मार्गदर्शक केंद्र: Difference between revisions
No edit summary |
|||
Line 3: | Line 3: | ||
== परिभ्रमण == | == परिभ्रमण == | ||
यदि चुंबकीय क्षेत्र एक समान है और अन्य सभी बल अनुपस्थित हैं, तो [[लोरेंत्ज़ बल]] कण के वेग और चुंबकीय क्षेत्र दोनों के लंबवत एक निरंतर त्वरण से गुजरने का कारण बनेगा। यह चुंबकीय क्षेत्र के समानांतर कण गति को प्रभावित नहीं करता है, लेकिन चुंबकीय क्षेत्र के लंबवत विमान में निरंतर गति से परिपत्र गति का परिणाम होता है। इस गोलाकार गति को [[gyroradius|जाइरोमोशन]] के रूप में जाना जाता है। द्रव्यमान वाले कण के लिए <math>m</math> और आवेशित करें <math>q</math> | यदि चुंबकीय क्षेत्र एक समान है और अन्य सभी बल अनुपस्थित हैं, तो [[लोरेंत्ज़ बल]] कण के वेग और चुंबकीय क्षेत्र दोनों के लंबवत एक निरंतर त्वरण से गुजरने का कारण बनेगा। यह चुंबकीय क्षेत्र के समानांतर कण गति को प्रभावित नहीं करता है, लेकिन चुंबकीय क्षेत्र के लंबवत विमान में निरंतर गति से परिपत्र गति का परिणाम होता है। इस गोलाकार गति को [[gyroradius|जाइरोमोशन]] के रूप में जाना जाता है। द्रव्यमान वाले कण के लिए <math>m</math> और आवेशित करें <math>q</math> बल के साथ एक चुंबकीय क्षेत्र में घूमता है <math>B</math>, इसकी एक आवृत्ति होती है, जिसे जाइरोफ्रीक्वेंसी या [[साइक्लोट्रॉन अनुनाद|साइक्लोट्रॉन]] आवृत्ति कहा जाता है | ||
<math display="block">\omega_{\rm c} = \frac{|q|B}{m} . </math> | <math display="block">\omega_{\rm c} = \frac{|q|B}{m} . </math> | ||
के चुंबकीय क्षेत्र के लंबवत गति के लिए <math>v_{\perp}</math>कक्षा की त्रिज्या, जाइरोरेडियस या लार्मर त्रिज्या कहलाती है, | के चुंबकीय क्षेत्र के लंबवत गति के लिए <math>v_{\perp}</math>कक्षा की त्रिज्या, जाइरोरेडियस या लार्मर त्रिज्या कहलाती है, | ||
Line 31: | Line 31: | ||
=== विद्युत क्षेत्र === | === विद्युत क्षेत्र === | ||
यह अपवहन, जिसे सामान्यतः कहा जाता है <math>\boldsymbol{E}\times\boldsymbol{B}</math> (ई-क्रॉस-बी) अपवहन, एक विशेष स्थिति है क्योंकि कण पर विद्युत बल उसके आवेश पर निर्भर करता है | यह अपवहन, जिसे सामान्यतः कहा जाता है <math>\boldsymbol{E}\times\boldsymbol{B}</math> (ई-क्रॉस-बी) अपवहन, एक विशेष स्थिति है क्योंकि कण पर विद्युत बल उसके आवेश पर निर्भर करता है (विपरीत, उदाहरण के लिए, ऊपर माने गए गुरुत्वाकर्षण बल के लिए)। परिणामस्वरुप, आयन (चाहे किसी भी द्रव्यमान और आवेश का हो) और इलेक्ट्रॉन दोनों एक ही गति से एक ही दिशा में चलते हैं, इसलिए कोई शुद्ध धारा नहीं होती है (प्लाज्मा की अर्ध-तटस्थता मानकर)। विशेष आपेक्षिकता के संदर्भ में इस वेग से गतिमान फ्रेम में विद्युत क्षेत्र लुप्त हो जाता है। अपवहन वेग का मान किसके द्वारा दिया जाता है | ||
<math display="block">\boldsymbol{v}_E = \frac{\boldsymbol{E}\times\boldsymbol{B}}{B^2}</math> | <math display="block">\boldsymbol{v}_E = \frac{\boldsymbol{E}\times\boldsymbol{B}}{B^2}</math> | ||
=== असमान E === | === असमान E === | ||
Line 39: | Line 39: | ||
== '''असमान B''' == | == '''असमान B''' == | ||
निर्देशक केंद्र अपवहन न केवल बाहरी बलों से बल्कि चुंबकीय क्षेत्र में गैर-समानताओं से भी हो सकता है। | निर्देशक केंद्र अपवहन न केवल बाहरी बलों से बल्कि चुंबकीय क्षेत्र में गैर-समानताओं से भी हो सकता है। इन अपवहनों को समानांतर और लंबवत [[गतिज ऊर्जा]] के रूप में व्यक्त करना सुविधाजनक होता है | ||
<math display="block">\begin{align} | <math display="block">\begin{align} | ||
K_\| &= \tfrac{1}{2}mv_\|^2 \\[1ex] | K_\| &= \tfrac{1}{2}mv_\|^2 \\[1ex] | ||
Line 59: | Line 59: | ||
<math display="block">\frac{v_\|}{\omega_c}\, \hat{\boldsymbol{b}}\times\left[\frac{\partial\hat{\boldsymbol{b}} }{\partial t} + (\boldsymbol{v}_E\cdot\nabla\hat{\boldsymbol{b}}) | <math display="block">\frac{v_\|}{\omega_c}\, \hat{\boldsymbol{b}}\times\left[\frac{\partial\hat{\boldsymbol{b}} }{\partial t} + (\boldsymbol{v}_E\cdot\nabla\hat{\boldsymbol{b}}) | ||
\right].</math> | \right].</math> | ||
स्थिर चुंबकीय क्षेत्र और शिथिल | स्थिर चुंबकीय क्षेत्र और शिथिल विद्युत क्षेत्र की महत्वपूर्ण सीमा में, वक्रता अपवहन अवधि में जड़त्वीय अपवहन का प्रभुत्व होता है। | ||
=== घुमावदार निर्वात अपवहन === | === घुमावदार निर्वात अपवहन === | ||
Line 70: | Line 70: | ||
<math>\nabla\times\boldsymbol{B} = 0 </math>. बेलनाकार निर्देशांक में इस तरह चुना जाता है कि अज़ीमुथल दिशा चुंबकीय क्षेत्र के समानांतर होती है और रेडियल दिशा क्षेत्र के ढाल के समानांतर होती है, यह बन जाती है | <math>\nabla\times\boldsymbol{B} = 0 </math>. बेलनाकार निर्देशांक में इस तरह चुना जाता है कि अज़ीमुथल दिशा चुंबकीय क्षेत्र के समानांतर होती है और रेडियल दिशा क्षेत्र के ढाल के समानांतर होती है, यह बन जाती है | ||
<math display="block">\nabla\times\boldsymbol{B} = \frac{1}{r} \frac{\partial}{\partial r} \left( r B_\theta \right) \hat{z} = 0 </math> | <math display="block">\nabla\times\boldsymbol{B} = \frac{1}{r} \frac{\partial}{\partial r} \left( r B_\theta \right) \hat{z} = 0 </math> | ||
तब से <math> r B_\theta </math> | तब से <math> r B_\theta </math> एक स्थिरांक है, इसका तात्पर्य है कि | ||
<math display="block"> \nabla B = - B \frac{\boldsymbol{R}_c}{R_c^2} </math> | <math display="block"> \nabla B = - B \frac{\boldsymbol{R}_c}{R_c^2} </math> | ||
और ग्रेड-बी अपवहन वेग लिखा जा सकता है | और ग्रेड-बी अपवहन वेग लिखा जा सकता है |
Revision as of 12:58, 10 April 2023
भौतिकी में, एक चुंबकीय क्षेत्र में प्लाज्मा में इलेक्ट्रॉन या आयन जैसे विद्युत आवेशित कण की गति को एक बिंदु के चारों ओर एक अपेक्षाकृत तेज़ गोलाकार गति के अधिस्थापन सिद्धांत के रूप में माना जा सकता है जिसे मार्गदर्शक केंद्र कहा जाता है और इस बिंदु का एक अपेक्षाकृत धीमा का अपवहन विभिन्न प्रजातियों के लिए अपवहन की गति भिन्न हो सकती है, जो उनके आवेशित स्टेट्स, द्रव्यमान या तापमान पर निर्भर करती है, जिसके परिणामस्वरूप विद्युत धाराएं या रासायनिक पृथक्करण हो सकता है।
परिभ्रमण
यदि चुंबकीय क्षेत्र एक समान है और अन्य सभी बल अनुपस्थित हैं, तो लोरेंत्ज़ बल कण के वेग और चुंबकीय क्षेत्र दोनों के लंबवत एक निरंतर त्वरण से गुजरने का कारण बनेगा। यह चुंबकीय क्षेत्र के समानांतर कण गति को प्रभावित नहीं करता है, लेकिन चुंबकीय क्षेत्र के लंबवत विमान में निरंतर गति से परिपत्र गति का परिणाम होता है। इस गोलाकार गति को जाइरोमोशन के रूप में जाना जाता है। द्रव्यमान वाले कण के लिए और आवेशित करें बल के साथ एक चुंबकीय क्षेत्र में घूमता है , इसकी एक आवृत्ति होती है, जिसे जाइरोफ्रीक्वेंसी या साइक्लोट्रॉन आवृत्ति कहा जाता है
समानांतर गति
चूंकि चुंबकीय लोरेंत्ज़ बल सदैव चुंबकीय क्षेत्र के लंबवत होता है, इसका समानांतर गति पर कोई प्रभाव (निम्नतम क्रम में) नहीं होता है।बिना किसी अतिरिक्त बल के एक समान क्षेत्र में, एक आवेशित कण अपने वेग के लंबवत घटक के अनुसार चुंबकीय क्षेत्र के चारों ओर चक्कर लगाएगा और अपने प्रारंभिक समानांतर वेग के अनुसार क्षेत्र के समानांतर अपवहन करेगा, जिसके परिणामस्वरूप एक कुंडलित वक्रता कक्षा होगी। यदि समानांतर घटक के साथ कोई बल है, तो कण और उसके मार्गदर्शक केंद्र को समान रूप से त्वरित किया जाएगा।
यदि क्षेत्र में एक समानांतर ढाल है, तो परिमित लारमोर त्रिज्या वाला कण भी बड़े चुंबकीय क्षेत्र से दूर दिशा में एक बल का अनुभव करेगा। इस प्रभाव को चुंबकीय दर्पण के रूप में जाना जाता है। जबकि यह अपने भौतिकी और गणित में मार्गदर्शक केंद्र के अपवहन से निकटता से संबंधित है, फिर भी इसे उनसे अलग माना जाता है।
सामान्य बल का अपवहन
सामान्यतया, जब कणों पर चुंबकीय क्षेत्र के लम्बवत् बल लगता है, तो वे बल और क्षेत्र दोनों के लम्बवत दिशा में अपवहन करते हैं। अगर एक कण पर बल है तो अपवाह वेग होता है
सभी अपवहनों को बल अपवहन के विशेष स्थितियों के रूप में माना जा सकता है, चूँकि यह सदैव उनके बारे में सोचने का सबसे उपयोगी विधि नहीं होता है। स्पष्ट स्थिति विद्युत और गुरुत्वाकर्षण बल हैं। ग्रेड-बी अपवहन को एक क्षेत्र प्रवणता में एक चुंबकीय द्विध्रुव पर बल के परिणाम के रूप में माना जा सकता है। वक्रता, जड़ता और ध्रुवीकरण के अपवहन का परिणाम कण के त्वरण को काल्पनिक बल मानने से होता है। दाब प्रवणता के कारण प्रतिचुंबकीय अपवहन को बल से प्राप्त किया जा सकता है। अंत में, अन्य बल जैसे विकिरण दबाव और टकराव भी अपवहन में परिणत होते हैं।
गुरुत्वाकर्षण क्षेत्र
बल अपवहन का एक सरल उदाहरण गुरुत्वाकर्षण क्षेत्र में एक प्लाज्मा है, उदा। आयनमंडल। अपवाह वेग है
कण के आवेश पर निर्भरता का अर्थ है कि अपवहन की दिशा आयनों के लिए इलेक्ट्रॉनों के विपरीत होता है, जिसके परिणामस्वरूप एक धारा उत्पन्न होती है। द्रव चित्र में, यह वह धारा है जो चुंबकीय क्षेत्र से पार हो जाती है जो लागू बल का प्रतिकार करने वाला बल प्रदान करती है।
विद्युत क्षेत्र
यह अपवहन, जिसे सामान्यतः कहा जाता है (ई-क्रॉस-बी) अपवहन, एक विशेष स्थिति है क्योंकि कण पर विद्युत बल उसके आवेश पर निर्भर करता है (विपरीत, उदाहरण के लिए, ऊपर माने गए गुरुत्वाकर्षण बल के लिए)। परिणामस्वरुप, आयन (चाहे किसी भी द्रव्यमान और आवेश का हो) और इलेक्ट्रॉन दोनों एक ही गति से एक ही दिशा में चलते हैं, इसलिए कोई शुद्ध धारा नहीं होती है (प्लाज्मा की अर्ध-तटस्थता मानकर)। विशेष आपेक्षिकता के संदर्भ में इस वेग से गतिमान फ्रेम में विद्युत क्षेत्र लुप्त हो जाता है। अपवहन वेग का मान किसके द्वारा दिया जाता है
असमान E
यदि विद्युत क्षेत्र एक समान नहीं है, तो उपरोक्त सूत्र को पढ़ने के लिए संशोधित किया जाता है[1]
असमान B
निर्देशक केंद्र अपवहन न केवल बाहरी बलों से बल्कि चुंबकीय क्षेत्र में गैर-समानताओं से भी हो सकता है। इन अपवहनों को समानांतर और लंबवत गतिज ऊर्जा के रूप में व्यक्त करना सुविधाजनक होता है
ग्रेड-बी अपवहन
जब कोई कण एक बड़े चुंबकीय क्षेत्र में जाता है, तो उसकी कक्षा की वक्रता कड़ी हो जाती है, अन्यथा वृत्ताकार कक्षा को चक्रज में बदल देती है। अपवाह वेग है
वक्रता अपवहन
एक आवेशित कण को एक घुमावदार क्षेत्र रेखा का अनुसरण करने के लिए, आवश्यक अभिकेंद्रीय बल प्रदान करने के लिए वक्रता के तल से अपवहन वेग की आवश्यकता होती है। यह वेग होता है
घुमावदार निर्वात अपवहन
छोटे प्लाज्मा दबाव की सीमा में, मैक्सवेल के समीकरण ढाल और वक्रता के बीच संबंध प्रदान करते हैं जो संबंधित अपवहनों को निम्नानुसार संयोजित करने की अनुमति देता है
उपरोक्त ग्रेड-बी अपवहन के लिए अभिव्यक्ति को स्थिति के लिए फिर से लिखा जा सकता है जब वक्रता के कारण होता है। यह सबसे आसानी से यह महसूस करके किया जाता है कि एक निर्वात में, एम्पीयर का नियम है
. बेलनाकार निर्देशांक में इस तरह चुना जाता है कि अज़ीमुथल दिशा चुंबकीय क्षेत्र के समानांतर होती है और रेडियल दिशा क्षेत्र के ढाल के समानांतर होती है, यह बन जाती है
ध्रुवीकरण अपवहन
एक समय-भिन्न विद्युत क्षेत्र भी इसके द्वारा दिए गए अपवहन का परिणाम है
स्पष्ट है कि यह अपवहन दूसरों से इस अर्थ से भिन्न है कि यह अनिश्चित काल तक जारी नहीं रह सकता। सामान्यतः एक दोलनशील विद्युत क्षेत्र का परिणाम एक ध्रुवीकरण अपवहन में होता है जो 90 डिग्री चरण से बाहर होता
प्रतिचुंबकीय अपवहन
प्रतिचुंबकीय अपवहन वास्तव में एक मार्गदर्शक केंद्र अपवाह नहीं होते है। दाब प्रवणता के कारण कोई एक कण अपवाहित नहीं होता है। फिर भी, द्रव वेग को एक संदर्भ क्षेत्र के माध्यम से चलने वाले कणों की गणना करके परिभाषित किया जाता है, और एक दबाव प्रवणता के परिणामस्वरूप एक दिशा में दूसरे की तुलना में अधिक कण होते हैं। द्रव का शुद्ध वेग किसके द्वारा दिया जाता है
अपवाह धारा
के महत्वपूर्ण अपवाद के साथ अपवहन, अलग-अलग आवेशित कणों का अपवहन वेग अलग-अलग होगा। वेगों में यह अंतर वर्तमान में परिणाम देता है, जबकि अपवहन वेग की सामूहिक निर्भरता के परिणामस्वरूप रासायनिक पृथक्करण हो सकता है।
यह भी देखें
संदर्भ
- ↑ Baumjohann, Wolfgang; Treumann, Rudolf (1997). बुनियादी अंतरिक्ष प्लाज्मा भौतिकी. ISBN 978-1-86094-079-8.
- Northrop, Theodore G (1961). "The guiding center approximation to charged particle motion" (PDF). Annals of Physics (in English). 15 (1): 79–101. doi:10.1016/0003-4916(61)90167-1.
- Blank, H.J. de (2004). "Guiding Center Motion". Fusion Science and Technology (in English). 61 (2T): 61–68. doi:10.13182/FST04-A468. ISSN 1536-1055.
- Alfvén, Hannes (1981). Cosmic plasma. Dordrecht, Holland: D. Reidel Pub. Co. ISBN 90-277-1151-8. OCLC 7170848.
- Sulem, P.L. (2005). Introduction to Guiding center theory. pp. 109–149. ISBN 9780821837238. Retrieved 22 October 2014.
{{cite book}}
:|journal=
ignored (help)