पॉलीकार्बोनेट

From Vigyanwiki

पॉली कार्बोनेट्स(पीसी) तापसुघट्य बहुलक का एक समूह है जिसमें उनके रासायनिक संरचनाओ में कार्बोनेट समूह होते हैं। अभियांत्रिकी में उपयोग किए जाने वाले पॉली कार्बोनेट मजबूत, कठोर सामग्री हैं, और कुछ श्रेणी वैकल्पिक रूप से पारदर्शी हैं। वे आसानी से काम करते हैं, तथा ढलवाँ हो जाते हैं, और उनका ताप अभिरूपण किया जाता हैं। इन गुणों के कारण, पॉलीकार्बोनेट के कई अनुप्रयोग हैं। पॉली कार्बोनेट के पास एक अद्वितीय राल पहचान कोड(आरआईसी) नहीं होता है और आरआईसी सूची में अन्य , 7 के रूप में पहचाना जाता है। पॉली कार्बोनेट से बने उत्पादों में पूर्ववर्ती एकलक बिसफेनोल A (बीपीए) हो सकता है।

संरचना

डाइकार्बोनेट की संरचना(PhOC(O)OC6H4 )2CMe2 बीआईएस(फिनोल-A) और फिनोल के दो समकक्षों से निष्पादित।[1] यह अणु बीआईएस(फिनोल-A) से प्राप्त एक विशिष्ट पॉली कार्बोनेट की एक उपइकाई को दर्शाता है।

कार्बोनेट एस्टर में तलीय OC(OC)2 कोर होते हैं, जो कठोरता प्रदान करते हैं। एकमात्र O = C बांड छोटा है (1.173 चित्रित उदाहरण में), जबकि C-O बांड अधिक ईथर की तरह हैं(चित्रित उदाहरण के लिए 1.326 Å की बांड दूरी)। पॉली कार्बोनेट्स को उनका नाम इसलिए मिला क्योंकि वे कार्बोनेट समूह(−O−(C=O)−O−) युक्त बहुलक हैं। तापमान प्रतिरोध सहित उपयोगी सुविधाओ का संतुलन, प्रभाव प्रतिरोध और प्रकाशीय गुण तथा प्लास्टिक पदार्थ और अभियांत्रिकी प्लास्टिक के बीच पॉली कार्बोनेट की स्थिति बनाता है।

निर्माण

फॉसजीन मार्ग

मुख्य पॉली कार्बोनेट सामग्री बिस्फेनॉल A(बीपीए) और फॉस्जीन COCl
2
की प्रतिक्रिया से उत्पन्न होती है। समग्र प्रतिक्रिया इस प्रकार लिखी जा सकती है,

Polycarbonatsynthese.svg

संश्लेषण के पहले चरण में सोडियम हाइड्रॉक्साइड के साथ बिस्फेनॉल A की प्रतिक्रिया होती है, जो बिस्फेनॉल A के हाइड्रॉक्सिल समूहों को अवक्षेपित करता है।[2]

(HOC6H4)2CMe2 + 2 NaOH →Na2(OC6H4)2CMe2 + 2 H2O

डाइफेनॉक्साइड(Na 2(OC6H4)2CMe2) फॉस्जीन के साथ प्रतिक्रिया करके एक क्लोरोफॉर्मेट देता है, जिस पर बाद में एक अन्य फेनोक्साइड द्वारा प्रतिक्रिया की जाती है। जो डिपेनऑक्साइड से शुद्ध प्रतिक्रिया है,

Na2(OC6H4)2CMe2 + COCl2 → 1/n[OC(OC6H4)2CMe2]n + 2 NaCl

इस तरह सालाना लगभग एक अरब किलोग्राम पॉली कार्बोनेट का उत्पादन होता है। बिस्फेनॉल A के स्थान पर कई अन्य डियोल का परीक्षण किया गया है, उदाहरण के लिए 1,1-बीआईएस(4-हाइड्रॉक्सीफिनाइल) साइक्लोहेक्सेन और डाइहाइड्रॉक्सीबेन्जोफेनोन आदि। बीपीए-व्युत्पन्न उत्पाद की क्रिस्टलीकरण प्रवृत्ति को दबाने के लिए साइक्लोहेक्सेन को एक सहएकलक के रूप में प्रयोग किया जाता है। टेट्राब्रोमोबिस्फेनॉल A का उपयोग अग्नि प्रतिरोध को बढ़ाने के लिए किया जाता है। टेट्रामिथाइलसाइक्लोब्यूटेनडियोल को बीपीए के प्रतिस्थापन के रूप में विकसित किया गया है।[2]

ट्रान्सएस्टरीफिकेशन मार्ग

पॉलीकार्बोनेट के लिए एक वैकल्पिक मार्ग में बीपीए और डाइफेनिल कार्बोनेट से ट्रांसस्टरीफिकेशन की आवश्यकता होती है,

(HOC6H4)2CMe2 +(C6H5O)2CO → 1 / n[OC(OC 6H4)2CMe2]n + 2 C6H5OH[2]

गुण और प्रसंस्करण

पॉली कार्बोनेट एक स्थायी सामग्री है। हालांकि इसमें उच्च प्रभाव-प्रतिरोध होता है, लेकिन इसमें बहुत कम-प्रतिरोध होता है। इसलिए, पॉली कार्बोनेट चश्मा सुधारात्मक लेंस पर और पॉली कार्बोनेट बाहरी स्वचालित घटकों पर एक कठोर परत लागू की जाती है। पॉली कार्बोनेट की विशेषताओ की तुलना पॉलिमिथाइल मेथाक्रायलेट(पीएमएमए, ऐक्रिलिक) से की जाती है, लेकिन पॉली कार्बोनेट अधिक मजबूत होता है और अत्यधिक तापमान पर अधिक समय तक टिकता है। ऊष्मीय रूप से संसाधित सामग्री आमतौर पर पूरी तरह से अनाकार होती है,[3] और परिणामस्वरूप कई प्रकार के कांच की तुलना में बेहतर प्रकाश संचरण के साथ दृश्य प्रकाश के लिए अत्यधिक पारदर्शी (प्रकाशिकी) होती है।

पॉलीकार्बोनेट का कांच संक्रमण तापमान लगभग 147 डिग्री सेल्सियस (297 डिग्री फारेनहाइट) होता है,[4] इसलिए यह धीरे-धीरे इस बिंदु से ऊपर नरम हो जाता है और लगभग 155 डिग्री सेल्सियस (311 डिग्री फारेनहाइट) से ऊपर बहता है।[5] तनाव-मुक्त और तनाव-मुक्त उत्पाद बनाने के लिए उपकरण को उच्च तापमान पर आमतौर पर 80 डिग्री सेल्सियस(176 डिग्री फारेनहाइट) से ऊपर रखा जाना चाहिए। उच्च कोटि की तुलना में कम आणविक द्रव्यमान कोटि को ढालना आसान होता है, लेकिन परिणामस्वरूप उनकी ताकत कम होती है। सबसे कठिन कोटि में उच्चतम आणविक द्रव्यमान होता है, लेकिन इसे संसाधित करना अधिक कठिन होता है।

अधिकांश तापसुघट्य के विपरीत, पॉली कार्बोनेट बिना दरार या टूटे बड़े प्लास्टिक विरूपण से गुजर सकता है। जैसे गतिरोधक पर झुकाव (धातू की चादर का संस्तरण) के फलस्वरूप, इसे धातू की चादर तकनीकों का उपयोग करके कमरे के तापमान पर परिवर्तित किया जा सकता है और बनाया जा सकता है। यहां तक ​​कि एक तंग त्रिज्या के साथ तीक्ष्ण कोण मोड़ के लिए भी, तापक आवश्यक नहीं हो सकता है। यह प्राथमिक अवस्था अनुप्रयोगों में इसे मूल्यवान बनाता है जहां पारदर्शी या विद्युत रूप से गैर-प्रवाहकीय भागों की आवश्यकता होती है, जिसे धातू की चादर से नहीं बनाया जा सकता है। पीएमएमए/एक्रिलिक, जो दिखने में पॉली कार्बोनेट के समान है, भंगुर है और जिसे कमरे के तापमान पर मोड़ा नहीं जा सकता है।

पॉली कार्बोनेट रॉल (रेसिन) के लिए मुख्य परिवर्तन तकनीक,

  • मल्टीवॉल सहित ट्यूब, छड़ और अन्य प्रोफाइल में बहिष्कार
  • धातु की चादरो 0.5–20 mm (0.020–0.787 in) और फिल्मों 1 mm (0.039 in) में सिलेंडरों {( कैलेंडर(एक मशीन जिसमें कपड़े या कागज को रोलर्स द्वारा दबाने या चिकना करने के लिए दबाया जाता है)} के साथ बाहर निकालकर, जिसे ताप अभिरूपण या माध्यमिक संरचना तकनीकों, जैसे झुकाव, प्रवेधन या मार्गाभिगमन का उपयोग करके सीधे या अन्य आकृतियों में निर्मित किया जा सकता है। अपने रासायनिक गुणों के कारण यह लेजर-उपमार्ग के लिए अनुकूल नहीं है।
  • तैयार लेखों में अंतःक्षेपी संचन

25 केजी(इकाई)किलो ग्राम (जे/किग्रा) से ऊपर आयनीकरण विकिरण के संपर्क में आने पर पॉली कार्बोनेट भंगुरता हो सकता है।[6]

पॉली कार्बोनेट से बनी एक बोतल

अनुप्रयोग

इलेक्ट्रॉनिक उपकरण

पॉली कार्बोनेट मुख्य रूप से इलेक्ट्रॉनिक अनुप्रयोगों के लिए उपयोग किया जाता है जो इसकी सामूहिक सुरक्षा सुविधाओ का लाभ उठाते हैं। गर्मी प्रतिरोधी और लौ-प्रतिरोधी गुणों वाला एक अच्छा विद्युत ऊष्मारोधी, जिसका उपयोग बिजली प्रणालियों और दूरसंचार धातु सामग्री से जुड़े उत्पादों में किया जाता है। यह उच्च-स्थिरता वाले संधारित्र में एक अचालक के रूप में काम कर सकता है।[2] एकमात्र निर्माता बायर एजी द्वारा 2000 के अंत में संधारित्र-किरण पॉली कार्बोनेट फिल्म बनाना बंद करने के बाद पॉली कार्बोनेट संधारित्र का व्यावसायिक निर्माण ज्यादातर बंद हो गया।[7][8]

निर्माण सामग्री

ग्रीनहाउस में पॉली कार्बोनेट शीटिंग

पॉली कार्बोनेट का दूसरा सबसे बड़ा उपभोक्ता निर्माण उद्योग है, उदाहरण के लिए गोल ज्योति, समतल या घुमावदार काँच, छत की चादरें और ध्वनि दीवारें आदि।

पॉली कार्बोनेट का उपयोग इमारतों में उपयोग की जाने वाली सामग्री बनाने के लिए किया जाता है जो टिकाऊ लेकिन हल्की होनी चाहिए।

3डी संसकरण

पॉलीकार्बोनेट का उपयोग 3डी एफडीएम संसकरण में बड़े पैमाने पर किया जाता है, जो उच्च गलनांक के साथ टिकाऊ मजबूत प्लास्टिक उत्पादों का उत्पादन करता है। तापसुघट्य जैसे पाली लैक्टिक अम्ल(पीlए) या एक्रिलोनिट्राइल ब्यूटडीन स्टायरीन(एबीएस) की तुलना में पॉलीकार्बोनेट अनौपचारिक रुचि वालो के लिए प्रभावित करना अपेक्षाकृत कठिन है क्योंकि उच्च गलनांक में, मुद्रण तल आसंजन के साथ कठिनाई, संसकरण के दौरान मोड़ने की प्रवृत्ति और नम वातावरण में नमी को अवशोषित करने की प्रवृत्ति होती है। इन मुद्दों के बावजूद, पेशेवर समुदाय में पॉली कार्बोनेट का उपयोग करके 3डी संसकरण को सार्वजनिक बनाया जाता है।

डेटा भंडारण

File:CD DVD Collections.jpg
Cडी और डीवीडी

एक प्रमुख पॉली कार्बोनेट बाजार सघन डिस्क , डीवीडी और ब्लू किरण डिस्क का उत्पादन है।[9] इन डिस्क को अंतःक्षेपी संचन पॉली कार्बोनेट द्वारा साँचे की खोह में उत्पादित किया जाता है जिसमें एक तरफ डिस्क डेटा की एक नकारात्मक छवि वाला एक धातु मोहर-यंत्र होता है जबकि दूसरी तरफ सांचा पक्ष की एक प्रतिबिंबित सतह होती है। फलक/फिल्म निर्माण के विशिष्ट उत्पादों में विज्ञापन (चिह्न, प्रदर्शन, पोस्टर सुरक्षा) अनुप्रयोग शामिल हैं।[2]

स्वचालित, विमान और सुरक्षा घटक

स्वचालित उद्योग में, अंतःक्षेपी संचन पॉली कार्बोनेट बहुत चिकनी सतहों का उत्पादन कर सकता है जो इसे आधार-परत की आवश्यकता के बिना स्पंदन जमाव या एल्यूमीनियम के वाष्पीकरण जमाव के लिए उपयुक्त बनाता है। सजावटी रत्नफलक और प्रकाशीय परावरतक आमतौर पर पॉली कार्बोनेट से बने होते हैं। इसके कम वजन और उच्च प्रभाव प्रतिरोध ने पॉली कार्बोनेट को स्वचालित हेडलैम्प (वाहनों का अग्रदीप) लेंस के लिए प्रमुख सामग्री बना दिया है। हालांकि, स्वचालित हेडलैम्प्स को इसकी कम खरोंच प्रतिरोध और पराबैंगनी गिरावट (पीलापन) की संवेदनशीलता के कारण बाहरी सतह विलेपन की आवश्यकता होती है। स्वचालित अनुप्रयोगों में पॉली कार्बोनेट का उपयोग कम तनाव वाले अनुप्रयोगों तक सीमित है। जब यह नमक के पानी और प्लास्टिसोल जैसे कुछ त्वरक के संपर्क में आता है, तो बंधक, प्लास्टिक जोड़ाई और कारनिस से महत्त्व पॉली कार्बोनेट को महत्त्व संक्षारण अपघटन के लिए अतिसंवेदनशील बना देता है। गोली - रोक शीशे" बनाने के लिए इसे परतदार किया जा सकता है, हालांकि यह गोली-प्रतिरोधी पतली खिड़कियों के लिए अधिक सटीक है, उदहारण के तौर पर यह स्वचालित वाहनों में गोली-प्रतिरोधी खिड़कियों में उपयोग किया जाता है। गणक(मशीन) की खिड़कियों में उपयोग होने वाले पारदर्शी प्लास्टिक के मोटे अवरोध और बैंकों के अवरोध भी पॉली कार्बोनेट के होतें हैं।

तथाकथित "चोरी-सबूत" छोटी वस्तुओ के लिए बड़ी प्लास्टिक संतुलन, जिसे हाथ से नहीं खोला जा सकता है, वो आमतौर पर पॉली कार्बोनेट से बनाई जाती है।

लॉकहीड मार्टिन एफ-22 कॉकपिट(हवाई जहाज का अगला हिस्सा) कैनोपी

लॉकहीड मार्टिन एफ-22 रैप्टर जेट फाइटर का कॉकपिट(हवाई जहाज का अगला हिस्सा) वितान उच्च प्रकाशीय गुणवत्ता वाले पॉली कार्बोनेट से बना है। यह अपनी तरह की सबसे बड़ी वस्तु है।[10][11]

आला अनुप्रयोग

पॉली कार्बोनेट, आकर्षक प्रसंस्करण और भौतिक गुणों के साथ एक बहुमुखी सामग्री होने के कारण, असंख्य छोटे अनुप्रयोगों को आकर्षित करता है। अंतःक्षेपी संचन पीने की बोतलों, गिलासों और खाद्य पात्रो का उपयोग आम है, लेकिन पॉली कार्बोनेट के निर्माण में बीपीए के उपयोग ने चिंताएं बढ़ा दी हैं (खाद्य संपर्क अनुप्रयोगों में संभावित खतरे देखें), जिससे विभिन्न सूत्रीकरण में "बीपीए मुक्त" प्लास्टिक का विकास और उपयोग हो रहा है।

प्रयोगशाला सुरक्षा चश्मा

पॉली कार्बोनेट का उपयोग आमतौर पर आंखों की सुरक्षा के साथ-साथ अन्य प्रक्षेप्य-प्रतिरोधी देखने और प्रकाश अनुप्रयोगों में किया जाता है जो आमतौर पर कांच के उपयोग का संकेत देते हैं, लेकिन इसके लिए बहुत अधिक प्रभाव-प्रतिरोध की आवश्यकता होती है। पॉलीकार्बोनेट लेंस आंखों को यूवी प्रकाश से भी बचाते हैं। पॉलीकार्बोनेट से कई तरह के लेंस बनाए जाते हैं, जिनमें स्वचालित हेडलैंप लेंस, प्रकाश लेंस, धूप के चश्मे /चश्मा लेंस तैराकी चश्मा और एससीयुबीए मास्क, और सुरक्षा चश्मा/चश्मे/हैल्मेट का अग्रभाग शामिल हैं, तथा खेल हैल्मेट/मास्क और पुलिस दंगा उपकरण (हैल्मेट का अग्रभाग,दंगा ढाल, आदि) सभी लेन्स शामिल हैं। छोटे मोटर चालित वाहनों में वायुरोधी शीशे आमतौर पर पॉली कार्बोनेट से बने होते हैं, जैसे मोटरसाइकिल, एटीवी, गोल्फ कार्ट और छोटे हवाई जहाज और हेलीकॉप्टर आदि सभी में।

कांच के विपरीत पॉली कार्बोनेट के हल्के वजन ने इलेक्ट्रॉनिक प्रकाशन चित्रपट के विकास को प्रेरित किया है जो मोबाइल और वहनीय उपकरणों में उपयोग के लिए कांच को पॉली कार्बोनेट से बदल देता है। इस तरह के प्रकाशन में नई ई-इंक और कुछ एलसीडी चित्रपट शामिल हैं, हालांकि सीआरटी, प्लाज़्मा चित्रपट और अन्य एलसीडी तकनीकों को आमतौर पर इसके उच्च पिघलने वाले तापमान के लिए अभी भी कांच की आवश्यकता होती है और इसमें बारीकी से निक्षारित करने की क्षमता होती है।

जैसा कि अधिक से अधिक सरकारें पब और क्लबों में कांच का उपयोग को प्रतिबंधित कर रही हैं जो ग्लासिंग की बढ़ती घटनाओ के कारण है, अल्कोहल उपयुक्त करने के लिए पॉली कार्बोनेट कांच लोकप्रिय हो रहे हैं और यह उनकी ताकत, स्थायित्व और कांच जैसी फीस के कारण है ।[12][13]

अन्य विविध वस्तुओ में टिकाऊ, हल्का सामान, एमपी3/डिजिटल ऑडियो प्लेयर प्रकरण, ऑकारिना, कंप्यूटर प्रकरण, दंगा ढाल, उपकरण सूची, चैती मोमबत्ती कंटेनर और खाद्य सम्मिश्रक जार जैसे सभी उपकरण शामिल हैं। कई खिलौने और रूचि सामान, जैसे पंख, घूर्णिका माउंट्स, और रेडियो-नियंत्रित हेलीकॉप्टरों में फ्लाईबार ताले,[14] और पारदर्शी लेगो(एबीएस का उपयोग अपारदर्शी टुकड़ों के लिए किया जाता है) पॉलीकार्बोनेट भागों से बनाए जाते है।[15]

मानक पॉली कार्बोनेट रॉल यूवी विकिरण के दीर्घकालिक जोखिम के लिए उपयुक्त नहीं हैं। इसे दूर करने के लिए, प्राथमिक राल में यूवी स्थिरिकारी जोड़े जा सकते हैं। इन श्रेणियों को अतःक्षेपण संचकन और बहिष्कार कंपनियों को यूवी स्थिर पॉली कार्बोनेट के रूप में बेचा जाता है। पॉली कार्बोनेट फलक सहित अन्य अनुप्रयोगों में प्रति-यूवी परत को एक विशेष आवरण के रूप में जोड़ा जा सकता है या अपक्षय प्रतिरोध को बढ़ाया जा सकता है।

मुद्रित उत्पादों के तहत उपनामपट्टी और औद्योगिक श्रेणी के अन्य रूपों के लिए पॉली कार्बोनेट का उपयोग संसकरण क्रियाधार के रूप में भी किया जाता है। पॉली कार्बोनेट सुसज्जित तत्वों और क्षीणन होने में बाधा प्रदान करता है।

चिकित्सा अनुप्रयोग

कई पॉली कार्बोनेट श्रेणी चिकित्सा अनुप्रयोगों में उपयोग किए जाते हैं और आईएसओ 10993-1 और यूएसपी कक्षा छठी(VI) मानकों (कभी-कभी पीसी-आईएसओ के रूप में संदर्भित) दोनों का अनुपालन करते हैं। छठी कक्षा छह यूएसपी गति में सबसे कठोर है। इन श्रेणियों को 120 डिग्री सेल्सियस पर भाप का उपयोग करके, गामा विकिरण , या इथिलीन ऑक्साइड (ईटीओ) विधि द्वारा निष्फल किया जा सकता है।[16] डाउ रासायनिक चिकित्सा अनुप्रयोगों के संबंध में अपने सभी प्लास्टिक उद्योगो को सख्ती से सीमित करता है।[17][18] नैनोमेडिसिन अनुप्रयोगों के लिए बेहतर जैव-अनुकूलता और गिरावट के साथ एलिफैटिक पॉली कार्बोनेट विकसित किए गए हैं।।[19]

मोबाइल फोन

कुछ स्मार्टफोन निर्माता पॉली कार्बोनेट का उपयोग करते हैं। नोकिया ने एन9 के यूनिबॉडी प्रकरण से शुरुआत करते हुए अपने फोन में पॉलीकार्बोनेट का उपयोग किया। लूमिया श्रृंखला के विभिन्न फोनों के साथ यह प्रथा जारी रही। सैमसंग ने 2012 में सैमसंग गैलेक्सी एस III के हाइपरग्लेज़-ब्रांडेड निराकरणीय बैटरी आवरण के साथ पॉली कार्बोनेट का उपयोग करना शुरू किया। सैमसंग गैलेक्सी श्रृंखला में विभिन्न फोनों के साथ यह अभ्यास जारी है। एप्पल ने 2013 में आई - फ़ोन 5सी के यूनीबॉडी प्रकरण के साथ पॉलीकार्बोनेट का उपयोग करना शुरू किया।

कांच और धातु के पिछले आवरण पर लाभों में टूटने के खिलाफ स्थायित्व (कांच पर लाभ), मोड़ने और खरोंच (धातु पर लाभ), आघात अवशोषण, कम निर्माण लागत, और रेडियो संकेत और तार रहित चार्जिंग(धातु पर लाभ) के साथ कोई हस्तक्षेप नहीं शामिल है।[20] पॉली कार्बोनेट पिछले आवरण चमकदार या चमकरहित सतह बनावट में उपलब्ध हैं।[20]

इतिहास

पॉलीकार्बोनेट की खोज सबसे पहले 1898 में म्यूनिख विश्वविद्यालय में कार्यरत जर्मन वैज्ञानिक अल्फ्रेड आइन्हॉर्न ने की थी।[21] हालांकि, 30 साल के प्रयोगशाला अनुसंधान के बाद, सामग्री के इस वर्ग को व्यावसायीकरण के बिना छोड़ दिया गया था। 1953 में अनुसंधान फिर से शुरू हुआ, जब जर्मनी के उरडिंगन में बायर में हरमन जोसेफ श्नेल ने पहले रैखिक पॉली कार्बोनेट को स्पष्ट कराया। मैक्रोलॉन ब्रांड नाम "मकरोलॉन" 1955 में पंजीकृत किया गया था।[22]

इसके अलावा 1953 में, और बायर में आविष्कार के एक सप्ताह बाद, न्यूयॉर्क के शेनेक्टैडी में सामान्य विद्युतीय में डैनियल फॉक्स(रसायनज्ञ) ने स्वतंत्र रूप से एक शाखित(बहुलक रसायन) पॉली कार्बोनेट को संश्लेषित किया। दोनों कंपनियों ने 1955 में यू.एस. स्पष्ट के लिए आवेदन किया, और इस बात पर सहमति हुई कि जिस कंपनी में प्राथमिकता नहीं है, उसे प्रौद्योगिकी का लाइसेंस दिया जाएगा।[23][24]

बायर के पक्ष में स्पष्ट प्राथमिकता का समाधान किया गया, और बायर ने 1958 में व्यापार नाम मैक्रोलोन के तहत व्यावसायिक उत्पादन शुरू किया। जीई ने 1960 में लेक्सन नाम के तहत उत्पादन शुरू किया, 1973 में जीई प्लास्टिक डिवीजन का निर्माण हुआ।[25]

1970 के बाद, मूल भूरे रंग के पॉली कार्बोनेट वर्णक को "कांच साफ" में बदल दिया गया था।

खाद्य संपर्क अनुप्रयोगों में संभावित खतरे

खाद्य भंडारण के प्रयोजन के लिए पॉली कार्बोनेट पात्रो का उपयोग विवादास्पद है। इस वादविवाद का आधार उच्च तापमान पर होने वाला उनका जलीय विश्लेषण है (पानी से गिरावट, जिसे अक्सर निक्षालन कहा जाता है), जिसे बिस्फेनॉल A जारी करता है,

1/n [OC(OC 6H4)2CMe2]n + H2O →(HOC6H4)2CMe2 + CO2

100 से अधिक अध्ययनों ने पॉली कार्बोनेट से प्राप्त बिस्फेनॉल A की जैव-सक्रियता का पता लगाया है। बिस्फेनॉल A को पॉलीकार्बोनेट पशु पिंजरों से कमरे के तापमान पर पानी में छोड़ा जाता है और यह मादा चूहों के प्रजनन अंगों के विस्तार के लिए जिम्मेदार हो सकता है।[26] हालांकि, अनुसंधान में उपयोग किए जाने वाले जानवरों के पिंजरों को एफडीए खाद्य श्रेणी पॉली कार्बोनेट के बजाय औद्योगिक श्रेणी पॉली कार्बोनेट से बनाया गया था।

अगस्त 2005 में प्रकाशित वोम साल और ह्यूजेस द्वारा बिस्फेनॉल A निक्षालित तत्व कम-मात्रा प्रभावों पर साहित्य के विश्लेषण से लगता है तथा निधिकरण के स्रोत और निकाले गए निष्कर्ष के बीच एक विचारोत्तेजक संबंध पाया गया है। उद्योग-वित्त पोषित अध्ययनों में कोई महत्वपूर्ण प्रभाव नहीं मिलता है जबकि सरकार द्वारा वित्त पोषित अध्ययनों में महत्वपूर्ण प्रभाव मिलते हैं।[27]

सोडियम हाइपोक्लोराइट विरंजक और अन्य क्षार स्वच्छक पॉली कार्बोनेट पात्रो से बिस्फेनॉल A के प्रकाशन को उत्प्रेरित करते हैं।[28][29] पॉली कार्बोनेट अमोनिया और एसीटोन के साथ असंगत है। पॉली कार्बोनेट से ग्रीस और तेल की सफाई के लिए अल्कोहल एक अनुशंसित कार्बनिक विलायक है।

पर्यावरण प्रभाव

निस्तारण

अध्ययनों से पता चला है कि 70 डिग्री सेल्सियस से ऊपर के तापमान और उच्च आर्द्रता पर, पॉली कार्बोनेट बिस्फेनॉल A(बीपीए) को जलापघटन करेगा। लगभग 30 दिनों के बाद 85 डिग्री सेल्सियस/96% आरएच पर, सतह के स्फटिक बनते हैं जिनमें 70% बीपीए होते हैं।[30] बीपीए एक यौगिक है जो वर्तमान में संभावित पर्यावरणीय खतरनाक रसायनों की सूची में है। यह संयुक्त राज्य अमेरिका और जर्मनी जैसे कई देशों की निगरानी सूची में है।[31]

-(-OC6H4)2C(CH3)2CO-)-n + H2O (CH3)2C(C6H4OH)2 + CO2

पॉली कार्बोनेट से बीपीए का निक्षालन पर्यावरणीय तापमान सामान्य pH (भराव क्षेत्र में) पर भी हो सकता है। डिस्क के पुराने होने के साथ निक्षालन की मात्रा बढ़ जाती है। एक अध्ययन में पाया गया कि भराव क्षेत्र(अवायवीय परिस्थितियों में) में बीपीए का अपघटन नहीं होगा।[31] इसलिए यह भराव क्षेत्र में लगातार बना रहेगा। आखिरकार, यह जल निकायों में अपना रास्ता खोज लेगा और जलीय प्रदूषण में योगदान देगा।[31][32]

पॉली कार्बोनेट का प्रकाशी ऑक्सीकरण

यूवी प्रकाश की उपस्थिति में, इस बहुलक के ऑक्सीकरण से कीटोन्स, फिनोल, o-फेनोक्बेसीन्जोइक अम्ल, बेंजाइल अल्कोहल और अन्य असंतृप्त यौगिक जैसे यौगिक प्राप्त होते हैं। इसका सुझाव गतिज और वर्णक्रमीय अध्ययनों के माध्यम से दिया गया है। लंबे समय तक सूरज के संपर्क में रहने के बाद बनने वाले पीले रंग का संबंध फेनोलिक अंत समूह के अतिरिक्त ऑक्कसीरण से भी हो सकता है[33]

(OC6H4)2C(CH3)2CO)n + O2 , R* →(OC6H4)2C(CH3CH2)CO)n

छोटे असंतृप्त यौगिकों को बनाने के लिए इस उत्पाद को और अधिक ऑक्कसीरण किया जा सकता है। यह दो अलग-अलग रास्तों से आगे बढ़ सकता है, चुकी बनने वाले उत्पाद इस बात पर निर्भर करते हैं कि यह कौन सा तंत्र होता है।

मार्ग A

(OC6H4)2C(CH3(CH2) CO + O2, H* HO(OC6H4) OCO + CH3COCH2(OC6H4OCO

मार्ग बी

(OC6H4)2C(CH3CH2)CO)एन + O2, H* OCO(OC6H4) CH2OH + OCO(OC 6H4) COCH3

फोटो-ऑक्कसीरण प्रतिक्रिया।[34]

प्रकाशी-परिपक्वन प्रतिक्रिया

पॉली कार्बोनेट के लिए प्रकाशी-परिपक्वन एक और अवक्रमण मार्ग है। पॉली कार्बोनेट अणु (जैसे सुगंधित वलय) यूवी विकिरण को अवशोषित करते हैं। यह अवशोषित ऊर्जा सहसंयोजक बंधों की दरार का कारण बनती है जो प्रकाशी-परिपक्वन प्रक्रिया शुरू करती है। प्रतिक्रिया को पक्ष श्रृंखला ऑक्कसीरण, रिंग ऑक्कसीरण या प्रकाशी फ्राइज़ पुनर्व्यवस्था के माध्यम से प्रसारित किया जा सकता है। गठित उत्पादों में फिनाइल सैलिसिलेट, डायहाइड्रोक्बेसीन्जोफेनोन समूह और हाइड्रोक्डिसीफेनिल ईथर समूह शामिल हैं।[33][35][36]

n(C16H14O3) C16H17O3 + C13H10O3

पॉलीकार्बोनेट फेनिल सैलिसिलेट 2,2-डायहाइड्रॉक्बेसीन्जोफेनोन

ऊष्मीय क्षरण

ठोस, तरल और गैसीय प्रदूषक बनाने के लिए अपशिष्ट पॉली कार्बोनेट उच्च तापमान पर नष्ट हो जाएगा। एक अध्ययन से पता चला है कि उत्पाद लगभग 40-50 भार% तरल, 14-16 भार% गैस थे, जबकि 34-43 भार% ठोस अवशेष के रूप में थे। तरल उत्पादों में मुख्य रूप से फिनोल यौगिक(∼75 भार%) और बिस्फेनॉल(∼10 भार%) भी मौजूद होते हैं।[35] हालाँकि, पॉली कार्बोनेट को इस्पात बनाने वाले उद्योग में कार्बन स्रोत के रूप में सुरक्षित रूप से उपयोग किया जा सकता है।[37]

फिनोल यौगिक पर्यावरण प्रदूषक हैं, जिन्हें वाष्पशील कार्बनिक यौगिकों(वीओसी) के रूप में वर्गीकृत किया गया है। अध्ययनों से पता चलता है कि वे जमीनी स्तर पर ओजोन गठन की सुविधा प्रदान कर सकते हैं और प्रकाशी-रासायनिक धुंध को बढ़ा सकते हैं।[38] जलीय निकायों में, वे संभावित रूप से जीवों में जमा हो सकते हैं। वे भराव क्षेत्र में लगातार बने रहते हैं, तथा आसानी से वाष्पित नहीं होते हैं और वातावरण में बने रहते हैं।[39]

कवक का प्रभाव

2001 में बेलीज में कवक की एक प्रजाति, जियोट्रिचम कैंडिडम , सघन डिस्क(सीडी) में पाए जाने वाले पॉली कार्बोनेट का उपभोग करने के लिए पाई गई थी।[40] इसमें जैविक उपचार की संभावनाएं हैं। हालांकि, इस प्रभाव को पुन: उत्पन्न नहीं किया गया है।

यह भी देखें

संदर्भ

  1. Perez, Serge; Scaringe, Raymond P. (1987). "Crystalline features of 4,4'-isopropylidenediphenylbis(phenyl carbonate) and conformational analysis of the polycarbonate of 2,2-bis(4-hydroxyphenyl)propane". Macromolecules. 20 (1): 68–77. Bibcode:1987MaMol..20...68P. doi:10.1021/ma00167a014.
  2. Jump up to: 2.0 2.1 2.2 2.3 2.4 Volker Serini "Polycarbonates" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2000. doi:10.1002/14356007.a21_207
  3. Djurner, K.; M??nson, J-A.; Rigdahl, M. (1978). "Crystallization of polycarbonate during injection molding at high pressures". Journal of Polymer Science: Polymer Letters Edition. 16 (8): 419–424. Bibcode:1978JPoSL..16..419D. doi:10.1002/pol.1978.130160806. ISSN 0360-6384.
  4. Answers to Common Questions about Bayer Polycarbonate Resins. bayermaterialsciencenafta.com
  5. "Polycarbonate". city plastics. Archived from the original on 2018-10-16. Retrieved 2013-12-18.
  6. David W. Plester B.SC. A.R.I.C. (1973). "The Effects of Radiation Sterilization on Plastics" (PDF): 9. S2CID 18798850. Archived (PDF) from the original on August 6, 2020. Retrieved 2016-04-22. Polycarbonate can satisfactorily be given a single-dose sterilization exposure (22) but tends to become brittle much above 2.5 Mrad. {{cite journal}}: Cite journal requires |journal= (help)
  7. "Film". execpc.com.
  8. "WIMA". wima.com. Archived from the original on June 12, 2017.
  9. "Is this the end of owning music?". BBC News. 3 January 2019.
  10. Egress technicians keep raptor pilots covered. Pacaf.af.mil. Retrieved on 2011-02-26.
  11. F-22 Cockpit. Globalsecurity.org (2008-01-21). Retrieved on 2011-02-26.
  12. Alcohol restrictions for violent venues. The State of Queensland (Department of Justice and Attorney-General)
  13. Ban on regular glass in licensed premises. The State of Queensland (Department of Justice and Attorney-General)
  14. "RDLohr's Clearly Superior Products" (PDF). wavelandps.com. Archived from the original (PDF) on 1 April 2010.
  15. Linda Jablanski (2015-03-31). "Which Plastic Material is Used in Lego Sets?". Archived from the original on 2017-03-05.{{cite web}}: CS1 maint: unfit URL (link)
  16. Powell, Douglas G. (September 1998). "Medical Applications of Polycarbonate". Medical Plastics and Biomaterials Magazine. Archived from the original on 23 February 1999.
  17. "Dow Plastics Medical Application Policy". Plastics.dow.com. Archived from the original on February 9, 2010.
  18. "Makrolon Polycarbonate Biocompatibility Grades". Archived from the original on 2013-04-10. Retrieved 2007-04-14.
  19. Chan, Julian M. W.; Ke, Xiyu; Sardon, Haritz; Engler, Amanda C.; Yang, Yi Yan; Hedrick, James L. (2014). "Chemically Modifiable N-Heterocycle-Functionalized Polycarbonates as a Platform for Diverse Smart Biomimetic Nanomaterials". Chemical Science. 5 (8): 3294–3300. doi:10.1039/C4SC00789A.
  20. Jump up to: 20.0 20.1 "Build materials: metal vs glass vs plastic". Android Authority. 19 July 2018.
  21. "Polycarbonate (PC)". UL Prospector. Retrieved 5 May 2014.
  22. Philip Kotler; Waldemar Pfoertsch (17 May 2010). Ingredient Branding: Making the Invisible Visible. Springer Science & Business Media. pp. 205–. ISBN 978-3-642-04214-0.
  23. "Polycarbonate is Polyfunctional". Chemical Institute of Canada. Archived from the original on 5 May 2014. Retrieved 5 May 2014.
  24. Jerome T. Coe (27 August 2010). "Lexan Polycarbonate: 1953–1968". Unlikely Victory: How General Electric Succeeded in the Chemical Industry. John Wiley & Sons. pp. 71–77. ISBN 978-0-470-93547-7.
  25. "General Electric to Sell Plastics Division". NY Times. 2007-05-22. Retrieved 2020-07-21.
  26. Howdeshell, KL; Peterman PH; Judy BM; Taylor JA; Orazio CE; Ruhlen RL; Vom Saal FS; Welshons WV (2003). "Bisphenol A is released from used polycarbonate animal cages into water at room temperature". Environmental Health Perspectives. 111 (9): 1180–7. doi:10.1289/ehp.5993. PMC 1241572. PMID 12842771.
  27. vom Saal FS, Hughes C (2005). "An extensive new literature concerning low-dose effects of bisphenol A shows the need for a new risk assessment". Environ. Health Perspect. 113 (8): 926–33. doi:10.1289/ehp.7713. PMC 1280330. PMID 16079060.
  28. Hunt, PA; Kara E. Koehler; Martha Susiarjo; Craig A. Hodges; Arlene Ilagan; Robert C. Voigt; Sally Thomas; Brian F. Thomas; Terry J. Hassold (2003). "Bisphenol A Exposure Causes Meiotic Aneuploidy in the Female Mouse". Current Biology. 13 (7): 546–553. doi:10.1016/S0960-9822(03)00189-1. PMID 12676084. S2CID 10168552.
  29. Koehler, KE; Robert C. Voigt; Sally Thomas; Bruce Lamb; Cheryl Urban; Terry Hassold; Patricia A. Hunt (2003). "When disaster strikes: rethinking caging materials". Lab Animal. 32 (4): 24–27. doi:10.1038/laban0403-24. PMID 19753748. S2CID 37343342. Archived from the original on 2009-07-06. Retrieved 2008-05-06.
  30. Bair, H. E.; Falcone, D. R.; Hellman, M. Y.; Johnson, G. E.; Kelleher, P. G. (1981-06-01). "Hydrolysis of polycarbonate to yield BPA". Journal of Applied Polymer Science (in English). 26 (6): 1777. doi:10.1002/app.1981.070260603.
  31. Jump up to: 31.0 31.1 31.2 Morin, Nicolas; Arp, Hans Peter H.; Hale, Sarah E. (July 2015). "Bisphenol A in Solid Waste Materials, Leachate Water, and Air Particles from Norwegian Waste-Handling Facilities: Presence and Partitioning Behavior". Environmental Science & Technology. 49 (13): 7675–7683. Bibcode:2015EnST...49.7675M. doi:10.1021/acs.est.5b01307. PMID 26055751.
  32. Chin, Yu-Ping; Miller, Penney L.; Zeng, Lingke; Cawley, Kaelin; Weavers, Linda K. (November 2004). "Photosensitized Degradation of Bisphenol A by Dissolved Organic Matter †". Environmental Science & Technology. 38 (22): 5888–5894. Bibcode:2004EnST...38.5888C. doi:10.1021/es0496569. PMID 15573586.
  33. Jump up to: 33.0 33.1 T., Chow, Jimmy (2007-08-06). "Environmental assessment for bisphenol-a and polycarbonate" (in English). hdl:2097/368. {{cite journal}}: Cite journal requires |journal= (help)CS1 maint: multiple names: authors list (link)
  34. Carroccio, Sabrina; Puglisi, Concetto; Montaudo, Giorgio (2002). "Mechanisms of Thermal Oxidation of Poly(bisphenol A carbonate)". Macromolecules. 35 (11): 4297–4305. Bibcode:2002MaMol..35.4297C. doi:10.1021/ma012077t.
  35. Jump up to: 35.0 35.1 Collin, S.; Bussière, P. -O.; Thérias, S.; Lambert, J. -M.; Perdereau, J.; Gardette, J. -L. (2012-11-01). "Physicochemical and mechanical impacts of photo-ageing on bisphenol a polycarbonate". Polymer Degradation and Stability. 97 (11): 2284–2293. doi:10.1016/j.polymdegradstab.2012.07.036.
  36. Tjandraatmadja, G. F.; Burn, L. S.; Jollands, M. J. (1999). "The effects of ultraviolet radiation on polycarbonate glazing" (PDF).
  37. Assadi, M. Hussein N.; Sahajwalla, V. (2014). "Recycling End-of-Life Polycarbonate in Steelmaking: Ab Initio Study of Carbon Dissolution in Molten Iron". Ind. Eng. Chem. Res. 53 (10): 3861–3864. arXiv:2204.08706. doi:10.1021/ie4031105. S2CID 101308914.
  38. "Pollution Database". pollution.unibuc.ro. Archived from the original on 2017-12-29. Retrieved 2016-11-14.
  39. "Pollutant Fact Sheet". apps.sepa.org.uk. Archived from the original on 2017-01-09. Retrieved 2016-11-14.
  40. Bosch, Xavier (2001-06-27). "Fungus eats CD". Nature News. doi:10.1038/news010628-11.

संबंध