा स्थापित करने के लिए दो दर्पणों का उपयोग करता है। यह वेवलेंथ पास करता है जो कैविटी की रेजोनेंस फ्रीक्वेंसी का मल्टीपल होता है।
Etalons एक और भिन्नता है: पारदर्शी क्यूब्स या फाइबर जिनके पॉलिश किए गए सिरे विशिष्ट तरंग दैर्ध्य के सापेक्ष प्रतिध्वनित होने के लिए दर्पण का निर्माण करते हैं। इनका उपयोग अक्सर दूरसंचार नेटवर्क में चैनलों को अलग करने के लिए किया जाता है जो लंबी दूरी के ऑप्टिक फाइबर पर वेवलेंथ डिविज़न मल्टिप्लेक्सिंग का उपयोग करते हैं।
मोनोक्रोमैटिक
मोनोक्रोमैटिक फिल्टर केवल तरंग दैर्ध्य की एक संकीर्ण सीमा (अनिवार्य रूप से एक ही रंग) को पारित करने की अनुमति देते हैं।
इन्फ्रारेड
इन्फ्रारेड फ़िल्टर शब्द अस्पष्ट हो सकता है, क्योंकि इसे इन्फ्रारेड (अन्य तरंग दैर्ध्य को अवरुद्ध करने) या इन्फ्रारेड (केवल) को अवरुद्ध करने के लिए फ़िल्टर पर लागू किया जा सकता है।
इन्फ्रारेड-पासिंग फिल्टर दृश्य प्रकाश को अवरुद्ध करने के लिए उपयोग किए जाते हैं लेकिन इन्फ्रारेड पास करते हैं; उदाहरण के लिए, अवरक्त फोटोग्राफी में उनका उपयोग किया जाता है।
इन्फ्रारेड कट-ऑफ फिल्टर इन्फ्रारेड तरंगदैर्ध्य को अवरुद्ध या प्रतिबिंबित करने के लिए प्रारूप किए गए हैं लेकिन दृश्यमान स्पेक्ट्रम प्रकाश पास करते हैं। इन्फ्रारेड विकिरण के कारण अवांछित हीटिंग को रोकने के लिए मिड-इन्फ्रारेड फिल्टर अक्सर चमकदार गरमागरम प्रकाश बल्ब (जैसे स्लाइड देखने का यंत्र और ओवरहेड प्रोजेक्टर) वाले उपकरणों में गर्मी-अवशोषित फ़िल्टर के रूप में उपयोग किए जाते हैं। ऐसे फिल्टर भी हैं जिनका उपयोग ठोस अवस्था (इलेक्ट्रॉनिक्स) वीडियो कैमरों में आईआर को ब्लॉक करने के लिए किया जाता है क्योंकि कई कैमरा चार्ज-युग्मित डिवाइस की अवांछित निकट-इन्फ्रारेड लाइट के लिए उच्च संवेदनशीलता होती है।
पराबैंगनी
पराबैंगनी (यूवी) फिल्टर पराबैंगनी विकिरण को रोकते हैं, लेकिन दृश्यमान प्रकाश को आने देते हैं। क्योंकि फोटोग्राफिक फिल्म और डिजिटल सेंसर पराबैंगनी (जो रोशनदान में प्रचुर मात्रा में है) के प्रति संवेदनशील होते हैं, लेकिन मानव आंख नहीं है, ऐसी रोशनी, अगर फ़िल्टर नहीं की जाती है, तो तस्वीरें लोगों को दिखाई देने वाले दृश्य से अलग दिखती हैं, उदाहरण के लिए दूर की छवियां बनाना पहाड़ अस्वाभाविक रूप से धुंधले दिखाई देते हैं। एक पराबैंगनी-अवरोधक फिल्टर छवियों को दृश्य के दृश्य स्वरूप के करीब प्रस्तुत करता है।
इन्फ्रारेड फिल्टर के सापेक्ष यूवी-ब्लॉकिंग और यूवी-पासिंग फिल्टर के बीच एक संभावित अस्पष्टता है; उत्तरार्द्ध बहुत कम आम हैं, और सामान्यत:यूवी पास फिल्टर और यूवी बैंडपास फिल्टर के रूप में स्पष्ट रूप से जाने जाते हैं।[4]
तटस्थ घनत्व
तटस्थ घनत्व फिल्टर | तटस्थ घनत्व (एनडी) फिल्टर दृश्य तरंग दैर्ध्य की सीमा में निरंतर क्षीणन होते हैं, और इसके एक हिस्से को प्रतिबिंबित या अवशोषित करके प्रकाश की तीव्रता को कम करने के लिए उपयोग किया जाता है। वे फ़िल्टर के ऑप्टिकल घनत्व (OD) द्वारा निर्दिष्ट किए जाते हैं, जो लघुगणक # सामान्य, या इनकार, संचरण गुणांक के लघुगणक का ऋणात्मक है। वे फोटोग्राफिक एक्सपोजर को लंबा करने के लिए उपयोगी हैं। एक व्यावहारिक उदाहरण तीव्र रोशनी में फोटो खिंचवाने पर जलप्रपात को धुंधला दिखाना है। वैकल्पिक रूप से, फोटोग्राफर एक बड़े एपर्चर का उपयोग करना चाह सकता है (ताकि क्षेत्र की गहराई को सीमित किया जा सके); ND फ़िल्टर जोड़ने से इसकी अनुमति मिलती है। ND फ़िल्टर चिंतनशील हो सकते हैं (जिस स्थिति में वे आंशिक रूप से परावर्तक दर्पण की तरह दिखते हैं) या अवशोषक (धूसर या काला दिखाई देते हैं)।
लॉन्गपास
एक लांगपास (एलपी) फ़िल्टर एक ऑप्टिकल हस्तक्षेप या रंगीन ग्लास फ़िल्टर है जो लक्ष्य स्पेक्ट्रम (पराबैंगनी, दृश्य, या अवरक्त) की सक्रिय सीमा पर कम तरंग दैर्ध्य को कम करता है और लंबी तरंग दैर्ध्य को प्रसारित करता है। लॉन्गपास फिल्टर, जिसमें बहुत तीव्र ढलान हो सकता है (जिसे एज फिल्टर कहा जाता है), कट-ऑन वेवलेंथ द्वारा पीक ट्रांसमिशन के 50 प्रतिशत पर वर्णित किया गया है। प्रतिदीप्ति माइक्रोस्कोपी में, लॉन्गपास फिल्टर का उपयोग अक्सर डाइक्रोइक दर्पण और बैरियर (उत्सर्जन) फिल्टर में किया जाता है। लॉन्गपास फिल्टर का वर्णन करने के लिए पुराने शब्द 'लो पास' का प्रयोग असामान्य हो गया है; फिल्टर को सामान्यत:आवृत्ति के बजाय तरंग दैर्ध्य के रूप में वर्णित किया जाता है, और एक लो पास फिल्टर, योग्यता के बिना, एक इलेक्ट्रॉनिक फिल्टर समझा जाएगा।
बैंड-पास
बैंड-पास फिल्टर केवल एक निश्चित तरंग दैर्ध्य बैंड को प्रसारित करते हैं, और दूसरों को ब्लॉक करते हैं। इस तरह के एक फिल्टर की चौड़ाई तरंग दैर्ध्य रेंज में व्यक्त की जाती है, जो कि कुछ सौ नैनोमीटर से एंग्स्ट्रॉम से बहुत कम हो सकती है और कुछ भी हो सकती है। ऐसा फ़िल्टर एक LP- और एक SP फ़िल्टर को मिलाकर बनाया जा सकता है।
बैंड-पास फिल्टर के उदाहरण ल्योट फिल्टर और फेब्री-पेरोट इंटरफेरोमीटर हैं। इन दोनों फिल्टर को ट्यून करने योग्य भी बनाया जा सकता है, जैसे कि केंद्रीय तरंग दैर्ध्य को उपयोगकर्ता द्वारा चुना जा सकता है। बैंड-पास फिल्टर अक्सर खगोल विज्ञान में उपयोग किए जाते हैं जब कोई विशिष्ट संबंधित वर्णक्रमीय रेखाओं के सापेक्ष एक निश्चित प्रक्रिया का निरीक्षण करना चाहता है। डच ओपन टेलीस्कोप[5] और स्वीडिश सौर टेलीस्कोप [6] ऐसे उदाहरण हैं जहां ल्योट और फेब्री-पेरोट फिल्टर का उपयोग किया जा रहा है।
शॉर्टपास
एक शॉर्टपास (SP) फ़िल्टर एक ऑप्टिकल हस्तक्षेप या रंगीन ग्लास फ़िल्टर है जो लंबी तरंग दैर्ध्य को क्षीण करता है और लक्ष्य स्पेक्ट्रम (सामान्यत:पराबैंगनी और दृश्य क्षेत्र) की सक्रिय सीमा पर कम तरंग दैर्ध्य को प्रसारित (पास) करता है। प्रतिदीप्ति माइक्रोस्कोपी में, शॉर्टपास फिल्टर अक्सर डाइक्रोमैटिक दर्पण और उत्तीव्रना फिल्टर में नियोजित होते हैं।
निर्देशित-मोड अनुनाद फ़िल्टर
1990 के आसपास फिल्टर का एक अपेक्षाकृत नया वर्ग पेश किया गया। ये फिल्टर सामान्यत:प्रतिबिंब में फिल्टर होते हैं, यानी वे ट्रांसमिशन में पायदान फिल्टर होते हैं। वे एक सब्सट्रेट वेवगाइड और एक सबवेवलेंथ झंझरी या 2 डी छेद सरणी के अपने सबसे बुनियादी रूप में शामिल हैं। इस तरह के फिल्टर सामान्य रूप से पारदर्शी होते हैं, लेकिन जब वेवगाइड का एक टपका हुआ निर्देशित मोड उत्साहित होता है तो वे एक विशेष ध्रुवीकरण (तरंगों), कोणीय अभिविन्यास और तरंग दैर्ध्य रेंज के लिए अत्यधिक परावर्तक (99% से अधिक प्रायोगिक रूप से रिकॉर्ड) बन जाते हैं। फिल्टर के मापदंडों को झंझरी मापदंडों के उचित विकल्प द्वारा प्रारूप किया गया है। इस तरह के फिल्टर का लाभ अल्ट्रा-संकीर्ण बैंडविड्थ फिल्टर (डाइक्रोइक फिल्टर के विपरीत) के लिए आवश्यक कुछ परतें हैं, और 1 से अधिक मोड के उत्तीव्रित होने पर वर्णक्रमीय बैंडविड्थ और कोणीय सहिष्णुता के बीच संभावित डिकूपिंग।
धातु जाल फिल्टर
उप-मिलीमीटर के लिए फिल्टर और खगोल विज्ञान में अवरक्त तरंगदैर्ध्य के निकट धातु जाल ऑप्टिकल फिल्टर हैं जो इन तरंग दैर्ध्य के लिए एलपी, बीपी और एसपी फिल्टर बनाने के लिए एक सापेक्ष रखे जाते हैं।
polarizer
एक अन्य प्रकार का ऑप्टिकल फिल्टर एक ध्रुवीकरण या ध्रुवीकरण फिल्टर है, जो अपने ध्रुवीकरण (तरंगों) के अनुसार प्रकाश को अवरुद्ध या प्रसारित करता है। वे अक्सर पोलरॉइड (पोलराइज़र) जैसी सामग्रियों से बने होते हैं और धूप के चश्मे और फ़ोटोग्राफ़ी के लिए उपयोग किए जाते हैं। प्रतिबिंब, विशेष रूप से पानी और गीली सड़क की सतहों से, आंशिक रूप से ध्रुवीकृत होते हैं, और ध्रुवीकृत धूप का चश्मा इस परावर्तित प्रकाश में से कुछ को अवरुद्ध कर देगा, जिससे मछली पकड़ने को पानी की सतह के नीचे बेहतर दृश्य और चालक के लिए बेहतर दृष्टि मिल सके। एक स्पष्ट नीले आकाश से प्रकाश भी ध्रुवीकृत होता है, और समायोज्य फिल्टर का उपयोग रंगीन फोटोग्राफी में अन्य वस्तुओं को रंगों को पेश किए बिना आकाश की उपस्थिति को काला करने के लिए किया जाता है, और वस्तुओं से स्पेक्यूलर प्रतिबिंबों को नियंत्रित करने के लिए रंग और काले और सफेद फोटोग्राफी दोनों में किया जाता है। पानी। g.m.r.f (बस ऊपर) से बहुत पुराने ये पहले (और कुछ अभी भी) लेंस में एकीकृत ठीक जाल का उपयोग करते हैं।
कुछ प्रकार की स्टीरियोस्कोपी देखने के लिए ध्रुवीकृत फिल्टर का भी उपयोग किया जाता है, ताकि प्रत्येक आंख एक ही स्रोत से एक अलग छवि देख सके।
चाप वेल्डिंग
एक आर्क वेल्डिंग से दृश्य, अवरक्त और पराबैंगनी प्रकाश निकलता है जो मानव आंखों के लिए हानिकारक हो सकता है। इसलिए, वेल्डिंग हेलमेट पर ऑप्टिकल फिल्टर को मानव दृष्टि की रक्षा के लिए ANSI Z87:1 (एक सुरक्षा चश्मा विनिर्देश) को पूरा करना चाहिए।
फ़िल्टर के कुछ उदाहरण जो इस प्रकार की फ़िल्टरिंग प्रदान करते हैं वे मिट्टी के तत्व होंगे जो कांच पर एम्बेडेड या लेपित होंगे, लेकिन व्यावहारिक रूप से सही फ़िल्टरिंग करना संभव नहीं है। एक सटीक फिल्टर विशेष तरंग दैर्ध्य को हटा देगा और बहुत सारी रोशनी छोड़ देगा ताकि एक कार्यकर्ता देख सके कि वह क्या काम कर रहा है।
कील फिल्टर
वेज फिल्टर एक फ़िल्टर (प्रकाशिकी) है जो इस तरह से बनाया गया है कि इसकी मोटाई लगातार या चरणों में वेज के आकार में बदलती रहती है। फ़िल्टर का उपयोग विकिरण बीम में तीव्रता (भौतिकी) वितरण को संशोधित करने के लिए किया जाता है। इसे लीनियरली वेरिएबल फिल्टर (LVF) के रूप में भी जाना जाता है। यह विभिन्न ऑप्टिकल सेंसरों में प्रयोग किया जाता है जहां तरंगदैर्ध्य पृथक्करण की आवश्यकता होती है उदा। हाइपरस्पेक्ट्रल सेंसर में।[7]
यह भी देखें
- एंटी - एलियासिंग फ़िल्टर
- खगोलीय फिल्टर
- परमाणु रेखा फ़िल्टर
- डाइक्रोइक प्रिज्म
- फ़िल्टर (सिग्नल प्रोसेसिंग)
- फ़िल्टर फ्लोरोमीटर
- ल्योट फिल्टर
- फोटोग्राफिक फिल्टर
- फोटोमेट्रिक सिस्टम
- कृपया फ़िल्टर करें
- गर्म फिल्टर
संदर्भ
- ↑ Transmission curves of many filters for monochrome photography, Schneider, p.1 Optical Filter Design and Analysis: A Signal Processing Approach, Christi K. Madsen, Jian H. Zhao, Copyright © 1999 John Wiley & Sons, Inc., ISBNs: 0-471-18373-3 (Hardback); 0-471-21375-6 (Electronic) (PDF)
- ↑ Transmission curves of many filters for monochrome photography, Schneider. See Redhancer 491 for a very complex curve with many peaks (PDF)
- ↑ "फ़िल्टर कैसे चुनें" (PDF). IDEX Optics & Photonics Marketplace. Archived from the original (PDF) on 16 November 2018. Retrieved 15 November 2018.
- ↑ "यूवी पास और बैंडपास फिल्टर पर डेटाशीट". accuteoptical.com. Archived from the original on February 14, 2014. Retrieved November 19, 2019.
- ↑ Rutten, Rob. "डीओटी टोमोग्राफी". Dutch Open Telescope website. Archived from the original on 26 May 2011. Retrieved 24 May 2011.
- ↑ Löfdahl, Mats. "एसएसटी क्रिस्प छवियां". SST website. Archived from the original on 15 May 2011. Retrieved 24 May 2011.
- ↑ http://shodhganga.inflibnet.ac.in/bitstream/10603/142073/7/07_chapter%202.pdf[bare URL PDF]