द्विपद श्रृंखला: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 4: Line 4:
गणित में, द्विपद श्रृंखला बहुपद का एक सामान्यीकरण है जो [[द्विपद सूत्र]] अभिव्यक्ति जैसे <math>(1+x)^n</math> या
गणित में, द्विपद श्रृंखला बहुपद का एक सामान्यीकरण है जो [[द्विपद सूत्र]] अभिव्यक्ति जैसे <math>(1+x)^n</math> या


एक गैर-नकारात्मक पूर्णांक <math>n</math> से आता है। विशेष रूप से, द्विपद श्रृंखला <math>x = 0</math> पर केंद्रित फ़ंक्शन (गणित) <math>f(x)=(1+x)^{\alpha}</math> के लिए [[टेलर श्रृंखला]] है, जहाँ <math>\alpha \in \Complex</math> और <math>|x| < 1</math>. स्पष्ट रूप से,
एक गैर-नकारात्मक पूर्णांक <math>n</math> से आता है। विशेष रूप से, द्विपद श्रृंखला <math>x = 0</math> पर केंद्रित फलन (गणित) <math>f(x)=(1+x)^{\alpha}</math> के लिए [[टेलर श्रृंखला]] है, जहाँ <math>\alpha \in \Complex</math> और <math>|x| < 1</math>. स्पष्ट रूप से,


{{NumBlk|:|<math>\begin{align}
{{NumBlk|:|<math>\begin{align}
Line 11: Line 11:


जहां ({{EquationNote|1}}) के दाईं ओर की शक्ति श्रृंखला (सामान्यीकृत) द्विपद गुणांक के संदर्भ में व्यक्त की जाती है
जहां ({{EquationNote|1}}) के दाईं ओर की शक्ति श्रृंखला (सामान्यीकृत) द्विपद गुणांक के संदर्भ में व्यक्त की जाती है
जहां ( के दाईं ओर की शक्ति श्रृंखला)) द्विपद गुणांक # सामान्यीकरण और द्विपद श्रृंखला से संबंध के संदर्भ में व्यक्त किया गया है। (सामान्यीकृत) द्विपद गुणांक


:<math>\binom{\alpha}{k} := \frac{\alpha (\alpha-1) (\alpha-2) \cdots (\alpha-k+1)}{k!}. </math>
:<math>\binom{\alpha}{k} := \frac{\alpha (\alpha-1) (\alpha-2) \cdots (\alpha-k+1)}{k!}. </math>

Revision as of 21:43, 26 March 2023

गणित में, द्विपद श्रृंखला बहुपद का एक सामान्यीकरण है जो द्विपद सूत्र अभिव्यक्ति जैसे या

एक गैर-नकारात्मक पूर्णांक से आता है। विशेष रूप से, द्विपद श्रृंखला पर केंद्रित फलन (गणित) के लिए टेलर श्रृंखला है, जहाँ और . स्पष्ट रूप से,

 

 

 

 

(1)

जहां (1) के दाईं ओर की शक्ति श्रृंखला (सामान्यीकृत) द्विपद गुणांक के संदर्भ में व्यक्त की जाती है


विशेष मामले

अगर α एक अऋणात्मक पूर्णांक है n, फिर (n + 2)वाँ पद और श्रृंखला में बाद के सभी पद 0 हैं, क्योंकि प्रत्येक में एक कारक है (nn); इस प्रकार इस मामले में श्रृंखला परिमित है और बीजगणितीय द्विपद प्रमेय देती है।

फ़ंक्शन के लिए टेलर श्रृंखला द्वारा परिभाषित नकारात्मक द्विपद श्रृंखला निकटता से संबंधित है पर केंद्रित है , जहाँ और . स्पष्ट रूप से,

जो मल्टीसेट गुणांक के संदर्भ में लिखा गया है


अभिसरण

अभिसरण के लिए शर्तें

चाहे (1) अभिसारी श्रंखला सम्मिश्र संख्याओं के मानों पर निर्भर करती है α औरx. ज्यादा ठीक:

  1. अगर |x| < 1, श्रृंखला किसी भी सम्मिश्र संख्या के लिए निरपेक्ष अभिसरण को अभिसरित करती है α.
  2. अगर |x| = 1, श्रृंखला पूरी तरह से अभिसरण करती है यदि और केवल यदि कोई हो Re(α) > 0 या α = 0, जहाँ Re(α) की जटिल संख्या को दर्शाता है α.
  3. अगर |x| = 1 और x ≠ −1, यदि और केवल यदि श्रृंखला अभिसरित होती है Re(α) > −1.
  4. अगर x = −1, श्रृंखला अभिसरित होती है यदि और केवल यदि कोई हो Re(α) > 0 या α = 0.
  5. अगर |x| > 1, श्रृंखला अपसारी श्रृंखला, जब तक α एक गैर-ऋणात्मक पूर्णांक है (जिस स्थिति में श्रृंखला एक परिमित योग है)।

विशेष रूप से, अगर एक गैर-ऋणात्मक पूर्णांक नहीं है, अभिसरण की त्रिज्या की सीमा पर स्थिति, , संक्षेप में इस प्रकार है:

  • अगर Re(α) > 0, श्रृंखला बिल्कुल अभिसरित होती है।
  • अगर −1 < Re(α) ≤ 0, श्रृंखला सशर्त अभिसरण को अभिसरण करती है यदि x ≠ −1 और अगर विचलन करता है x = −1.
  • अगर Re(α) ≤ −1, श्रृंखला अलग हो जाती है।

सबूत में इस्तेमाल की जाने वाली पहचान

निम्नलिखित किसी सम्मिश्र संख्या के लिए हैα:

 

 

 

 

(2)

 

 

 

 

(3)

जब तक एक गैर-ऋणात्मक पूर्णांक है (जिस स्थिति में द्विपद गुणांक गायब हो जाते हैं से बड़ा है ), लैंडौ संकेतन में, द्विपद गुणांकों के लिए एक उपयोगी स्पर्शोन्मुख विश्लेषण संबंध है:

 

 

 

 

(4)

यह अनिवार्य रूप से यूलर की गामा समारोह की परिभाषा के समतुल्य है:

और इसका तात्पर्य तुरंत मोटे सीमा से है

 

 

 

 

(5)

कुछ सकारात्मक स्थिरांक के लिए m और M .

सूत्र (2) सामान्यीकृत द्विपद गुणांक के रूप में फिर से लिखा जा सकता है

 

 

 

 

(6)

प्रमाण

सिद्ध करने के लिए (i) और (v), अनुपात परीक्षण लागू करें और सूत्र का उपयोग करें (2) ऊपर यह दिखाने के लिए कि जब भी एक गैर-नकारात्मक पूर्णांक नहीं है, अभिसरण की त्रिज्या बिल्कुल 1 है। भाग (ii) सूत्र से अनुसरण करता है (5), हार्मोनिक श्रृंखला (गणित) #P-श्रृंखला के साथ तुलना करकेp-शृंखला

साथ . सिद्ध करने के लिए (iii), पहले सूत्र का उपयोग करें (3) प्राप्त करने के लिए

 

 

 

 

(7)

और फिर उपयोग करें (ii) और सूत्र (5) फिर से दाहिनी ओर के अभिसरण को सिद्ध करने के लिए जब ऐसा माना जाता है। दूसरी ओर, यदि श्रृंखला अभिसरित नहीं होती है और , सूत्र द्वारा फिर से (5). वैकल्पिक रूप से, हम इसे सभी के लिए देख सकते हैं , . इस प्रकार, सूत्र द्वारा (6), सभी के लिए . यह (iii) की उपपत्ति को पूरा करता है। (iv) की ओर मुड़ते हुए, हम सर्वसमिका का उपयोग करते हैं (7) ऊपर के साथ और की जगह , सूत्र के साथ (4), प्राप्त करने के लिए

जैसा . अभिकथन (iv) अब अनुक्रम के स्पर्शोन्मुख व्यवहार से अनुसरण करता है . (एकदम सही, में अवश्य मिलती है अगर और विचलन करता है अगर . अगर , तब यदि और केवल यदि अनुक्रम अभिसरण करता है अभिसरण , जो निश्चित रूप से सच है अगर लेकिन झूठा अगर : बाद के मामले में अनुक्रम सघन है , इस तथ्य के कारण विचलन और शून्य हो जाता है)।

द्विपद श्रृंखला का योग

द्विपद श्रृंखला के योग की गणना करने का सामान्य तर्क इस प्रकार है। अभिसरण की डिस्क के भीतर व्युत्पन्न शब्द-वार द्विपद श्रृंखला |x| < 1 और सूत्र का उपयोग करना (1), एक के पास यह है कि श्रृंखला का योग साधारण अवकल समीकरण को हल करने वाला एक विश्लेषणात्मक फलन है (1 + x)u'(x) = αu(x) प्रारंभिक डेटा के साथ u(0) = 1. इस समस्या का अनूठा समाधान कार्य है u(x) = (1 + x)α, जो इसलिए द्विपद श्रृंखला का योग है, कम से कम के लिए |x| < 1. समानता तक फैली हुई है |x| = 1 एबेल के प्रमेय के परिणामस्वरूप और निरंतर कार्य द्वारा श्रृंखला अभिसरण करती है (1 + x)α.

इतिहास

सकारात्मक-पूर्णांक घातांकों के अलावा अन्य के लिए द्विपद श्रृंखला से संबंधित पहला परिणाम सर आइजैक न्यूटन द्वारा कुछ वक्रों के अंतर्गत संलग्न क्षेत्रों के अध्ययन में दिया गया था। जॉन वालिस ने रूप के भावों पर विचार करके इस काम को आगे बढ़ाया y = (1 − x2)m जहाँ m एक अंश है। उन्होंने पाया कि (आधुनिक शब्दों में लिखा गया) लगातार गुणांक ck का (−x2)k पिछले गुणांक को गुणा करके पाया जाना है m − (k − 1)/k (पूर्णांक घातांक के मामले में), जिससे इन गुणांकों के लिए एक सूत्र दिया जा सके। वह स्पष्ट रूप से निम्नलिखित उदाहरण लिखता है[lower-alpha 1]

इसलिए द्विपद श्रृंखला को कभी-कभी द्विपद प्रमेय#न्यूटन की सामान्यीकृत द्विपद प्रमेय|न्यूटन की द्विपद प्रमेय के रूप में संदर्भित किया जाता है। न्यूटन कोई प्रमाण नहीं देता है और श्रृंखला की प्रकृति के बारे में स्पष्ट नहीं है। बाद में, 1826 में नील्स हेनरिक एबेल ने क्रेले के जर्नल पर प्रकाशित एक पत्र में इस विषय पर चर्चा की, विशेष रूप से अभिसरण के प्रश्नों का इलाज किया। [2]

यह भी देखें

फुटनोट्स

टिप्पणियाँ

  1. [1] In fact this source gives all non-constant terms with a negative sign, which is not correct for the second equation; one must assume this is an error of transcription.


उद्धरण


संदर्भ

  • Abel, Niels (1826), "Recherches sur la série 1 + (m/1)x + (m(m − 1)/1.2)x2 + (m(m − 1)(m − 2)/1.2.3)x3 + ...", Journal für die reine und angewandte Mathematik, 1: 311–339
  • Coolidge, J. L. (1949), "The Story of the Binomial Theorem", The American Mathematical Monthly, 56 (3): 147–157, doi:10.2307/2305028, JSTOR 2305028


बाहरी संबंध