परिवहन घटनाएं: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{short description|Exchange of mass, energy, and momentum between observed and studied systems}}[[अभियांत्रिकी]], भौतिकी और [[रसायन विज्ञान]] में, परिवहन घटनाओं का अध्ययन [[द्रव्यमान]], [[ऊर्जा]], [[ऊर्जा|आवेश]] (भौतिकी), [[ऊर्जा|संवेग]] और कोणीय संवेग के आदान-प्रदान से संबंधित है और भौतिक प्रणाली का अध्ययन किया गया है। जबकि यह निरंतर यांत्रिकी और [[ऊष्मप्रवैगिकी]] के रूप में विविध क्षेत्रों से आकर्षित होता है, यह सम्मिलित विषयों के बीच समानताओं पर | {{short description|Exchange of mass, energy, and momentum between observed and studied systems}}[[अभियांत्रिकी]], भौतिकी और [[रसायन विज्ञान]] में, परिवहन घटनाओं का अध्ययन [[द्रव्यमान]], [[ऊर्जा]], [[ऊर्जा|आवेश]] (भौतिकी), [[ऊर्जा|संवेग]] और कोणीय संवेग के आदान-प्रदान से संबंधित है और भौतिक प्रणाली का अध्ययन किया गया है। जबकि यह निरंतर यांत्रिकी और [[ऊष्मप्रवैगिकी]] के रूप में विविध क्षेत्रों से आकर्षित होता है, यह सम्मिलित विषयों के बीच समानताओं पर अधिक महत्तव देता है।[[द्रव्यमान]], [[ऊर्जा|संवेग]] और [[ऊर्जा|ऊष्मा]] परिवहन सभी एक बहुत ही समान गणितीय ढांचे को साझा करते हैं, और उनके बीच समानताएं गहरे गणितीय संपर्क बनाने के लिए परिवहन घटना के अध्ययन में उपयोग की जाती हैं जो प्राय: एक क्षेत्र के विश्लेषण में बहुत उपयोगी उपकरण प्रदान करती हैं जो सरलता से प्राप्त होती हैं। | ||
[[द्रव्यमान]], [[ऊर्जा|ऊष्मा]] और [[ऊर्जा|संवेग]] हस्तांतरण के तीनों उपक्षेत्रों में मौलिक विश्लेषण प्राय: सरल सिद्धांत पर आधारित होते हैं कि अध्ययन की जा रही | [[द्रव्यमान]], [[ऊर्जा|ऊष्मा]] और [[ऊर्जा|संवेग]] हस्तांतरण के तीनों उपक्षेत्रों में मौलिक विश्लेषण प्राय: सरल सिद्धांत पर आधारित होते हैं कि अध्ययन की जा रही इयत्ताओं का कुल योग प्रणाली और उसके पर्यावरण द्वारा संरक्षित होना चाहिए। इस प्रकार, विभिन्न परिघटनाएँ जो परिवहन की ओर ले जाती हैं, प्रत्येक को इस ज्ञान के साथ व्यक्तिगत रूप से माना जाता है कि उनके योगदान का योग शून्य के बराबर होना चाहिए। यह सिद्धांत कई प्रासंगिक इयत्ताओं की गणना के लिए उपयोगी है। उदाहरण के लिए, द्रव यांत्रिकी में, परिवहन विश्लेषण का एक सामान्य उपयोग कठोर आयतन के माध्यम से बहने वाले द्रव के [[वेग प्रोफ़ाइल|वेग]] प्रारूप को निर्धारित करना है। | ||
पूरे [[अभियांत्रिकी]] विषयों में परिवहन घटनाएं सर्वव्यापी हैं। [[अभियांत्रिकी]] में परिवहन विश्लेषण के कुछ सबसे सामान्य उदाहरण प्रक्रिया, रासायनिक, जैविक, के क्षेत्र में देखे जाते हैं। <ref>{{cite book|last=Truskey|first=George|title=जैविक प्रणालियों में परिवहन घटना|publisher=Prentice Hall|isbn=978-0-13-156988-1|pages=888|edition=Second|author2=Yuan F |author3=Katz D |year=2009}}</ref> | पूरे [[अभियांत्रिकी]] विषयों में परिवहन घटनाएं सर्वव्यापी हैं। [[अभियांत्रिकी]] में परिवहन विश्लेषण के कुछ सबसे सामान्य उदाहरण प्रक्रिया, रासायनिक, जैविक, और मैकेनिकल [[अभियांत्रिकी]], के क्षेत्र में देखे जाते हैं। <ref>{{cite book|last=Truskey|first=George|title=जैविक प्रणालियों में परिवहन घटना|publisher=Prentice Hall|isbn=978-0-13-156988-1|pages=888|edition=Second|author2=Yuan F |author3=Katz D |year=2009}}</ref> लेकिन विषय द्रव [[यांत्रिकी]], गर्मी हस्तांतरण और बड़े पैमाने पर स्थानांतरण के साथ किसी भी तरह से सम्मिलित सभी विषयों में पाठ्यक्रम का एक मूलभूत घटक है। अब इसे [[अभियांत्रिकी]] अनुशासन का उतना ही हिस्सा माना जाता है जितना [[ऊष्मप्रवैगिकी]], यांत्रिकी और [[विद्युत]] चुंबकत्व माना जाता है। | ||
परिवहन घटनाएं [[ब्रह्मांड]] में [[भौतिक परिवर्तन]] के सभी प्रतिनिधियों को सम्मिलित करती हैं। इसके अतिरिक्त, उन्हें मूलभूत निर्माण खंड माना जाता है जिसने ब्रह्मांड को विकसित किया, और जो पृथ्वी पर सभी जीवन की सफलता के लिए उत्तरदायी है। यद्दपि, यहाँ | परिवहन घटनाएं [[ब्रह्मांड]] में [[भौतिक परिवर्तन]] के सभी प्रतिनिधियों को सम्मिलित करती हैं। इसके अतिरिक्त, उन्हें मूलभूत निर्माण खंड माना जाता है जिसने ब्रह्मांड को विकसित किया, और जो पृथ्वी पर सभी जीवन की सफलता के लिए उत्तरदायी है। यद्दपि, यहाँ विस्तार कृत्रिम अभियंता प्रणालियों के लिए परिवहन परिघटना के संबंध तक सीमित है। <ref name=J-L-Plawsky>{{Cite book| last = Plawsky| first =Joel L.| title =परिवहन घटना मूल बातें| publisher =CRC Press| date =April 2001| format =Chemical Industries Series| pages =1, 2, 3| url =https://books.google.com/books?id=huwzAAlNxzsC&q=transport+phenomena | ||
| isbn =978-0-8247-0500-8}}</ref> | | isbn =978-0-8247-0500-8}}</ref> | ||
== अवलोकन == | == अवलोकन == | ||
भौतिकी में, परिवहन घटनाएँ [[सांख्यिकीय यांत्रिकी]] प्रकृति की सभी प्रतिवर्ती प्रक्रिया [[ऊष्मप्रवैगिकी]] हैं जो [[अणुओं]] की आकस्मिक निरंतर गति से उत्पन्न होती हैं, जो ज्यादातर द्रव यांत्रिकी में देखी जाती हैं। परिवहन घटना का हर पहलू दो प्राथमिक अवधारणाओं पर आधारित है: [[संरक्षण कानून (भौतिकी)|संरक्षण नियम (भौतिकी)]], और [[संवैधानिक समीकरण]]। संरक्षण नियम, जो परिवहन घटना के संदर्भ में [[निरंतरता समीकरण|निरंतरता समीकरणों]] के रूप में तैयार किए जाते हैं, वर्णन करते हैं कि अध्ययन की जा रही | भौतिकी में, परिवहन घटनाएँ [[सांख्यिकीय यांत्रिकी]] प्रकृति की सभी प्रतिवर्ती प्रक्रिया [[ऊष्मप्रवैगिकी]] हैं जो [[अणुओं]] की आकस्मिक निरंतर गति से उत्पन्न होती हैं, जो ज्यादातर द्रव यांत्रिकी में देखी जाती हैं। परिवहन घटना का हर पहलू दो प्राथमिक अवधारणाओं पर आधारित है: [[संरक्षण कानून (भौतिकी)|संरक्षण नियम (भौतिकी)]], और [[संवैधानिक समीकरण]]। संरक्षण नियम, जो परिवहन घटना के संदर्भ में [[निरंतरता समीकरण|निरंतरता समीकरणों]] के रूप में तैयार किए जाते हैं, वर्णन करते हैं कि अध्ययन की जा रही इयत्ता को कैसे संरक्षित किया जाना चाहिए। संवैधानिक समीकरण वर्णन करते हैं कि प्रश्न में इयत्ता परिवहन के माध्यम से विभिन्न उत्तेजनाओं पर कैसे प्रतिक्रिया करती है। प्रमुख उदाहरणों में गर्मी चालन के फूरियर के नियम और नेवियर-स्टोक्स समीकरण सम्मिलित हैं, जो क्रमशः वर्णन करते हैं, [[तापमान प्रवणता|तापमान प्रवणताओं]] के लिए गर्मी प्रवाह की प्रतिक्रिया और द्रव गतिशीलता और तरल पदार्थ पर लागू बलों के बीच संबंध है। ये समीकरण परिवहन घटना और [[ऊष्मप्रवैगिकी]] के बीच गहरे संबंध को भी प्रदर्शित करते हैं, एक संबंध जो बताता है कि परिवहन घटनाएं अपरिवर्तनीय क्यों हैं। इनमें से लगभग सभी भौतिक घटनाओं में अंततः न्यूनतम ऊर्जा के सिद्धांत को ध्यान में रखते हुए [[ऊष्मप्रवैगिकी]] के अपने दूसरे नियम की मांग करने वाली प्रणालियाँ सम्मिलित हैं। जैसे-जैसे वे इस अवस्था में पहुँचते हैं, वे सच्चे [[ऊष्मप्रवैगिकी|ऊष्मप्रवैगिकी संतुलन]] को प्राप्त करते हैं, जिस बिंदु पर प्रणाली में कोई प्रेरक शक्ति नहीं रह जाती है और परिवहन बंद हो जाता है। इस तरह के संतुलन के विभिन्न पहलू सीधे एक विशिष्ट परिवहन से जुड़े होते हैं: गर्मी हस्तांतरण प्रणाली का अपने पर्यावरण के साथ थर्मल संतुलन प्राप्त करने का प्रयास है, जैसे द्रव्यमान और संवेग परिवहन प्रणाली को रासायनिक और [[यांत्रिक संतुलन]] की ओर ले जाता है। {{Cn|date=December 2022}} | ||
परिवहन प्रक्रियाओं के उदाहरणों में अर्धचालक में [[गर्मी चालन]] (ऊर्जा हस्तांतरण), [[द्रव प्रवाह]] (संवेग हस्तांतरण), [[आणविक प्रसार]] (द्रव्यमान स्थानांतरण), उज्ज्वल ऊर्जा और विद्युत आवेश हस्तांतरण सम्मिलित हैं। <ref>Plawsky, Joel., "Transport Phenomena Fundamentals." Marcel Dekker Inc.,2009</ref><ref>Alonso & Finn. "Physics." Addison Wesley,1992. Chapter 18</ref><ref>Deen, William M. "Analysis of Transport Phenomena." Oxford University Press. 1998</ref><ref>J. M. Ziman, ''Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford Classic Texts in the Physical Sciences)''</ref> | परिवहन प्रक्रियाओं के उदाहरणों में अर्धचालक में [[गर्मी चालन]] (ऊर्जा हस्तांतरण), [[द्रव प्रवाह]] (संवेग हस्तांतरण), [[आणविक प्रसार]] (द्रव्यमान स्थानांतरण), उज्ज्वल ऊर्जा और विद्युत आवेश हस्तांतरण सम्मिलित हैं। <ref>Plawsky, Joel., "Transport Phenomena Fundamentals." Marcel Dekker Inc.,2009</ref><ref>Alonso & Finn. "Physics." Addison Wesley,1992. Chapter 18</ref><ref>Deen, William M. "Analysis of Transport Phenomena." Oxford University Press. 1998</ref><ref>J. M. Ziman, ''Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford Classic Texts in the Physical Sciences)''</ref> | ||
परिवहन घटना का व्यापक अनुप्रयोग है। उदाहरण के लिए, ठोस अवस्था भौतिकी में, इलेक्ट्रॉनों, छिद्रों और [[फोनन]] की गति और परस्पर क्रिया का अध्ययन परिवहन परिघटना के तहत किया जाता है। एक अन्य उदाहरण [[जैवचिकित्सा अभियांत्रिकी]] में है, जहां ब्याज की कुछ परिवहन घटनाएं [[तापमान]], [[ छिड़काव |छिड़काव]] और [[microfluidics|सूक्ष्म तरल पदार्थ]] हैं। रासायनिक अभियांत्रिकी में, [[रासायनिक रिएक्टर]], आणविक या विसारक परिवहन तंत्र के विश्लेषण और धातु विज्ञान में परिवहन घटनाओं का अध्ययन किया जाता है। | परिवहन घटना का व्यापक अनुप्रयोग है। उदाहरण के लिए, ठोस अवस्था भौतिकी में, इलेक्ट्रॉनों, छिद्रों और [[फोनन]] की गति और परस्पर क्रिया का अध्ययन परिवहन परिघटना के तहत किया जाता है। एक अन्य उदाहरण [[जैवचिकित्सा अभियांत्रिकी]] में है, जहां ब्याज की कुछ परिवहन घटनाएं [[तापमान]], [[ छिड़काव |छिड़काव]] और [[microfluidics|सूक्ष्म तरल पदार्थ]] हैं। रासायनिक अभियांत्रिकी में, [[रासायनिक रिएक्टर|रासायनिक प्रतिघातक]], आणविक या विसारक परिवहन तंत्र के विश्लेषण और धातु विज्ञान में परिवहन घटनाओं का अध्ययन किया जाता है। | ||
बाहरी स्रोतों की उपस्थिति से द्रव्यमान, ऊर्जा और संवेग का परिवहन प्रभावित हो सकता है: | बाहरी स्रोतों की उपस्थिति से द्रव्यमान, ऊर्जा और संवेग का परिवहन प्रभावित हो सकता है: | ||
Line 41: | Line 41: | ||
* मास: हवा में गंधों का [[प्रसार]] और [[अपव्यय]] [[ऊष्मप्रवैगिकी|द्रव्यमान]] प्रसार का एक उदाहरण है। | * मास: हवा में गंधों का [[प्रसार]] और [[अपव्यय]] [[ऊष्मप्रवैगिकी|द्रव्यमान]] प्रसार का एक उदाहरण है। | ||
* ऊर्जा: ठोस पदार्थ में ऊष्मा का चालन ऊष्मा प्रसार का एक उदाहरण है। | * ऊर्जा: ठोस पदार्थ में ऊष्मा का चालन ऊष्मा प्रसार का एक उदाहरण है। | ||
* संवेग: वातावरण में गिरने वाली बारिश की बूंद द्वारा अनुभव किया गया कर्षण (भौतिकी) [[ऊष्मप्रवैगिकी|संवेग]] प्रसार का एक उदाहरण है (बारिश की बूंद | * संवेग: वातावरण में गिरने वाली बारिश की बूंद द्वारा अनुभव किया गया कर्षण (भौतिकी) [[ऊष्मप्रवैगिकी|संवेग]] प्रसार का एक उदाहरण है (बारिश की बूंद श्यान तनाव और मंदी के माध्यम से आसपास की हवा में गति खो देती है)। | ||
न्यूटोनियन तरल पदार्थ के आणविक स्थानांतरण समीकरण, द्रव गति के लिए न्यूटन का नियम, ऊष्मा चालन, ताप के लिए फूरियर का नियम, और प्रसार के लिए फ़िक के नियम, [[ऊष्मप्रवैगिकी|द्रव्यमान]] के लिए फ़िक का नियम बहुत समान हैं। तीनों अलग-अलग परिवहन परिघटनाओं की तुलना करने के लिए एक [[परिवहन गुणांक]] से दूसरे में परिवर्तित किया जा सकता है। <ref>"Thomas, William J. "Introduction to Transport Phenomena." Prentice Hall: Upper Saddle River, NJ, 2000.</ref> | न्यूटोनियन तरल पदार्थ के आणविक स्थानांतरण समीकरण, द्रव गति के लिए न्यूटन का नियम, ऊष्मा चालन, ताप के लिए फूरियर का नियम, और प्रसार के लिए फ़िक के नियम, [[ऊष्मप्रवैगिकी|द्रव्यमान]] के लिए फ़िक का नियम बहुत समान हैं। तीनों अलग-अलग परिवहन परिघटनाओं की तुलना करने के लिए एक [[परिवहन गुणांक]] से दूसरे में परिवर्तित किया जा सकता है। <ref>"Thomas, William J. "Introduction to Transport Phenomena." Prentice Hall: Upper Saddle River, NJ, 2000.</ref> | ||
Line 65: | Line 65: | ||
(इन सूत्रों की परिभाषाएँ नीचे दी गई हैं)। | (इन सूत्रों की परिभाषाएँ नीचे दी गई हैं)। | ||
अशांत हस्तांतरण के लिए इन तीन परिवहन प्रक्रियाओं के बीच | अशांत हस्तांतरण के लिए इन तीन परिवहन प्रक्रियाओं के बीच समानता विकसित करने के लिए साहित्य में बहुत प्रयास किए गए हैं ताकि किसी एक से किसी की भविष्यवाणी को अनुमति दी जा सके। [[रेनॉल्ड्स सादृश्य|रेनॉल्ड्स समानता]] मानता है कि अशांत प्रसार सभी समान हैं और संवेग (μ/ρ) और द्रव्यमान (D) के आणविक प्रसार(<sub>AB</sub>) अशांत प्रसार की तुलना में नगण्य हैं। जब तरल पदार्थ उपस्थित होते हैं और कर्षण उपस्थित होत हैं, तो समानता मान्य नहीं होता है। थिओडोर वॉन कर्मन और [[लुडविग प्रांटल]] की अन्य उपमाएं सामान्यत: खराब संबंधों का कारण बनती हैं। | ||
चिल्टन और कॉलबर्न जे-फैक्टर | चिल्टन और कॉलबर्न जे-फैक्टर समानता सबसे सफल और सबसे व्यापक रूप से उपयोग किया जाने वाला समानता है। <ref>{{cite book | ||
|title=Transport Phenomena | |title=Transport Phenomena | ||
|edition=1 | |edition=1 | ||
Line 74: | Line 74: | ||
|isbn=81-85790-86-8 | |isbn=81-85790-86-8 | ||
|page=15–3 | |page=15–3 | ||
|url=https://books.google.com/books?id=co4_XmXJddgC&pg=SA15-PA3}}, [https://books.google.com/books?id=co4_XmXJddgC&pg=SA15-PA3 Chapter 15, p. 15-3]</ref> यह | |url=https://books.google.com/books?id=co4_XmXJddgC&pg=SA15-PA3}}, [https://books.google.com/books?id=co4_XmXJddgC&pg=SA15-PA3 Chapter 15, p. 15-3]</ref> यह समानता लामिनार प्रवाह और अशांत शासन दोनों में गैसों और तरल पदार्थों के प्रायोगिक आंकड़ों पर आधारित है। हालांकि यह प्रयोगात्मक आंकड़ों पर आधारित है, यह एक समतल प्लेट पर लैमिनार प्रवाह से प्राप्त सटीक समाधान को संतुष्ट करने के लिए दिखाया जा सकता है। इस सारी जानकारी का उपयोग द्रव्यमान के हस्तांतरण की भविष्यवाणी करने के लिए किया जाता है। | ||
=== ऑनसेजर पारस्परिक संबंध === | === ऑनसेजर पारस्परिक संबंध === | ||
Line 81: | Line 81: | ||
[[तापमान]], [[घनत्व]] और [[दबाव]] के संदर्भ में वर्णित द्रव प्रणालियों में, यह ज्ञात है कि तापमान के अंतर से प्रणाली के गर्म भागों से ठंडे भागों में [[गर्मी]] का प्रवाह होता है; इसी तरह, दबाव के अंतर से उच्च दबाव से कम दबाव वाले क्षेत्रों (एक पारस्परिक संबंध) में पदार्थ का प्रवाह होगा। उल्लेखनीय बात यह है कि जब दबाव और तापमान दोनों अलग-अलग होते हैं, तो स्थिर दबाव पर तापमान के अंतर से पदार्थ का प्रवाह हो सकता है (जैसा कि संवहन में होता है) और स्थिर तापमान पर दबाव के अंतर से गर्मी का प्रवाह हो सकता है। कदाचित् आश्चर्यजनक रूप से, दबाव अंतर की प्रति इकाई गर्मी प्रवाह और तापमान अंतर की प्रति इकाई घनत्व (पदार्थ) प्रवाह समान हैं। | [[तापमान]], [[घनत्व]] और [[दबाव]] के संदर्भ में वर्णित द्रव प्रणालियों में, यह ज्ञात है कि तापमान के अंतर से प्रणाली के गर्म भागों से ठंडे भागों में [[गर्मी]] का प्रवाह होता है; इसी तरह, दबाव के अंतर से उच्च दबाव से कम दबाव वाले क्षेत्रों (एक पारस्परिक संबंध) में पदार्थ का प्रवाह होगा। उल्लेखनीय बात यह है कि जब दबाव और तापमान दोनों अलग-अलग होते हैं, तो स्थिर दबाव पर तापमान के अंतर से पदार्थ का प्रवाह हो सकता है (जैसा कि संवहन में होता है) और स्थिर तापमान पर दबाव के अंतर से गर्मी का प्रवाह हो सकता है। कदाचित् आश्चर्यजनक रूप से, दबाव अंतर की प्रति इकाई गर्मी प्रवाह और तापमान अंतर की प्रति इकाई घनत्व (पदार्थ) प्रवाह समान हैं। | ||
सूक्ष्म गतिकी के समय उत्क्रमण के परिणामस्वरूप सांख्यिकीय यांत्रिकी का उपयोग करके [[लार्स ऑनसेगर]] द्वारा इस समानता को आवश्यक दिखाया गया था। | सूक्ष्म गतिकी के समय उत्क्रमण के परिणामस्वरूप सांख्यिकीय यांत्रिकी का उपयोग करके [[लार्स ऑनसेगर]] द्वारा इस समानता को आवश्यक दिखाया गया था। [[लार्स ऑनसेगर|ऑनसेगर]] द्वारा विकसित सिद्धांत इस उदाहरण की तुलना में बहुत अधिक सामान्य है और एक बार में दो से अधिक [[ऊष्मप्रवैगिकी]] बलों की चिकित्सा करने में सक्षम है। <ref name="onsager">{{cite journal | last=Onsager | first=Lars | title=अपरिवर्तनीय प्रक्रियाओं में पारस्परिक संबंध। मैं।| journal=Physical Review | publisher=American Physical Society (APS) | volume=37 | issue=4 | date=1931-02-15 | issn=0031-899X | doi=10.1103/physrev.37.405 | pages=405–426| bibcode=1931PhRv...37..405O |doi-access=free}}</ref> | ||
Line 101: | Line 101: | ||
जब एक प्रणाली में दो या दो से अधिक घटक होते हैं जिनकी एकाग्रता बिंदु से बिंदु तक भिन्न होती है, तो द्रव्यमान को स्थानांतरित करने की प्राकृतिक प्रवृत्ति होती है, प्रणाली के भीतर किसी भी एकाग्रता अंतर को कम करना एक प्रणाली में बड़े पैमाने पर स्थानांतरण फ़िक के प्रसार के नियमों द्वारा नियंत्रित होता है। फ़िक का पहला नियम: 'उच्च सांद्रता से कम सांद्रता तक प्रसार प्रवाह पदार्थ की सांद्रता के अनुपात और माध्यम में पदार्थ की विसरणशीलता के समानुपाती होता है। ' अलग-अलग प्रेरक शक्तियों के कारण बड़े पैमाने पर स्थानांतरण हो सकता है। उनमें से कुछ हैं:<ref name="Griskey, Richard G 2006">"Griskey, Richard G. "Transport Phenomena and Unit Operations." Wiley & Sons: Hoboken, 2006. 228-248.</ref> | जब एक प्रणाली में दो या दो से अधिक घटक होते हैं जिनकी एकाग्रता बिंदु से बिंदु तक भिन्न होती है, तो द्रव्यमान को स्थानांतरित करने की प्राकृतिक प्रवृत्ति होती है, प्रणाली के भीतर किसी भी एकाग्रता अंतर को कम करना एक प्रणाली में बड़े पैमाने पर स्थानांतरण फ़िक के प्रसार के नियमों द्वारा नियंत्रित होता है। फ़िक का पहला नियम: 'उच्च सांद्रता से कम सांद्रता तक प्रसार प्रवाह पदार्थ की सांद्रता के अनुपात और माध्यम में पदार्थ की विसरणशीलता के समानुपाती होता है। ' अलग-अलग प्रेरक शक्तियों के कारण बड़े पैमाने पर स्थानांतरण हो सकता है। उनमें से कुछ हैं:<ref name="Griskey, Richard G 2006">"Griskey, Richard G. "Transport Phenomena and Unit Operations." Wiley & Sons: Hoboken, 2006. 228-248.</ref> | ||
* दबाव प्रवणता (दबाव प्रसार) की क्रिया द्वारा द्रव्यमान को स्थानांतरित किया जा सकता है | * दबाव प्रवणता (दबाव प्रसार) की क्रिया द्वारा द्रव्यमान को स्थानांतरित किया जा सकता है | ||
* | * बलपूर्वक विसरण किसी बाहरी बल की क्रिया के कारण होता है | ||
* प्रसार तापमान प्रवणता (तापीय प्रसार) के कारण हो सकता है | * प्रसार तापमान प्रवणता (तापीय प्रसार) के कारण हो सकता है | ||
* [[रासायनिक क्षमता]] में अंतर के कारण प्रसार हो सकता है | * [[रासायनिक क्षमता]] में अंतर के कारण प्रसार हो सकता है | ||
Line 124: | Line 124: | ||
गर्मी हस्तांतरण के भीतर, दो प्रकार के संवहन हो सकते हैं: | गर्मी हस्तांतरण के भीतर, दो प्रकार के संवहन हो सकते हैं: | ||
* लामिनार और अशांत प्रवाह दोनों में [[मजबूर संवहन]] हो सकता है। वृत्ताकार नलियों में लामिनार प्रवाह की स्थिति में, कई आयाम रहित संख्याओं का उपयोग किया जाता है जैसे कि [[नुसेल्ट संख्या]], [[रेनॉल्ड्स संख्या]] और | * लामिनार और अशांत प्रवाह दोनों में [[मजबूर संवहन]] हो सकता है। वृत्ताकार नलियों में लामिनार प्रवाह की स्थिति में, कई आयाम रहित संख्याओं का उपयोग किया जाता है जैसे कि [[नुसेल्ट संख्या]], [[रेनॉल्ड्स संख्या]] और प्रांतल संख्या। सामान्यत: उपयोग किया जाने वाला समीकरण है <math>Nu_{a}=\frac{h_{a}D}{k}</math>. | ||
* प्राकृतिक या [[मुक्त संवहन]] [[ग्राशोफ संख्या]] और प्रान्तल संख्या का फलन है। मुक्त संवहन ऊष्मा अंतरण की जटिलताएँ प्रायोगिक आंकड़ों से मुख्य रूप से | * प्राकृतिक या [[मुक्त संवहन]] [[ग्राशोफ संख्या]] और प्रान्तल संख्या का फलन है। मुक्त संवहन ऊष्मा अंतरण की जटिलताएँ प्रायोगिक आंकड़ों से मुख्य रूप से आनुभविक संबंधों का उपयोग करना आवश्यक बनाती हैं। <ref name="Griskey, Richard G 2006" /> | ||
गर्मी स्थानांतरण का विश्लेषण संकुलित संस्तर, परमाणु | गर्मी स्थानांतरण का विश्लेषण संकुलित संस्तर, परमाणु प्रतिघातक और [[ उष्मा का आदान प्रदान करने वाला |उष्मा का आदान प्रदान करने वाले]] में किया जाता है। | ||
== ऊष्मा और द्रव्यमान स्थानांतरण | == ऊष्मा और द्रव्यमान स्थानांतरण समानता == | ||
गर्मी और [[ऊष्मप्रवैगिकी|द्रव्यमान]] समानता एक दूसरे से आंकड़ों का उपयोग करके गर्मी हस्तांतरण और बड़े पैमाने पर स्थानांतरण की प्रत्यक्ष तुलना की अनुमति देती है। इसकी उत्पत्ति ऊष्मा और द्रव्यमान स्थानांतरण के बीच समान गैर-आयामी शासक समीकरणों से उत्पन्न होती है। | गर्मी और [[ऊष्मप्रवैगिकी|द्रव्यमान]] समानता एक दूसरे से आंकड़ों का उपयोग करके गर्मी हस्तांतरण और बड़े पैमाने पर स्थानांतरण की प्रत्यक्ष तुलना की अनुमति देती है। इसकी उत्पत्ति ऊष्मा और द्रव्यमान स्थानांतरण के बीच समान गैर-आयामी शासक समीकरणों से उत्पन्न होती है। | ||
Line 159: | Line 159: | ||
जहाँ q" ऊष्मा प्रवाह है, <math>{k}</math> तापीय चालकता है, <math>{h}</math> गर्मी हस्तांतरण गुणांक है, और उपलेख <math>{s}</math> और <math>{b}</math> क्रमशः सतह और थोक मूल्यों की तुलना करें। | जहाँ q" ऊष्मा प्रवाह है, <math>{k}</math> तापीय चालकता है, <math>{h}</math> गर्मी हस्तांतरण गुणांक है, और उपलेख <math>{s}</math> और <math>{b}</math> क्रमशः सतह और थोक मूल्यों की तुलना करें। | ||
एक अंतरफलक पर बड़े पैमाने पर स्थानांतरण के लिए, हम संवहन के लिए न्यूटन के कानून के साथ फिक के नियम की बराबरी कर सकते हैं, | एक अंतरफलक पर बड़े पैमाने पर स्थानांतरण के लिए, हम संवहन के लिए न्यूटन के कानून के साथ फिक के नियम की बराबरी कर सकते हैं, अनुवर्त्ती: | ||
<math>J = D \frac{dC}{dy} = h_m(C_m - C_b) </math> | <math>J = D \frac{dC}{dy} = h_m(C_m - C_b) </math> | ||
Line 165: | Line 165: | ||
जहाँ <math>{J}</math> द्रव्यमान प्रवाह है [kg/s <math>{m^3}</math>], <math>{D}</math> द्रव बी में प्रजातियों की प्रसारशीलता है, और <math>{h_m}</math> मास स्थानांतरण गुणांक है। जैसा कि हम देख सकते हैं, <math>{q''}</math> और <math>{J}</math> अनुरूप हैं, <math>{k}</math> और <math>{D}</math> समान हैं, जबकि <math>{T}</math> और <math>{C}</math> अनुरूप हैं। | जहाँ <math>{J}</math> द्रव्यमान प्रवाह है [kg/s <math>{m^3}</math>], <math>{D}</math> द्रव बी में प्रजातियों की प्रसारशीलता है, और <math>{h_m}</math> मास स्थानांतरण गुणांक है। जैसा कि हम देख सकते हैं, <math>{q''}</math> और <math>{J}</math> अनुरूप हैं, <math>{k}</math> और <math>{D}</math> समान हैं, जबकि <math>{T}</math> और <math>{C}</math> अनुरूप हैं। | ||
=== | === समानता को लागू करना === | ||
गर्मी-मास समानता: क्योंकि नुसेल्ट और शेरवुड समीकरण इन समान शासक समीकरणों से प्राप्त होते हैं, इन समीकरणों को द्रव्यमान और गर्मी के बीच परिवर्तित करने के लिए सीधे नुसेल्ट और शेरवुड और पीआर और एससी संख्याओं को अदल-बदली कर सकते हैं। | |||
कई स्थितियों में, जैसे एक | कई स्थितियों में, जैसे एक समतल प्लेट पर प्रवाह,नुसेल्ट और शेरवुड संख्याएँ कुछ गुणांक के लिए पीआर और एससी संख्याओं के कार्य हैं <math>n</math>. इसलिए, इन संख्याओं का उपयोग करके एक दूसरे से सीधे इन संख्याओं की गणना कर सकते हैं: | ||
<math> \frac{Nu}{Sh} = \frac{Pr^n}{Sc^n} </math> | <math> \frac{Nu}{Sh} = \frac{Pr^n}{Sc^n} </math> | ||
Line 178: | Line 178: | ||
<math> \frac{h}{h_m} = \frac{k}{D Le^n} =\rho C_p Le^{1-n}</math> | <math> \frac{h}{h_m} = \frac{k}{D Le^n} =\rho C_p Le^{1-n}</math> | ||
पूरी तरह से विकसित विक्षुब्ध प्रवाह के लिए, n=1/3 के साथ, यह चिल्टन-कोलबर्न जे-फैक्टर | पूरी तरह से विकसित विक्षुब्ध प्रवाह के लिए, n=1/3 के साथ, यह चिल्टन-कोलबर्न जे-फैक्टर समानता बन जाता है। कहा समानता भी रेनॉल्ड्स समानता की तरह श्यान बलों और गर्मी हस्तांतरण से संबंधित है। | ||
=== सीमाएं === | === सीमाएं === | ||
ताप और द्रव्यमान | ताप और द्रव्यमान समानता उन प्रकरणों में टूट सकता है जहां नियंत्रक समीकरण पर्याप्त रूप से भिन्न होते हैं। उदाहरण के लिए, प्रवाह में पीढ़ी की शर्तों से पर्याप्त योगदान वाली स्थितियाँ, जैसे कि बल्क गर्म या बल्क रासायनिक प्रतिक्रियाएँ, विचलन के समाधान का कारण बन सकती हैं। इसके अतिरिक्त, समानता कम सटीक हो सकता है जब ज्यामितीय परिवर्तन एक समीकरण में पर्याप्त योगदान का कारण बनते हैं, जैसे एक प्रवाहकीय अन्तरालक वाली प्रणाली जो बड़े पैमाने पर स्थानांतरण के लिए कोई लाभ नहीं होने के साथ गर्मी हस्तांतरण को बढ़ाता है। | ||
=== ऊष्मा-द्रव्यमान | === ऊष्मा-द्रव्यमान समानताता के अनुप्रयोग === | ||
समानता एक दूसरे की भविष्यवाणी करने के लिए गर्मी और बड़े पैमाने पर परिवहन का उपयोग करने के लिए या प्रणाली को समझने के लिए उपयोगी है जो एक साथ गर्मी उत्पन्न करना और बड़े पैमाने पर स्थानांतरण का अनुभव करती है। उदाहरण के लिए, टर्बाइन ब्लेड के आसपास गर्मी हस्तांतरण गुणांक की भविष्यवाणी करना चुनौतीपूर्ण है और प्राय: वाष्पशील यौगिक | समानता एक दूसरे की भविष्यवाणी करने के लिए गर्मी और बड़े पैमाने पर परिवहन का उपयोग करने के लिए या प्रणाली को समझने के लिए उपयोगी है जो एक साथ गर्मी उत्पन्न करना और बड़े पैमाने पर स्थानांतरण का अनुभव करती है। उदाहरण के लिए, टर्बाइन ब्लेड के आसपास गर्मी हस्तांतरण गुणांक की भविष्यवाणी करना चुनौतीपूर्ण है और प्राय: वाष्पशील यौगिक का वाष्पीकरण मापन और समानता का उपयोग करके किया जाता है। बहुत सी प्रणाली एक साथ द्रव्यमान और गर्मी हस्तांतरण का अनुभव करती हैं, और विशेष रूप से सामान्य उदाहरण चरण परिवर्तन के साथ प्रक्रियाओं में होते हैं, क्योंकि चरण परिवर्तन की तापीय धारिता प्राय: गर्मी हस्तांतरण को अधिक हद तक प्रभावित करती है। इस तरह के उदाहरणों में सम्मिलित हैं: पानी की सतह पर वाष्पीकरण, एक झिल्ली आसवन अलवणीकरण झिल्ली के ऊपर हवा के अंतर में वाष्प का परिवहन, और एचवीएसी निरार्द्रीकरण उपकरण जो गर्मी हस्तांतरण और चयनात्मक झिल्ली को जोड़ते हैं। | ||
== अनुप्रयोग == | == अनुप्रयोग == | ||
=== प्रदूषण === | === प्रदूषण === | ||
पर्यावरण में प्रदूषकों की मुक्ति और वितरण को समझने के लिए परिवहन प्रक्रियाओं का अध्ययन प्रासंगिक है। विशेष रूप से, सटीक प्रतिरूपण अल्पीकरण रणनीतियों को सूचित कर सकती है। उदाहरणों में [[शहरी अपवाह]] से सतही जल प्रदूषण का नियंत्रण, और | पर्यावरण में प्रदूषकों की मुक्ति और वितरण को समझने के लिए परिवहन प्रक्रियाओं का अध्ययन प्रासंगिक है। विशेष रूप से, सटीक प्रतिरूपण अल्पीकरण रणनीतियों को सूचित कर सकती है। उदाहरणों में [[शहरी अपवाह]] से सतही जल प्रदूषण का नियंत्रण, और संयुक्त राज्य. में वाहन ब्रेक पैड की तांबे की सामग्री को कम करने के लिए बनाई गई नीतियां सम्मिलित हैं। <ref>{{Cite journal|last1=Müller|first1=Alexandra|last2=Österlund|first2=Heléne|last3=Marsalek|first3=Jiri|last4=Viklander|first4=Maria|date=2020-03-20|title=The pollution conveyed by urban runoff: A review of sources|journal=Science of the Total Environment|language=en|volume=709|pages=136125|doi=10.1016/j.scitotenv.2019.136125|pmid=31905584|bibcode=2020ScTEn.709m6125M|issn=0048-9697|doi-access=free}}</ref><ref>{{Cite web|url=https://www.epa.gov/npdes/copper-free-brake-initiative|title=कॉपर मुक्त ब्रेक पहल|last=US EPA|first=OW|date=2015-11-10|website=US EPA|language=en|access-date=2020-04-01}}</ref> | ||
Revision as of 08:17, 24 March 2023
अभियांत्रिकी, भौतिकी और रसायन विज्ञान में, परिवहन घटनाओं का अध्ययन द्रव्यमान, ऊर्जा, आवेश (भौतिकी), संवेग और कोणीय संवेग के आदान-प्रदान से संबंधित है और भौतिक प्रणाली का अध्ययन किया गया है। जबकि यह निरंतर यांत्रिकी और ऊष्मप्रवैगिकी के रूप में विविध क्षेत्रों से आकर्षित होता है, यह सम्मिलित विषयों के बीच समानताओं पर अधिक महत्तव देता है।द्रव्यमान, संवेग और ऊष्मा परिवहन सभी एक बहुत ही समान गणितीय ढांचे को साझा करते हैं, और उनके बीच समानताएं गहरे गणितीय संपर्क बनाने के लिए परिवहन घटना के अध्ययन में उपयोग की जाती हैं जो प्राय: एक क्षेत्र के विश्लेषण में बहुत उपयोगी उपकरण प्रदान करती हैं जो सरलता से प्राप्त होती हैं।
द्रव्यमान, ऊष्मा और संवेग हस्तांतरण के तीनों उपक्षेत्रों में मौलिक विश्लेषण प्राय: सरल सिद्धांत पर आधारित होते हैं कि अध्ययन की जा रही इयत्ताओं का कुल योग प्रणाली और उसके पर्यावरण द्वारा संरक्षित होना चाहिए। इस प्रकार, विभिन्न परिघटनाएँ जो परिवहन की ओर ले जाती हैं, प्रत्येक को इस ज्ञान के साथ व्यक्तिगत रूप से माना जाता है कि उनके योगदान का योग शून्य के बराबर होना चाहिए। यह सिद्धांत कई प्रासंगिक इयत्ताओं की गणना के लिए उपयोगी है। उदाहरण के लिए, द्रव यांत्रिकी में, परिवहन विश्लेषण का एक सामान्य उपयोग कठोर आयतन के माध्यम से बहने वाले द्रव के वेग प्रारूप को निर्धारित करना है।
पूरे अभियांत्रिकी विषयों में परिवहन घटनाएं सर्वव्यापी हैं। अभियांत्रिकी में परिवहन विश्लेषण के कुछ सबसे सामान्य उदाहरण प्रक्रिया, रासायनिक, जैविक, और मैकेनिकल अभियांत्रिकी, के क्षेत्र में देखे जाते हैं। [1] लेकिन विषय द्रव यांत्रिकी, गर्मी हस्तांतरण और बड़े पैमाने पर स्थानांतरण के साथ किसी भी तरह से सम्मिलित सभी विषयों में पाठ्यक्रम का एक मूलभूत घटक है। अब इसे अभियांत्रिकी अनुशासन का उतना ही हिस्सा माना जाता है जितना ऊष्मप्रवैगिकी, यांत्रिकी और विद्युत चुंबकत्व माना जाता है।
परिवहन घटनाएं ब्रह्मांड में भौतिक परिवर्तन के सभी प्रतिनिधियों को सम्मिलित करती हैं। इसके अतिरिक्त, उन्हें मूलभूत निर्माण खंड माना जाता है जिसने ब्रह्मांड को विकसित किया, और जो पृथ्वी पर सभी जीवन की सफलता के लिए उत्तरदायी है। यद्दपि, यहाँ विस्तार कृत्रिम अभियंता प्रणालियों के लिए परिवहन परिघटना के संबंध तक सीमित है। [2]
अवलोकन
भौतिकी में, परिवहन घटनाएँ सांख्यिकीय यांत्रिकी प्रकृति की सभी प्रतिवर्ती प्रक्रिया ऊष्मप्रवैगिकी हैं जो अणुओं की आकस्मिक निरंतर गति से उत्पन्न होती हैं, जो ज्यादातर द्रव यांत्रिकी में देखी जाती हैं। परिवहन घटना का हर पहलू दो प्राथमिक अवधारणाओं पर आधारित है: संरक्षण नियम (भौतिकी), और संवैधानिक समीकरण। संरक्षण नियम, जो परिवहन घटना के संदर्भ में निरंतरता समीकरणों के रूप में तैयार किए जाते हैं, वर्णन करते हैं कि अध्ययन की जा रही इयत्ता को कैसे संरक्षित किया जाना चाहिए। संवैधानिक समीकरण वर्णन करते हैं कि प्रश्न में इयत्ता परिवहन के माध्यम से विभिन्न उत्तेजनाओं पर कैसे प्रतिक्रिया करती है। प्रमुख उदाहरणों में गर्मी चालन के फूरियर के नियम और नेवियर-स्टोक्स समीकरण सम्मिलित हैं, जो क्रमशः वर्णन करते हैं, तापमान प्रवणताओं के लिए गर्मी प्रवाह की प्रतिक्रिया और द्रव गतिशीलता और तरल पदार्थ पर लागू बलों के बीच संबंध है। ये समीकरण परिवहन घटना और ऊष्मप्रवैगिकी के बीच गहरे संबंध को भी प्रदर्शित करते हैं, एक संबंध जो बताता है कि परिवहन घटनाएं अपरिवर्तनीय क्यों हैं। इनमें से लगभग सभी भौतिक घटनाओं में अंततः न्यूनतम ऊर्जा के सिद्धांत को ध्यान में रखते हुए ऊष्मप्रवैगिकी के अपने दूसरे नियम की मांग करने वाली प्रणालियाँ सम्मिलित हैं। जैसे-जैसे वे इस अवस्था में पहुँचते हैं, वे सच्चे ऊष्मप्रवैगिकी संतुलन को प्राप्त करते हैं, जिस बिंदु पर प्रणाली में कोई प्रेरक शक्ति नहीं रह जाती है और परिवहन बंद हो जाता है। इस तरह के संतुलन के विभिन्न पहलू सीधे एक विशिष्ट परिवहन से जुड़े होते हैं: गर्मी हस्तांतरण प्रणाली का अपने पर्यावरण के साथ थर्मल संतुलन प्राप्त करने का प्रयास है, जैसे द्रव्यमान और संवेग परिवहन प्रणाली को रासायनिक और यांत्रिक संतुलन की ओर ले जाता है।[citation needed]
परिवहन प्रक्रियाओं के उदाहरणों में अर्धचालक में गर्मी चालन (ऊर्जा हस्तांतरण), द्रव प्रवाह (संवेग हस्तांतरण), आणविक प्रसार (द्रव्यमान स्थानांतरण), उज्ज्वल ऊर्जा और विद्युत आवेश हस्तांतरण सम्मिलित हैं। [3][4][5][6]
परिवहन घटना का व्यापक अनुप्रयोग है। उदाहरण के लिए, ठोस अवस्था भौतिकी में, इलेक्ट्रॉनों, छिद्रों और फोनन की गति और परस्पर क्रिया का अध्ययन परिवहन परिघटना के तहत किया जाता है। एक अन्य उदाहरण जैवचिकित्सा अभियांत्रिकी में है, जहां ब्याज की कुछ परिवहन घटनाएं तापमान, छिड़काव और सूक्ष्म तरल पदार्थ हैं। रासायनिक अभियांत्रिकी में, रासायनिक प्रतिघातक, आणविक या विसारक परिवहन तंत्र के विश्लेषण और धातु विज्ञान में परिवहन घटनाओं का अध्ययन किया जाता है।
बाहरी स्रोतों की उपस्थिति से द्रव्यमान, ऊर्जा और संवेग का परिवहन प्रभावित हो सकता है:
- जब गंध का स्रोत उपस्थित रहता है तो एक गंध अधिक धीरे-धीरे फैलती है (और तीव्र हो सकती है)।
- ऊष्मा का संचालन करने वाले ठोस के ठंडा होने की दर इस बात पर निर्भर करती है कि ऊष्मा स्रोत का उपयोग किया जाता है या नहीं।
- बारिश की बूंद पर कार्य करने वाला गुरुत्वाकर्षण बल आसपास की हवा द्वारा लगाए गए प्रतिरोध या कर्षण (भौतिकी) का प्रतिकार करता है।
परिघटनाओं के बीच समानता
परिवहन घटना के अध्ययन में एक महत्वपूर्ण सिद्धांत घटना के बीच समानता है।
प्रसार
संवेग, ऊर्जा और द्रव्यमान स्थानांतरण के समीकरणों में कुछ उल्लेखनीय समानताएँ हैं[7] जिसे सभी विसरण द्वारा ले जाया जा सकता है, जैसा कि निम्नलिखित उदाहरणों द्वारा स्पष्ट किया गया है:
- मास: हवा में गंधों का प्रसार और अपव्यय द्रव्यमान प्रसार का एक उदाहरण है।
- ऊर्जा: ठोस पदार्थ में ऊष्मा का चालन ऊष्मा प्रसार का एक उदाहरण है।
- संवेग: वातावरण में गिरने वाली बारिश की बूंद द्वारा अनुभव किया गया कर्षण (भौतिकी) संवेग प्रसार का एक उदाहरण है (बारिश की बूंद श्यान तनाव और मंदी के माध्यम से आसपास की हवा में गति खो देती है)।
न्यूटोनियन तरल पदार्थ के आणविक स्थानांतरण समीकरण, द्रव गति के लिए न्यूटन का नियम, ऊष्मा चालन, ताप के लिए फूरियर का नियम, और प्रसार के लिए फ़िक के नियम, द्रव्यमान के लिए फ़िक का नियम बहुत समान हैं। तीनों अलग-अलग परिवहन परिघटनाओं की तुलना करने के लिए एक परिवहन गुणांक से दूसरे में परिवर्तित किया जा सकता है। [8]
Transported quantity | Physical phenomenon | Equation |
---|---|---|
Momentum | Viscosity (Newtonian fluid) |
|
Energy | Heat conduction (Fourier's law) |
|
Mass | Molecular diffusion (Fick's law) |
(इन सूत्रों की परिभाषाएँ नीचे दी गई हैं)।
अशांत हस्तांतरण के लिए इन तीन परिवहन प्रक्रियाओं के बीच समानता विकसित करने के लिए साहित्य में बहुत प्रयास किए गए हैं ताकि किसी एक से किसी की भविष्यवाणी को अनुमति दी जा सके। रेनॉल्ड्स समानता मानता है कि अशांत प्रसार सभी समान हैं और संवेग (μ/ρ) और द्रव्यमान (D) के आणविक प्रसार(AB) अशांत प्रसार की तुलना में नगण्य हैं। जब तरल पदार्थ उपस्थित होते हैं और कर्षण उपस्थित होत हैं, तो समानता मान्य नहीं होता है। थिओडोर वॉन कर्मन और लुडविग प्रांटल की अन्य उपमाएं सामान्यत: खराब संबंधों का कारण बनती हैं।
चिल्टन और कॉलबर्न जे-फैक्टर समानता सबसे सफल और सबसे व्यापक रूप से उपयोग किया जाने वाला समानता है। [9] यह समानता लामिनार प्रवाह और अशांत शासन दोनों में गैसों और तरल पदार्थों के प्रायोगिक आंकड़ों पर आधारित है। हालांकि यह प्रयोगात्मक आंकड़ों पर आधारित है, यह एक समतल प्लेट पर लैमिनार प्रवाह से प्राप्त सटीक समाधान को संतुष्ट करने के लिए दिखाया जा सकता है। इस सारी जानकारी का उपयोग द्रव्यमान के हस्तांतरण की भविष्यवाणी करने के लिए किया जाता है।
ऑनसेजर पारस्परिक संबंध
तापमान, घनत्व और दबाव के संदर्भ में वर्णित द्रव प्रणालियों में, यह ज्ञात है कि तापमान के अंतर से प्रणाली के गर्म भागों से ठंडे भागों में गर्मी का प्रवाह होता है; इसी तरह, दबाव के अंतर से उच्च दबाव से कम दबाव वाले क्षेत्रों (एक पारस्परिक संबंध) में पदार्थ का प्रवाह होगा। उल्लेखनीय बात यह है कि जब दबाव और तापमान दोनों अलग-अलग होते हैं, तो स्थिर दबाव पर तापमान के अंतर से पदार्थ का प्रवाह हो सकता है (जैसा कि संवहन में होता है) और स्थिर तापमान पर दबाव के अंतर से गर्मी का प्रवाह हो सकता है। कदाचित् आश्चर्यजनक रूप से, दबाव अंतर की प्रति इकाई गर्मी प्रवाह और तापमान अंतर की प्रति इकाई घनत्व (पदार्थ) प्रवाह समान हैं।
सूक्ष्म गतिकी के समय उत्क्रमण के परिणामस्वरूप सांख्यिकीय यांत्रिकी का उपयोग करके लार्स ऑनसेगर द्वारा इस समानता को आवश्यक दिखाया गया था। ऑनसेगर द्वारा विकसित सिद्धांत इस उदाहरण की तुलना में बहुत अधिक सामान्य है और एक बार में दो से अधिक ऊष्मप्रवैगिकी बलों की चिकित्सा करने में सक्षम है। [10]
संवेग स्थानांतरण
गति हस्तांतरण में, द्रव को पदार्थ के निरंतर वितरण के रूप में माना जाता है। संवेग हस्तांतरण, या द्रव यांत्रिकी के अध्ययन को दो शाखाओं में विभाजित किया जा सकता है: द्रव स्थैतिकी (आराम पर तरल पदार्थ), और द्रव गतिकी (गति में तरल पदार्थ)।
जब कोई द्रव किसी ठोस सतह के समानांतर x-दिशा में प्रवाहित होता है, तो द्रव का x-निर्देशित संवेग होता है, और इसकी सांद्रता υxρ होती है। अणुओं के यादृच्छिक प्रसार से z-दिशा में अणुओं का आदान-प्रदान होता है। इसलिए x-निर्देशित गति को z-दिशा में तेजी से- धीमी गति से चलने वाली परत में स्थानांतरित कर दिया गया है।
संवेग हस्तांतरण के लिए समीकरण न्यूटन के श्यानता के नियम को इस प्रकार लिखा गया है:
जहां τzx z-दिशा में x-निर्देशित गति का प्रवाह है, ν μ/ρ है, संवेग विसारकता है, z परिवहन या प्रसार की दूरी है, ρ घनत्व है, और μ गतिशील श्यानता है। न्यूटन का श्यानता का नियम संवेग के प्रवाह और वेग प्रवणता के बीच सबसे सरल संबंध है। यह नोट करना उपयोगी हो सकता है कि यह प्रतीक τzx का अपरंपरागत उपयोग है; ठोस यांत्रिकी में मानक उपयोग की तुलना में सूचकांकों को उलट दिया जाता है, और संकेत को उलट दिया जाता है। [11]
मास स्थानांतरण
जब एक प्रणाली में दो या दो से अधिक घटक होते हैं जिनकी एकाग्रता बिंदु से बिंदु तक भिन्न होती है, तो द्रव्यमान को स्थानांतरित करने की प्राकृतिक प्रवृत्ति होती है, प्रणाली के भीतर किसी भी एकाग्रता अंतर को कम करना एक प्रणाली में बड़े पैमाने पर स्थानांतरण फ़िक के प्रसार के नियमों द्वारा नियंत्रित होता है। फ़िक का पहला नियम: 'उच्च सांद्रता से कम सांद्रता तक प्रसार प्रवाह पदार्थ की सांद्रता के अनुपात और माध्यम में पदार्थ की विसरणशीलता के समानुपाती होता है। ' अलग-अलग प्रेरक शक्तियों के कारण बड़े पैमाने पर स्थानांतरण हो सकता है। उनमें से कुछ हैं:[12]
- दबाव प्रवणता (दबाव प्रसार) की क्रिया द्वारा द्रव्यमान को स्थानांतरित किया जा सकता है
- बलपूर्वक विसरण किसी बाहरी बल की क्रिया के कारण होता है
- प्रसार तापमान प्रवणता (तापीय प्रसार) के कारण हो सकता है
- रासायनिक क्षमता में अंतर के कारण प्रसार हो सकता है
इसकी तुलना फ़िक के प्रसार के नियम से की जा सकती है, एक प्रजाति A के लिए A और B से युक्त एक द्विआधारी मिश्रण में:
जहाँ D विसारकता स्थिरांक है।
ऊर्जा हस्तांतरण
अभियांत्रिकी की सभी प्रक्रियाओं में ऊर्जा का स्थानांतरण सम्मिलित है। कुछ उदाहरण हैं प्रक्रिया धाराओं का ताप और शीतलन, चरण परिवर्तन, आसवन आदि। मूल सिद्धांत ऊष्मप्रवैगिकी का पहला नियम है जो एक स्थिर प्रणाली के लिए निम्नानुसार व्यक्त किया गया है:
एक प्रणाली के माध्यम से ऊर्जा का शुद्ध प्रवाह स्थिति के संबंध में तापमान की अंतर गणना के चालकता समय के बराबर होता है।
अन्य प्रणालियों के लिए जिनमें या तो अशांत प्रवाह, जटिल ज्यामिति या कठिन सीमा स्थितियां सम्मिलित हैं, एक और समीकरण का उपयोग करना सरल होगा:
जहां A सतह क्षेत्र है, : तापमान चालन बल है, Q प्रति इकाई समय में ऊष्मा प्रवाह है, और h ऊष्मा अंतरण गुणांक है।
गर्मी हस्तांतरण के भीतर, दो प्रकार के संवहन हो सकते हैं:
- लामिनार और अशांत प्रवाह दोनों में मजबूर संवहन हो सकता है। वृत्ताकार नलियों में लामिनार प्रवाह की स्थिति में, कई आयाम रहित संख्याओं का उपयोग किया जाता है जैसे कि नुसेल्ट संख्या, रेनॉल्ड्स संख्या और प्रांतल संख्या। सामान्यत: उपयोग किया जाने वाला समीकरण है .
- प्राकृतिक या मुक्त संवहन ग्राशोफ संख्या और प्रान्तल संख्या का फलन है। मुक्त संवहन ऊष्मा अंतरण की जटिलताएँ प्रायोगिक आंकड़ों से मुख्य रूप से आनुभविक संबंधों का उपयोग करना आवश्यक बनाती हैं। [12]
गर्मी स्थानांतरण का विश्लेषण संकुलित संस्तर, परमाणु प्रतिघातक और उष्मा का आदान प्रदान करने वाले में किया जाता है।
ऊष्मा और द्रव्यमान स्थानांतरण समानता
गर्मी और द्रव्यमान समानता एक दूसरे से आंकड़ों का उपयोग करके गर्मी हस्तांतरण और बड़े पैमाने पर स्थानांतरण की प्रत्यक्ष तुलना की अनुमति देती है। इसकी उत्पत्ति ऊष्मा और द्रव्यमान स्थानांतरण के बीच समान गैर-आयामी शासक समीकरणों से उत्पन्न होती है।
व्युत्पत्ति
एक सीमा परत में द्रव प्रवाह के लिए गैर-आयामी ऊर्जा समीकरण निम्नलिखित को सरल बना सकता है, जब श्यान अपव्यय और गर्मी उत्पादन से ताप को उपेक्षित किया जा सकता है:
कहाँ और क्रमशः x और y दिशाओं में वेग मुक्त धारा वेग द्वारा सामान्य किया जाता है, और x और y निर्देशांक एक प्रासंगिक लंबाई पैमाने द्वारा गैर-आयामी हैं, रेनॉल्ड्स संख्या है, प्रान्तल संख्या है, और गैर-आयामी तापमान है, जिसे स्थानीय, न्यूनतम और अधिकतम तापमान द्वारा परिभाषित किया गया है:
एक सीमा परत में द्रव प्रवाह के लिए गैर-आयामी प्रजातियों के परिवहन समीकरण को निम्नलिखित के रूप में दिया जा सकता है, यह मानते हुए कि कोई थोक प्रजाति नहीं है:
कहाँ गैर-आयामी एकाग्रता है, और श्मिट संख्या है।
ऊष्मा का परिवहन तापमान के अंतर से संचालित होता है, जबकि प्रजातियों का परिवहन सांद्रता के अंतर के कारण होता है। वे गति के प्रसार की तुलना में उनके परिवहन के सापेक्ष प्रसार से भिन्न होते हैं। गर्मी के लिए, श्यान विसरण के बीच तुलना है () और थर्मल प्रसार (), प्रान्तल संख्या द्वारा दिया गया। इस बीच बड़े पैमाने पर स्थानांतरण के लिए तुलना श्यान विसारकता के बीच है () और मास प्रसार (), श्मिट संख्या द्वारा दिया गया।
कुछ प्रकरणों में नुसेल्ट और शेरवुड संख्याओं के लिए इन समीकरणों से प्रत्यक्ष विश्लेषणात्मक समाधान प्राप्त किए जा सकते हैं। ऐसे प्रकरणों में जहां प्रायोगिक परिणामों का उपयोग किया जाता है, कोई इन समीकरणों को देखे गए परिवहन के आधार पर मान सकता है।
एक अंत:फलक पर, दोनों समीकरणों के लिए सीमा की स्थिति भी समान होती है। एक अंत:फलक पर गर्मी हस्तांतरण के लिए, गैर फिसलन स्थिति हमें संवहन के साथ चालन की बराबरी करने की अनुमति देती है, इस प्रकार फूरियर के नियम और न्यूटन के शीतलन के नियम को समान करती है:
जहाँ q" ऊष्मा प्रवाह है, तापीय चालकता है, गर्मी हस्तांतरण गुणांक है, और उपलेख और क्रमशः सतह और थोक मूल्यों की तुलना करें।
एक अंतरफलक पर बड़े पैमाने पर स्थानांतरण के लिए, हम संवहन के लिए न्यूटन के कानून के साथ फिक के नियम की बराबरी कर सकते हैं, अनुवर्त्ती:
जहाँ द्रव्यमान प्रवाह है [kg/s ], द्रव बी में प्रजातियों की प्रसारशीलता है, और मास स्थानांतरण गुणांक है। जैसा कि हम देख सकते हैं, और अनुरूप हैं, और समान हैं, जबकि और अनुरूप हैं।
समानता को लागू करना
गर्मी-मास समानता: क्योंकि नुसेल्ट और शेरवुड समीकरण इन समान शासक समीकरणों से प्राप्त होते हैं, इन समीकरणों को द्रव्यमान और गर्मी के बीच परिवर्तित करने के लिए सीधे नुसेल्ट और शेरवुड और पीआर और एससी संख्याओं को अदल-बदली कर सकते हैं।
कई स्थितियों में, जैसे एक समतल प्लेट पर प्रवाह,नुसेल्ट और शेरवुड संख्याएँ कुछ गुणांक के लिए पीआर और एससी संख्याओं के कार्य हैं . इसलिए, इन संख्याओं का उपयोग करके एक दूसरे से सीधे इन संख्याओं की गणना कर सकते हैं:
जहां ज्यादातर प्रकरणों में उपयोग किया जा सकता है, जो एक समतल प्लेट पर लामिनार प्रवाह के लिए नुसेल्ट संख्या के विश्लेषणात्मक समाधान से आता है। सर्वोत्तम सटीकता के लिए, n को समायोजित किया जाना चाहिए जहां सहसंबंधों का एक अलग घातांक हो।
हम इसे इस समीकरण में ऊष्मा अंतरण गुणांक, द्रव्यमान अंतरण गुणांक, और लुईस संख्या, उपज की परिभाषाओं को प्रतिस्थापित करके आगे ले जा सकते हैं:
पूरी तरह से विकसित विक्षुब्ध प्रवाह के लिए, n=1/3 के साथ, यह चिल्टन-कोलबर्न जे-फैक्टर समानता बन जाता है। कहा समानता भी रेनॉल्ड्स समानता की तरह श्यान बलों और गर्मी हस्तांतरण से संबंधित है।
सीमाएं
ताप और द्रव्यमान समानता उन प्रकरणों में टूट सकता है जहां नियंत्रक समीकरण पर्याप्त रूप से भिन्न होते हैं। उदाहरण के लिए, प्रवाह में पीढ़ी की शर्तों से पर्याप्त योगदान वाली स्थितियाँ, जैसे कि बल्क गर्म या बल्क रासायनिक प्रतिक्रियाएँ, विचलन के समाधान का कारण बन सकती हैं। इसके अतिरिक्त, समानता कम सटीक हो सकता है जब ज्यामितीय परिवर्तन एक समीकरण में पर्याप्त योगदान का कारण बनते हैं, जैसे एक प्रवाहकीय अन्तरालक वाली प्रणाली जो बड़े पैमाने पर स्थानांतरण के लिए कोई लाभ नहीं होने के साथ गर्मी हस्तांतरण को बढ़ाता है।
ऊष्मा-द्रव्यमान समानताता के अनुप्रयोग
समानता एक दूसरे की भविष्यवाणी करने के लिए गर्मी और बड़े पैमाने पर परिवहन का उपयोग करने के लिए या प्रणाली को समझने के लिए उपयोगी है जो एक साथ गर्मी उत्पन्न करना और बड़े पैमाने पर स्थानांतरण का अनुभव करती है। उदाहरण के लिए, टर्बाइन ब्लेड के आसपास गर्मी हस्तांतरण गुणांक की भविष्यवाणी करना चुनौतीपूर्ण है और प्राय: वाष्पशील यौगिक का वाष्पीकरण मापन और समानता का उपयोग करके किया जाता है। बहुत सी प्रणाली एक साथ द्रव्यमान और गर्मी हस्तांतरण का अनुभव करती हैं, और विशेष रूप से सामान्य उदाहरण चरण परिवर्तन के साथ प्रक्रियाओं में होते हैं, क्योंकि चरण परिवर्तन की तापीय धारिता प्राय: गर्मी हस्तांतरण को अधिक हद तक प्रभावित करती है। इस तरह के उदाहरणों में सम्मिलित हैं: पानी की सतह पर वाष्पीकरण, एक झिल्ली आसवन अलवणीकरण झिल्ली के ऊपर हवा के अंतर में वाष्प का परिवहन, और एचवीएसी निरार्द्रीकरण उपकरण जो गर्मी हस्तांतरण और चयनात्मक झिल्ली को जोड़ते हैं।
अनुप्रयोग
प्रदूषण
पर्यावरण में प्रदूषकों की मुक्ति और वितरण को समझने के लिए परिवहन प्रक्रियाओं का अध्ययन प्रासंगिक है। विशेष रूप से, सटीक प्रतिरूपण अल्पीकरण रणनीतियों को सूचित कर सकती है। उदाहरणों में शहरी अपवाह से सतही जल प्रदूषण का नियंत्रण, और संयुक्त राज्य. में वाहन ब्रेक पैड की तांबे की सामग्री को कम करने के लिए बनाई गई नीतियां सम्मिलित हैं। [13][14]
यह भी देखें
- संवैधानिक समीकरण
- सातत्य समीकरण
- लहर प्रसार
- पल्स (भौतिकी)
- संभावित कार्रवाई
- बायोहीट स्थानांतरण
संदर्भ
- ↑ Truskey, George; Yuan F; Katz D (2009). जैविक प्रणालियों में परिवहन घटना (Second ed.). Prentice Hall. p. 888. ISBN 978-0-13-156988-1.
- ↑ Plawsky, Joel L. (April 2001). परिवहन घटना मूल बातें (Chemical Industries Series). CRC Press. pp. 1, 2, 3. ISBN 978-0-8247-0500-8.
- ↑ Plawsky, Joel., "Transport Phenomena Fundamentals." Marcel Dekker Inc.,2009
- ↑ Alonso & Finn. "Physics." Addison Wesley,1992. Chapter 18
- ↑ Deen, William M. "Analysis of Transport Phenomena." Oxford University Press. 1998
- ↑ J. M. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford Classic Texts in the Physical Sciences)
- ↑ Welty, James R.; Wicks, Charles E.; Wilson, Robert Elliott (1976). Fundamentals of momentum, heat, and mass transfer (2 ed.). Wiley. ISBN 978-0-471-02249-7.
- ↑ "Thomas, William J. "Introduction to Transport Phenomena." Prentice Hall: Upper Saddle River, NJ, 2000.
- ↑ Transport Phenomena (1 ed.). Nirali Prakashan. 2006. p. 15–3. ISBN 81-85790-86-8., Chapter 15, p. 15-3
- ↑ Onsager, Lars (1931-02-15). "अपरिवर्तनीय प्रक्रियाओं में पारस्परिक संबंध। मैं।". Physical Review. American Physical Society (APS). 37 (4): 405–426. Bibcode:1931PhRv...37..405O. doi:10.1103/physrev.37.405. ISSN 0031-899X.
- ↑ Tadmor, Ellad; Miller, Ronald; Elliott, Ryn (2012). सातत्य यांत्रिकी और ऊष्मप्रवैगिकी. Cambridge University Press. ISBN 978-1-107-00826-7.
- ↑ 12.0 12.1 "Griskey, Richard G. "Transport Phenomena and Unit Operations." Wiley & Sons: Hoboken, 2006. 228-248.
- ↑ Müller, Alexandra; Österlund, Heléne; Marsalek, Jiri; Viklander, Maria (2020-03-20). "The pollution conveyed by urban runoff: A review of sources". Science of the Total Environment (in English). 709: 136125. Bibcode:2020ScTEn.709m6125M. doi:10.1016/j.scitotenv.2019.136125. ISSN 0048-9697. PMID 31905584.
- ↑ US EPA, OW (2015-11-10). "कॉपर मुक्त ब्रेक पहल". US EPA (in English). Retrieved 2020-04-01.
बाहरी संबंध
- Transport Phenomena Archive in the Teaching Archives of the Materials Digital Library Pathway
- "Some Classical Transport Phenomena Problems with Solutions – Fluid Mechanics".
- "Some Classical Transport Phenomena Problems with Solutions – Heat Transfer".
- "Some Classical Transport Phenomena Problems with Solutions – Mass Transfer".