थर्मल ऑक्सीकरण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(8 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Short description|Process creating a thin layer of (usually) silicon dioxide}}
{{Short description|Process creating a thin layer of (usually) silicon dioxide}}
[[Image:Centrotherm diffusion furnace at LAAS 0493.jpg|thumb|250px|टूलूस, फ्रांस में सिस्टम तकनीकी सुविधा के विश्लेषण और वास्तुकला के लिए प्रयोगशाला में प्रसार और थर्मल ऑक्सीकरण के लिए उपयोग की जाने वाली भट्टियां।]][[ microfabrication | microfabrication]] में, थर्मल ऑक्सीकरण [[वेफर (इलेक्ट्रॉनिक्स)]] की सतह पर [[ऑक्साइड]] (सामान्यतः [[सिलिकॉन डाइऑक्साइड]]) की पतली परत का उत्पादन करने का विधि है। तकनीक ऑक्सीकरण एजेंट को उच्च तापमान पर वेफर में फैलाने और इसके साथ प्रतिक्रिया करने के लिए मजबूर करती है। डील-ग्रोव मॉडल द्वारा अधिकांशतः ऑक्साइड वृद्धि की दर का अनुमान लगाया जाता है।<ref name="slo">{{cite journal| last1= Liu| first1=M. |display-authors=etal |title= सिलिकॉन और टंगस्टन नैनोवायरों में स्व-सीमित ऑक्सीकरण का द्वि-आयामी मॉडलिंग| journal= Theoretical and Applied Mechanics Letters  | year= 2016 |  volume=6 | issue=5 | pages=195–199 | doi= 10.1016/j.taml.2016.08.002 | doi-access=free }}</ref> थर्मल ऑक्सीकरण को विभिन्न सामग्रियों पर लागू किया जा सकता है, किन्तु सामान्यतः [[सिलिकॉन]] डाइऑक्साइड का उत्पादन करने के लिए सिलिकॉन सबस्ट्रेट्स का ऑक्सीकरण सम्मिलित होता है।
[[Image:Centrotherm diffusion furnace at LAAS 0493.jpg|thumb|250px|टूलूस, फ्रांस में एलएएएस सिस्टम विधि सुविधा के विश्लेषण और वास्तुकला के लिए प्रयोगशाला में प्रसार और थर्मल ऑक्सीकरण के लिए उपयोग की जाने वाली भट्टियां।]][[ microfabrication |माइक्रोफैब्रिकेशन]] में, '''थर्मल ऑक्सीकरण''' [[वेफर (इलेक्ट्रॉनिक्स)|अर्धचालक (इलेक्ट्रॉनिक्स)]] की सतह पर [[ऑक्साइड]] (सामान्यतः [[सिलिकॉन डाइऑक्साइड]]) की पतली परत का उत्पादन करने की विधि है। चूँकि यह विधि ऑक्सीकरण एजेंट को उच्च तापमान पर अर्धचालक में फैलाने और इसके साथ प्रतिक्रिया करने के लिए विवश करती है। डील-ग्रोव मॉडल द्वारा अधिकांशतः ऑक्साइड वृद्धि की दर का अनुमान लगाया जाता है।<ref name="slo">{{cite journal| last1= Liu| first1=M. |display-authors=etal |title= सिलिकॉन और टंगस्टन नैनोवायरों में स्व-सीमित ऑक्सीकरण का द्वि-आयामी मॉडलिंग| journal= Theoretical and Applied Mechanics Letters  | year= 2016 |  volume=6 | issue=5 | pages=195–199 | doi= 10.1016/j.taml.2016.08.002 | doi-access=free }}</ref> अतः थर्मल ऑक्सीकरण को विभिन्न सामग्रियों पर प्रयुक्त किया जा सकता है। किन्तु सामान्यतः [[सिलिकॉन]] डाइऑक्साइड का उत्पादन करने के लिए सिलिकॉन सबस्ट्रेट्स का ऑक्सीकरण सम्मिलित होता है।


== रासायनिक प्रतिक्रिया ==
== रासायनिक प्रतिक्रिया ==
सिलिकॉन का थर्मल ऑक्सीकरण सामान्यतः 800 और 1200 सेल्सियस | डिग्री सेल्सियस के बीच के तापमान पर किया जाता है, जिसके परिणामस्वरूप उच्च तापमान ऑक्साइड परत (HTO) कहा जाता है। यह ऑक्सीडेंट के रूप में या तो [[जल वाष्प]] (सामान्यतः ऑक्सीकरण और एनीलिंग के लिए अल्ट्रा-हाई-शुद्धता भाप) या आणविक [[ऑक्सीजन]] का उपयोग कर सकता है; फलस्वरूप इसे या तो ''गीला'' या ''शुष्क'' ऑक्सीकरण कहा जाता है। प्रतिक्रिया निम्न में से है:
सिलिकॉन का थर्मल ऑक्सीकरण सामान्यतः 800 और 1200 डिग्री सेल्सियस के मध्य के तापमान पर किया जाता है। जिसके परिणामस्वरूप '''उच्च तापमान ऑक्साइड''' परत (एचटीओ) कहा जाता है। यह ऑक्सीडेंट के रूप में या तो [[जल वाष्प]] (सामान्यतः ऑक्सीकरण और एनीलिंग के लिए अल्ट्रा-हाई-शुद्धता भाप) या आणविक [[ऑक्सीजन]] का उपयोग कर सकता है। इसके फलस्वरूप इसे या तो गीला या शुष्क ऑक्सीकरण कहा जाता है। प्रतिक्रिया निम्न में से है।


:<math>\rm Si + 2H_2O \rightarrow SiO_2 + 2H_{2\ (g)}</math>
:<math>\rm Si + 2H_2O \rightarrow SiO_2 + 2H_{2\ (g)}</math>
:<math>\rm Si + O_2 \rightarrow SiO_2 \,</math>
:<math>\rm Si + O_2 \rightarrow SiO_2 \,</math>
ऑक्सीकरण परिवेश में कई प्रतिशत [[हाइड्रोक्लोरिक एसिड]] (एचसीएल) भी हो सकता है। क्लोरीन धातु के आयनों को हटा देता है जो ऑक्साइड में हो सकते हैं।
ऑक्सीकरण परिवेश में अनेक प्रतिशत [[हाइड्रोक्लोरिक एसिड|हाइड्रोक्लोरिक अम्ल]] (एचसीएल) भी हो सकता है। क्लोरीन धातु के आयनों को हटा देता है। जो ऑक्साइड में हो सकते हैं।


थर्मल ऑक्साइड में सब्सट्रेट से खपत सिलिकॉन और परिवेश से आपूर्ति की गई ऑक्सीजन सम्मिलित है। इस प्रकार, यह वेफर में नीचे और ऊपर दोनों में बढ़ता है। सिलिकॉन की खपत की प्रत्येक इकाई मोटाई के लिए, ऑक्साइड की 2.17 इकाई मोटाई दिखाई देगी।<ref>{{cite web |url=http://www.eng.tau.ac.il/~yosish/courses/vlsi1/I-4-1-Oxidation.pdf |title=संग्रहीत प्रति|accessdate=2013-07-07 |url-status=dead |archiveurl=https://web.archive.org/web/20150121212852/http://www.eng.tau.ac.il/~yosish/courses/vlsi1/I-4-1-Oxidation.pdf |archivedate=2015-01-21 }}</ref> यदि नंगे सिलिकॉन सतह को ऑक्सीकरण किया जाता है, तो ऑक्साइड की मोटाई का 46% मूल सतह के नीचे और 54% इसके ऊपर होगा।
थर्मल ऑक्साइड में सब्सट्रेट से खपत सिलिकॉन और परिवेश से आपूर्ति की गई ऑक्सीजन सम्मिलित है। इस प्रकार यह अर्धचालक में नीचे और ऊपर दोनों में बढ़ता है। सिलिकॉन की खपत की प्रत्येक इकाई मोटाई के लिए ऑक्साइड की 2.17 इकाई मोटाई दिखाई देती है।<ref>{{cite web |url=http://www.eng.tau.ac.il/~yosish/courses/vlsi1/I-4-1-Oxidation.pdf |title=संग्रहीत प्रति|accessdate=2013-07-07 |url-status=dead |archiveurl=https://web.archive.org/web/20150121212852/http://www.eng.tau.ac.il/~yosish/courses/vlsi1/I-4-1-Oxidation.pdf |archivedate=2015-01-21 }}</ref> यदि वंचित सिलिकॉन सतह को ऑक्सीकरण किया जाता है। तब ऑक्साइड की मोटाई का 46% मूल सतह के नीचे और 54% इसके ऊपर होता है।


=== डील-ग्रोव मॉडल ===
=== डील-ग्रोव मॉडल ===
{{main|Deal-Grove model}}
{{main|डील-ग्रोव मॉडल}}


सामान्यतः उपयोग किए जाने वाले डील-ग्रोव मॉडल के मुताबिक, मोटाई एक्स के ऑक्साइड को विकसित करने के लिए समय τ की आवश्यकता होती है<sub>o</sub>, स्थिर तापमान पर, नंगी सिलिकॉन सतह पर, है:
सामान्यतः उपयोग किए जाने वाले डील-ग्रोव मॉडल के अनुसार, वंचित सिलिकॉन सतह पर स्थिर तापमान पर मोटाई ''X<sub>o</sub>'' के ऑक्साइड को विकसित करने के लिए समय τ<sub>o</sub> की आवश्यकता होती है।
:<math>\tau = \frac{X_o^2}{B} + \frac{X_o}{(\frac{B}{A})}</math>
:<math>\tau = \frac{X_o^2}{B} + \frac{X_o}{(\frac{B}{A})}</math>
जहां स्थिरांक और बी क्रमशः प्रतिक्रिया और ऑक्साइड परत के गुणों से संबंधित हैं। [[सिलिकॉन नैनोवायर]] और अन्य नैनोस्ट्रक्चर के निर्माण और रूपात्मक डिजाइन के लिए उपयोग किए जाने वाले इस मॉडल को स्व-सीमित ऑक्सीकरण प्रक्रियाओं के लिए अनुकूलित किया गया है।<ref name="slo" />
जहां स्थिरांक A और B क्रमशः प्रतिक्रिया और ऑक्साइड परत के गुणों से संबंधित हैं। इस मॉडल को स्व-सीमित ऑक्सीकरण प्रक्रियाओं के लिए अनुकूलित किया गया है। जैसा कि [[सिलिकॉन नैनोवायर]] और अन्य नैनो संरचनाओ के निर्माण और रूपात्मक डिजाइन के लिए उपयोग किया जाता है।<ref name="slo" />


यदि [[ वेफर (अर्धचालक) |वेफर (अर्धचालक)]] जिसमें पहले से ही ऑक्साइड होता है, ऑक्सीकरण परिवेश में रखा जाता है, तो इस समीकरण को सुधारात्मक शब्द τ जोड़कर संशोधित किया जाना चाहिए, वह समय जो वर्तमान परिस्थितियों में पहले से उपस्तिथ ऑक्साइड को विकसित करने के लिए आवश्यक होता। यह शब्द उपरोक्त टी के समीकरण का उपयोग करके पाया जा सकता है।
यदि [[ वेफर (अर्धचालक) |अर्धचालक]] जिसमें पहले से ही ऑक्साइड होता है। उसे ऑक्सीकरण परिवेश में रखा जाता है। तब इस समीकरण को सुधारात्मक शब्द τ जोड़कर संशोधित किया जाना चाहिए। वह समय जो वर्तमान परिस्थितियों में पहले से उपस्तिथ ऑक्साइड को विकसित करने के लिए आवश्यक होता है। यह शब्द उपरोक्त ''t'' के समीकरण का उपयोग करके पाया जा सकता है।


X के लिए द्विघात समीकरण को हल करना<sub>o</sub>पैप्रामाणितर:
X<sub>o</sub> के लिए द्विघात समीकरण को हल करना,
:<math>X_o(t) = A/2 \cdot \left[ \sqrt{1+\frac{4B}{A^2}(t+\tau)} - 1 \right]</math>
:<math>X_o(t) = A/2 \cdot \left[ \sqrt{1+\frac{4B}{A^2}(t+\tau)} - 1 \right]</math>
== ऑक्सीकरण प्रौद्योगिकी ==
== ऑक्सीकरण प्रौद्योगिकी ==
अधिकांश थर्मल ऑक्सीकरण औद्योगिक भट्टियों में 800 और 1200 डिग्री सेल्सियस के बीच तापमान पर किया जाता है। भट्टी विशेष रूप से डिज़ाइन किए गए [[क्वार्ट्ज]]़ रैक (जिसे नाव कहा जाता है) में ही समय में कई वेफर्स स्वीकार करती है। ऐतिहासिक रूप से, नाव पक्ष से ऑक्सीकरण कक्ष में प्रवेश करती थी (इस डिजाइन को क्षैतिज कहा जाता है), और दूसरे के बगल में वेफर्स को लंबवत रखा। चूंकि, कई आधुनिक डिजाइन वेफर्स को दूसरे के ऊपर और नीचे क्षैतिज रूप से पकड़ते हैं, और उन्हें नीचे से ऑक्सीकरण कक्ष में लोड करते हैं।
अधिकांश थर्मल ऑक्सीकरण औद्योगिक भट्टियों में 800 और 1200 डिग्री सेल्सियस के मध्य तापमान पर किया जाता है। भट्टी विशेष समय में विशेष रूप से डिज़ाइन किए गए [[क्वार्ट्ज|क्वार्ट्ज रैक]] (जिसे "नाव" कहा जाता है।) में समय में अनेक अर्धचालक स्वीकार करती है। ऐतिहासिक रूप से, नाव पक्ष से ऑक्सीकरण कक्ष में प्रवेश करती थी। (इस डिजाइन को "क्षैतिज" कहा जाता है।) और दूसरे के बगल में अर्धचालक को लंबवत रखा जाता है। चूंकि अनेक आधुनिक डिजाइन अर्धचालक को दूसरे के ऊपर और नीचे क्षैतिज रूप से पकड़ते हैं। अतः उन्हें नीचे से ऑक्सीकरण कक्ष में लोड करते हैं।


क्योंकि ऊर्ध्वाधर भट्टियां क्षैतिज भट्टियों से अधिक होती हैं, वे कुछ माइक्रोफैब्रिकेशन सुविधाओं में फिट नहीं हो सकते हैं। वे [[धूल]] संदूषण को रोकने में मदद करते हैं। क्षैतिज भट्टियों के विपरीत, जिसमें गिरने वाली धूल किसी भी वेफर को दूषित कर सकती है, ऊर्ध्वाधर भट्टियां धूल को वेफर्स तक पहुंचने से रोकने के लिए एयर फिल्ट्रेशन सिस्टम के साथ बंद कैबिनेट का उपयोग करती हैं।
जिससे कि ऊर्ध्वाधर भट्टियां क्षैतिज भट्टियों से अधिक होती हैं। वह कुछ माइक्रोफैब्रिकेशन सुविधाओं में फिट नहीं हो सकते हैं। वह [[धूल]] संदूषण को रोकने में मदद करते हैं। क्षैतिज भट्टियों के विपरीत, जिसमें गिरने वाली धूल किसी भी अर्धचालक को दूषित कर सकती है। ऊर्ध्वाधर भट्टियां धूल को अर्धचालक तक पहुंचने से रोकने के लिए वायु निस्पंदन प्रणाली के साथ बंद कैबिनेट का उपयोग करती हैं।


लंबवत भट्टियां क्षैतिज भट्टियों से ग्रस्त समस्या को भी समाप्त करती हैं: वेफर में उगाए गए ऑक्साइड की गैर-एकरूपता{{Citation needed|date=September 2011}}. क्षैतिज भट्टियों में सामान्यतः ट्यूब के अंदर संवहन धाराएं होती हैं जो ट्यूब के निचले हिस्से को ट्यूब के ऊपर की तुलना में थोड़ा ठंडा होने का कारण बनती हैं। जैसा कि वेफर्स ट्यूब में लंबवत रूप से स्थित होते हैं, संवहन और इसके साथ तापमान प्रवणता वेफर के शीर्ष को वेफर के नीचे की तुलना में मोटा ऑक्साइड होने का कारण बनता है। वर्टिकल फर्नेस क्षैतिज रूप से वेफर लगाकर इस समस्या को हल करती हैं, और फिर फर्नेस में गैस का प्रवाह ऊपर से नीचे की ओर होता है, जिससे किसी भी थर्मल संवहन में अधिक कमी आती है।
अधिकांशतः लंबवत भट्टियां क्षैतिज भट्टियों से ग्रस्त समस्या को भी समाप्त करती हैं। अर्धचालक में उगाए गए ऑक्साइड की गैर-एकरूपता क्षैतिज भट्टियों में सामान्यतः ट्यूब के अंदर संवहन धाराएं होती हैं। जो ट्यूब के निचले भाग को ट्यूब के ऊपर की तुलना में थोड़ा ठंडा होने का कारण बनती हैं। जैसा कि अर्धचालक ट्यूब में लंबवत रूप से स्थित होते हैं। संवहन और इसके साथ तापमान प्रवणता अर्धचालक के शीर्ष को अर्धचालक के नीचे की तुलना में मोटा ऑक्साइड होने का कारण बनता है। लंबवत भट्टियां अर्धचालक को क्षैतिज रूप से बैठने से इस समस्या को हल करती हैं और फिर भट्टी में गैस का प्रवाह ऊपर से नीचे की ओर होता है। जो किसी भी थर्मल संवहन को अधिक कम कर देता है।


ऊर्ध्वाधर भट्टियां सी सतह पर देशी ऑक्साइड के विकास को सीमित करने के लिए ऑक्सीकरण से पहले नाइट्रोजन के साथ वेफर्स को शुद्ध करने के लिए लोड लॉक के उपयोग की अनुमति देती हैं।
ऊर्ध्वाधर भट्टियां सी सतह पर देशी ऑक्साइड के विकास को सीमित करने के लिए ऑक्सीकरण से पूर्व नाइट्रोजन के साथ अर्धचालक को शुद्ध करने के लिए लोड लॉक के उपयोग की अनुमति देती हैं।


== ऑक्साइड गुणवत्ता ==
== ऑक्साइड गुणवत्ता ==
उच्च विकास दर के कारण, मोटे आक्साइड को बढ़ने के लिए शुष्क ऑक्सीकरण के लिए गीला ऑक्सीकरण पसंद किया जाता है। चूंकि, तेजी से ऑक्सीकरण सिलिकॉन इंटरफ़ेस पर अधिक झूलने वाले बंधन छोड़ देता है, जो इलेक्ट्रॉनों के लिए क्वांटम राज्य उत्पन्न करता है और वर्तमान को इंटरफ़ेस के साथ रिसाव करने की अनुमति देता है। (इसे गंदा इंटरफ़ेस कहा जाता है।) गीला ऑक्सीकरण भी कम [[ढांकता हुआ ताकत]] के साथ कम [[घनत्व]] वाला ऑक्साइड उत्पन्न करता है।
उच्च विकास दर के कारण, मोटे आक्साइड को बढ़ने के लिए शुष्क ऑक्सीकरण के लिए गीला ऑक्सीकरण पसंद किया जाता है। चूंकि, तेजी से ऑक्सीकरण सिलिकॉन इंटरफ़ेस पर अधिक झूलने वाले बंधन छोड़ देता है, जो इलेक्ट्रॉनों के लिए क्वांटम राज्य उत्पन्न करता है और वर्तमान को इंटरफ़ेस के साथ रिसाव करने की अनुमति देता है। (इसे "गंदा" इंटरफ़ेस कहा जाता है।) गीला ऑक्सीकरण भी कम [[ढांकता हुआ ताकत|ढांकता हुआ शक्ति]] के साथ कम [[घनत्व]] वाला ऑक्साइड उत्पन्न करता है।


शुष्क ऑक्सीकरण में गाढ़ा ऑक्साइड बनने में लगने वाला लंबा समय इस प्रक्रिया को अव्यावहारिक बना देता है। मोटे आक्साइड सामान्यतः लंबे गीले ऑक्सीकरण के साथ उगाए जाते हैं जो छोटे सूखे (सूखे-गीले-शुष्क चक्र) द्वारा ब्रैकेट किए जाते हैं। शुरुआत और अंत शुष्क ऑक्सीकरण क्रमशः ऑक्साइड परत की बाहरी और आंतरिक सतहों पर उच्च गुणवत्ता वाले ऑक्साइड की फिल्मों का निर्माण करते हैं।
शुष्क ऑक्सीकरण में गाढ़ा ऑक्साइड बनने में लगने वाला लंबा समय इस प्रक्रिया को अव्यावहारिक बना देता है। मोटे आक्साइड सामान्यतः लंबे गीले ऑक्सीकरण के साथ उगाए जाते हैं जो छोटे सूखे (सूखे-गीले-शुष्क चक्र) द्वारा कोष्ठक किए जाते हैं। शुरुआत और अंत शुष्क ऑक्सीकरण क्रमशः ऑक्साइड परत की बाहरी और आंतरिक सतहों पर उच्च गुणवत्ता वाले ऑक्साइड की फिल्मों का निर्माण करते हैं।


मोबाइल [[धातु]] [[आयन]] [[MOSFET]]s के प्रदर्शन को नीचा दिखा सकते हैं ([[सोडियम]] विशेष चिंता का विषय है)चूँकि, [[क्लोरीन]] [[सोडियम क्लोराइड]] बनाकर सोडियम को स्थिर कर सकता है। क्लोरीन को अधिकांशतः ऑक्सीकरण माध्यम में [[हाइड्रोजन क्लोराइड]] या [[ट्राईक्लोरोइथीलीन]] जोड़कर प्रस्तुत किया जाता है। इसकी उपस्थिति ऑक्सीकरण की दर को भी बढ़ाती है।
मोबाइल [[धातु]] [[आयन|आयन मॉस्फेट]] के प्रदर्शन को नीचा दिखा सकते हैं। ([[सोडियम]] विशेष चिंता का विषय है।) चूँकि, [[क्लोरीन]] [[सोडियम क्लोराइड]] बनाकर सोडियम को स्थिर कर सकता है। क्लोरीन को अधिकांशतः ऑक्सीकरण माध्यम में [[हाइड्रोजन क्लोराइड]] या [[ट्राईक्लोरोइथीलीन]] जोड़कर प्रस्तुत किया जाता है। इसकी उपस्थिति ऑक्सीकरण की दर को भी बढ़ाती है।


== अन्य नोट्स ==
== अन्य नोट्स ==
थर्मल ऑक्सीकरण वेफर के चयनित क्षेत्रों पर किया जा सकता है, और दूसरों पर अवरुद्ध किया जा सकता है। यह प्रक्रिया, सबसे पहले फिलिप्स में विकसित हुई,<ref>J. Appels, E. Kooi, M. M. Paffen, J. J. H. Schatorje, and W. H. C. G. Verkuylen, “Local oxidation of silicon and its application in semiconductor-device technology,” PHILIPS RESEARCH Reports, vol. 25, no. 2, pp. 118–132, Apr. 1970.</ref> सामान्यतः सिलिकॉन ([[LOCOS]]) प्रक्रिया के स्थानीय ऑक्सीकरण के रूप में जाना जाता है। जिन क्षेत्रों को ऑक्सीकृत नहीं किया जाना है, वे [[सिलिकॉन नाइट्राइड]] की फिल्म से ढके होते हैं, जो बहुत धीमी गति से ऑक्सीकरण के कारण ऑक्सीजन और जल वाष्प के प्रसार को रोकता है।<ref>A. Kuiper, M. Willemsen, J. M. G. Bax, and F. H. P. H. Habraken, “Oxidation behaviour of LPCVD silicon oxynitride films,” Applied Surface Science, vol. 33, no. 34, pp. 757–764, Oct. 1988.</ref> ऑक्सीकरण पूरा होने के बाद नाइट्राइड हटा दिया जाता है। यह प्रक्रिया तीक्ष्ण विशेषताओं का उत्पादन नहीं कर सकती है, क्योंकि नाइट्राइड मास्क के अनुसार ऑक्सीडेंट अणुओं के पार्श्व (सतह के समानांतर) प्रसार के कारण ऑक्साइड नकाबपोश क्षेत्र में फैल जाता है।
थर्मल ऑक्सीकरण अर्धचालक के चयनित क्षेत्रों पर किया जा सकता है और दूसरों पर अवरुद्ध किया जा सकता है। यह प्रक्रिया सबसे पहले फिलिप्स में विकसित हुई थी,<ref>J. Appels, E. Kooi, M. M. Paffen, J. J. H. Schatorje, and W. H. C. G. Verkuylen, “Local oxidation of silicon and its application in semiconductor-device technology,” PHILIPS RESEARCH Reports, vol. 25, no. 2, pp. 118–132, Apr. 1970.</ref> सामान्यतः सिलिकॉन ([[LOCOS|लोकॉस]] ) प्रक्रिया के स्थानीय ऑक्सीकरण के रूप में जाना जाता है। जिन क्षेत्रों को ऑक्सीकृत नहीं किया जाना है। वह [[सिलिकॉन नाइट्राइड]] की फिल्म से ढके होते हैं। जो बहुत धीमी गति से ऑक्सीकरण के कारण ऑक्सीजन और जल वाष्प के प्रसार को रोकता है।<ref>A. Kuiper, M. Willemsen, J. M. G. Bax, and F. H. P. H. Habraken, “Oxidation behaviour of LPCVD silicon oxynitride films,” Applied Surface Science, vol. 33, no. 34, pp. 757–764, Oct. 1988.</ref> ऑक्सीकरण पूर्ण होने के पश्चात् नाइट्राइड हटा दिया जाता है। यह प्रक्रिया तीक्ष्ण विशेषताओं का उत्पादन नहीं कर सकती है। जिससे कि नाइट्राइड मास्क के अनुसार ऑक्सीडेंट अणुओं के पार्श्व (सतह के समानांतर) प्रसार के कारण ऑक्साइड अप्रत्यक्ष क्षेत्र में फैल जाता है।
 
क्योंकि सिलिकॉन और ऑक्साइड में अशुद्धियों का अलग-अलग [[solation]] होता है, बढ़ता हुआ ऑक्साइड डोपेंट को श्रेष्ठ रूप से ग्रहण या अस्वीकार कर देगा। यह पुनर्वितरण अलगाव गुणांक द्वारा नियंत्रित होता है, जो यह निर्धारित करता है कि ऑक्साइड डोपेंट को कितनी मजबूती से अवशोषित या अस्वीकार करता है, और द्रव्यमान विसारकता।


सिलिकॉन [[क्रिस्टल]] का उन्मुखीकरण ऑक्सीकरण को प्रभावित करता है। <100> वेफर (मिलर इंडेक्स देखें) <111> वेफर की तुलना में अधिक धीरे-धीरे ऑक्सीकरण करता है, किन्तु विद्युत क्लीनर ऑक्साइड इंटरफ़ेस उत्पन्न करता है।
जिससे कि सिलिकॉन और ऑक्साइड में अशुद्धिया भिन्न-भिन्न प्रकार से घुलती हैं। अतः बढ़ता हुआ ऑक्साइड श्रेष्ठ रूप से डोपेंट को ग्रहण या अस्वीकार कर देता है। यह पुनर्वितरण अलगाव गुणांक द्वारा नियंत्रित होता है। जो यह निर्धारित करता है कि ऑक्साइड डोपेंट को कितनी मजबूती से अवशोषित या अस्वीकार करता है और द्रव्यमान विसारकता होता है।


ऑक्साइड के रासायनिक वाष्प जमाव की तुलना में किसी भी किस्म का थर्मल ऑक्सीकरण उच्च गुणवत्ता वाले ऑक्साइड का उत्पादन करता है, जिसके परिणामस्वरूप कम तापमान ऑक्साइड परत (लगभग 600 डिग्री सेल्सियस पर [[टेट्राएथिल ओर्थोसिलिकेट]] की प्रतिक्रिया) होती है। चूंकि, उच्च तापमान ऑक्साइड (HTO) का उत्पादन करने के लिए आवश्यक उच्च तापमान इसकी उपयोगिता को सीमित करता है। उदाहरण के लिए, MOSFET प्रक्रियाओं में, स्रोत और नाली टर्मिनलों के लिए डोपिंग के बाद थर्मल ऑक्सीकरण कभी नहीं किया जाता है, क्योंकि यह डोपेंट के प्लेसमेंट को परेशान करेगा।
सिलिकॉन [[क्रिस्टल]] का उन्मुखीकरण ऑक्सीकरण को प्रभावित करता है। <100> अर्धचालक (मिलर सूचकांक देखें) <111> अर्धचालक की तुलना में अधिक धीरे-धीरे ऑक्सीकरण करता है, किन्तु विद्युत स्वच्छ ऑक्साइड इंटरफ़ेस उत्पन्न करता है।


{{Commons category|Thermal oxidation}}
ऑक्साइड के रासायनिक वाष्प जमाव की तुलना में किसी भी प्रकार का थर्मल ऑक्सीकरण उच्च गुणवत्ता वाले ऑक्साइड का उत्पादन करता है, जिसके परिणामस्वरूप कम तापमान ऑक्साइड परत (लगभग 600 डिग्री सेल्सियस पर [[टेट्राएथिल ओर्थोसिलिकेट]] की प्रतिक्रिया) होती है। चूंकि, उच्च तापमान ऑक्साइड (एचटीओ) का उत्पादन करने के लिए आवश्यक उच्च तापमान इसकी उपयोगिता को सीमित करता है। उदाहरण के लिए, मॉस्फेट प्रक्रियाओं में, स्रोत और नाली टर्मिनलों के लिए डोपिंग के पश्चात् थर्मल ऑक्सीकरण कभी नहीं किया जाता है, जिससे की यह डोपेंट के खोजकर्ता को परेशान करता है।


== संदर्भ ==
== संदर्भ ==
Line 56: Line 52:
;Sources
;Sources
* {{cite book |last=Jaeger |first=Richard C. |title=Introduction to Microelectronic Fabrication |year=2001 |publisher=[[Prentice Hall]] |location=Upper Saddle River |isbn=978-0-201-44494-0 |chapter=Thermal Oxidation of Silicon}}
* {{cite book |last=Jaeger |first=Richard C. |title=Introduction to Microelectronic Fabrication |year=2001 |publisher=[[Prentice Hall]] |location=Upper Saddle River |isbn=978-0-201-44494-0 |chapter=Thermal Oxidation of Silicon}}
==बाहरी संबंध==
==बाहरी संबंध==
*Online calculator including deal grove and massoud oxidation models, with pressure and doping effects at: http://www.lelandstanfordjunior.com/thermaloxide.html
*Online calculator including deal grove and massoud oxidation models, with pressure and doping effects at: http://www.lelandstanfordjunior.com/thermaloxide.html
[[Category: सेमीकंडक्टर तकनीक]] [[Category: नेनोसामग्री]] [[Category: सामग्री]] [[Category: माइक्रोटेक्नोलोजी]] [[Category: MOSFETs]] [[Category: नैनो इलेक्ट्रॉनिक्स]] [[Category: सिलिकॉन]]


[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Created On 22/03/2023]]
[[Category:Created On 22/03/2023]]
[[Category:Lua-based templates]]
[[Category:MOSFETs]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:नेनोसामग्री]]
[[Category:नैनो इलेक्ट्रॉनिक्स]]
[[Category:माइक्रोटेक्नोलोजी]]
[[Category:सामग्री]]
[[Category:सिलिकॉन]]
[[Category:सेमीकंडक्टर तकनीक]]

Latest revision as of 11:30, 13 April 2023

टूलूस, फ्रांस में एलएएएस सिस्टम विधि सुविधा के विश्लेषण और वास्तुकला के लिए प्रयोगशाला में प्रसार और थर्मल ऑक्सीकरण के लिए उपयोग की जाने वाली भट्टियां।

माइक्रोफैब्रिकेशन में, थर्मल ऑक्सीकरण अर्धचालक (इलेक्ट्रॉनिक्स) की सतह पर ऑक्साइड (सामान्यतः सिलिकॉन डाइऑक्साइड) की पतली परत का उत्पादन करने की विधि है। चूँकि यह विधि ऑक्सीकरण एजेंट को उच्च तापमान पर अर्धचालक में फैलाने और इसके साथ प्रतिक्रिया करने के लिए विवश करती है। डील-ग्रोव मॉडल द्वारा अधिकांशतः ऑक्साइड वृद्धि की दर का अनुमान लगाया जाता है।[1] अतः थर्मल ऑक्सीकरण को विभिन्न सामग्रियों पर प्रयुक्त किया जा सकता है। किन्तु सामान्यतः सिलिकॉन डाइऑक्साइड का उत्पादन करने के लिए सिलिकॉन सबस्ट्रेट्स का ऑक्सीकरण सम्मिलित होता है।

रासायनिक प्रतिक्रिया

सिलिकॉन का थर्मल ऑक्सीकरण सामान्यतः 800 और 1200 डिग्री सेल्सियस के मध्य के तापमान पर किया जाता है। जिसके परिणामस्वरूप उच्च तापमान ऑक्साइड परत (एचटीओ) कहा जाता है। यह ऑक्सीडेंट के रूप में या तो जल वाष्प (सामान्यतः ऑक्सीकरण और एनीलिंग के लिए अल्ट्रा-हाई-शुद्धता भाप) या आणविक ऑक्सीजन का उपयोग कर सकता है। इसके फलस्वरूप इसे या तो गीला या शुष्क ऑक्सीकरण कहा जाता है। प्रतिक्रिया निम्न में से है।

ऑक्सीकरण परिवेश में अनेक प्रतिशत हाइड्रोक्लोरिक अम्ल (एचसीएल) भी हो सकता है। क्लोरीन धातु के आयनों को हटा देता है। जो ऑक्साइड में हो सकते हैं।

थर्मल ऑक्साइड में सब्सट्रेट से खपत सिलिकॉन और परिवेश से आपूर्ति की गई ऑक्सीजन सम्मिलित है। इस प्रकार यह अर्धचालक में नीचे और ऊपर दोनों में बढ़ता है। सिलिकॉन की खपत की प्रत्येक इकाई मोटाई के लिए ऑक्साइड की 2.17 इकाई मोटाई दिखाई देती है।[2] यदि वंचित सिलिकॉन सतह को ऑक्सीकरण किया जाता है। तब ऑक्साइड की मोटाई का 46% मूल सतह के नीचे और 54% इसके ऊपर होता है।

डील-ग्रोव मॉडल

सामान्यतः उपयोग किए जाने वाले डील-ग्रोव मॉडल के अनुसार, वंचित सिलिकॉन सतह पर स्थिर तापमान पर मोटाई Xo के ऑक्साइड को विकसित करने के लिए समय τo की आवश्यकता होती है।

जहां स्थिरांक A और B क्रमशः प्रतिक्रिया और ऑक्साइड परत के गुणों से संबंधित हैं। इस मॉडल को स्व-सीमित ऑक्सीकरण प्रक्रियाओं के लिए अनुकूलित किया गया है। जैसा कि सिलिकॉन नैनोवायर और अन्य नैनो संरचनाओ के निर्माण और रूपात्मक डिजाइन के लिए उपयोग किया जाता है।[1]

यदि अर्धचालक जिसमें पहले से ही ऑक्साइड होता है। उसे ऑक्सीकरण परिवेश में रखा जाता है। तब इस समीकरण को सुधारात्मक शब्द τ जोड़कर संशोधित किया जाना चाहिए। वह समय जो वर्तमान परिस्थितियों में पहले से उपस्तिथ ऑक्साइड को विकसित करने के लिए आवश्यक होता है। यह शब्द उपरोक्त t के समीकरण का उपयोग करके पाया जा सकता है।

Xo के लिए द्विघात समीकरण को हल करना,

ऑक्सीकरण प्रौद्योगिकी

अधिकांश थर्मल ऑक्सीकरण औद्योगिक भट्टियों में 800 और 1200 डिग्री सेल्सियस के मध्य तापमान पर किया जाता है। भट्टी विशेष समय में विशेष रूप से डिज़ाइन किए गए क्वार्ट्ज रैक (जिसे "नाव" कहा जाता है।) में समय में अनेक अर्धचालक स्वीकार करती है। ऐतिहासिक रूप से, नाव पक्ष से ऑक्सीकरण कक्ष में प्रवेश करती थी। (इस डिजाइन को "क्षैतिज" कहा जाता है।) और दूसरे के बगल में अर्धचालक को लंबवत रखा जाता है। चूंकि अनेक आधुनिक डिजाइन अर्धचालक को दूसरे के ऊपर और नीचे क्षैतिज रूप से पकड़ते हैं। अतः उन्हें नीचे से ऑक्सीकरण कक्ष में लोड करते हैं।

जिससे कि ऊर्ध्वाधर भट्टियां क्षैतिज भट्टियों से अधिक होती हैं। वह कुछ माइक्रोफैब्रिकेशन सुविधाओं में फिट नहीं हो सकते हैं। वह धूल संदूषण को रोकने में मदद करते हैं। क्षैतिज भट्टियों के विपरीत, जिसमें गिरने वाली धूल किसी भी अर्धचालक को दूषित कर सकती है। ऊर्ध्वाधर भट्टियां धूल को अर्धचालक तक पहुंचने से रोकने के लिए वायु निस्पंदन प्रणाली के साथ बंद कैबिनेट का उपयोग करती हैं।

अधिकांशतः लंबवत भट्टियां क्षैतिज भट्टियों से ग्रस्त समस्या को भी समाप्त करती हैं। अर्धचालक में उगाए गए ऑक्साइड की गैर-एकरूपता क्षैतिज भट्टियों में सामान्यतः ट्यूब के अंदर संवहन धाराएं होती हैं। जो ट्यूब के निचले भाग को ट्यूब के ऊपर की तुलना में थोड़ा ठंडा होने का कारण बनती हैं। जैसा कि अर्धचालक ट्यूब में लंबवत रूप से स्थित होते हैं। संवहन और इसके साथ तापमान प्रवणता अर्धचालक के शीर्ष को अर्धचालक के नीचे की तुलना में मोटा ऑक्साइड होने का कारण बनता है। लंबवत भट्टियां अर्धचालक को क्षैतिज रूप से बैठने से इस समस्या को हल करती हैं और फिर भट्टी में गैस का प्रवाह ऊपर से नीचे की ओर होता है। जो किसी भी थर्मल संवहन को अधिक कम कर देता है।

ऊर्ध्वाधर भट्टियां सी सतह पर देशी ऑक्साइड के विकास को सीमित करने के लिए ऑक्सीकरण से पूर्व नाइट्रोजन के साथ अर्धचालक को शुद्ध करने के लिए लोड लॉक के उपयोग की अनुमति देती हैं।

ऑक्साइड गुणवत्ता

उच्च विकास दर के कारण, मोटे आक्साइड को बढ़ने के लिए शुष्क ऑक्सीकरण के लिए गीला ऑक्सीकरण पसंद किया जाता है। चूंकि, तेजी से ऑक्सीकरण सिलिकॉन इंटरफ़ेस पर अधिक झूलने वाले बंधन छोड़ देता है, जो इलेक्ट्रॉनों के लिए क्वांटम राज्य उत्पन्न करता है और वर्तमान को इंटरफ़ेस के साथ रिसाव करने की अनुमति देता है। (इसे "गंदा" इंटरफ़ेस कहा जाता है।) गीला ऑक्सीकरण भी कम ढांकता हुआ शक्ति के साथ कम घनत्व वाला ऑक्साइड उत्पन्न करता है।

शुष्क ऑक्सीकरण में गाढ़ा ऑक्साइड बनने में लगने वाला लंबा समय इस प्रक्रिया को अव्यावहारिक बना देता है। मोटे आक्साइड सामान्यतः लंबे गीले ऑक्सीकरण के साथ उगाए जाते हैं जो छोटे सूखे (सूखे-गीले-शुष्क चक्र) द्वारा कोष्ठक किए जाते हैं। शुरुआत और अंत शुष्क ऑक्सीकरण क्रमशः ऑक्साइड परत की बाहरी और आंतरिक सतहों पर उच्च गुणवत्ता वाले ऑक्साइड की फिल्मों का निर्माण करते हैं।

मोबाइल धातु आयन मॉस्फेट के प्रदर्शन को नीचा दिखा सकते हैं। (सोडियम विशेष चिंता का विषय है।) चूँकि, क्लोरीन सोडियम क्लोराइड बनाकर सोडियम को स्थिर कर सकता है। क्लोरीन को अधिकांशतः ऑक्सीकरण माध्यम में हाइड्रोजन क्लोराइड या ट्राईक्लोरोइथीलीन जोड़कर प्रस्तुत किया जाता है। इसकी उपस्थिति ऑक्सीकरण की दर को भी बढ़ाती है।

अन्य नोट्स

थर्मल ऑक्सीकरण अर्धचालक के चयनित क्षेत्रों पर किया जा सकता है और दूसरों पर अवरुद्ध किया जा सकता है। यह प्रक्रिया सबसे पहले फिलिप्स में विकसित हुई थी,[3] सामान्यतः सिलिकॉन (लोकॉस ) प्रक्रिया के स्थानीय ऑक्सीकरण के रूप में जाना जाता है। जिन क्षेत्रों को ऑक्सीकृत नहीं किया जाना है। वह सिलिकॉन नाइट्राइड की फिल्म से ढके होते हैं। जो बहुत धीमी गति से ऑक्सीकरण के कारण ऑक्सीजन और जल वाष्प के प्रसार को रोकता है।[4] ऑक्सीकरण पूर्ण होने के पश्चात् नाइट्राइड हटा दिया जाता है। यह प्रक्रिया तीक्ष्ण विशेषताओं का उत्पादन नहीं कर सकती है। जिससे कि नाइट्राइड मास्क के अनुसार ऑक्सीडेंट अणुओं के पार्श्व (सतह के समानांतर) प्रसार के कारण ऑक्साइड अप्रत्यक्ष क्षेत्र में फैल जाता है।

जिससे कि सिलिकॉन और ऑक्साइड में अशुद्धिया भिन्न-भिन्न प्रकार से घुलती हैं। अतः बढ़ता हुआ ऑक्साइड श्रेष्ठ रूप से डोपेंट को ग्रहण या अस्वीकार कर देता है। यह पुनर्वितरण अलगाव गुणांक द्वारा नियंत्रित होता है। जो यह निर्धारित करता है कि ऑक्साइड डोपेंट को कितनी मजबूती से अवशोषित या अस्वीकार करता है और द्रव्यमान विसारकता होता है।

सिलिकॉन क्रिस्टल का उन्मुखीकरण ऑक्सीकरण को प्रभावित करता है। <100> अर्धचालक (मिलर सूचकांक देखें) <111> अर्धचालक की तुलना में अधिक धीरे-धीरे ऑक्सीकरण करता है, किन्तु विद्युत स्वच्छ ऑक्साइड इंटरफ़ेस उत्पन्न करता है।

ऑक्साइड के रासायनिक वाष्प जमाव की तुलना में किसी भी प्रकार का थर्मल ऑक्सीकरण उच्च गुणवत्ता वाले ऑक्साइड का उत्पादन करता है, जिसके परिणामस्वरूप कम तापमान ऑक्साइड परत (लगभग 600 डिग्री सेल्सियस पर टेट्राएथिल ओर्थोसिलिकेट की प्रतिक्रिया) होती है। चूंकि, उच्च तापमान ऑक्साइड (एचटीओ) का उत्पादन करने के लिए आवश्यक उच्च तापमान इसकी उपयोगिता को सीमित करता है। उदाहरण के लिए, मॉस्फेट प्रक्रियाओं में, स्रोत और नाली टर्मिनलों के लिए डोपिंग के पश्चात् थर्मल ऑक्सीकरण कभी नहीं किया जाता है, जिससे की यह डोपेंट के खोजकर्ता को परेशान करता है।

संदर्भ

Notes
  1. 1.0 1.1 Liu, M.; et al. (2016). "सिलिकॉन और टंगस्टन नैनोवायरों में स्व-सीमित ऑक्सीकरण का द्वि-आयामी मॉडलिंग". Theoretical and Applied Mechanics Letters. 6 (5): 195–199. doi:10.1016/j.taml.2016.08.002.
  2. "संग्रहीत प्रति" (PDF). Archived from the original (PDF) on 2015-01-21. Retrieved 2013-07-07.
  3. J. Appels, E. Kooi, M. M. Paffen, J. J. H. Schatorje, and W. H. C. G. Verkuylen, “Local oxidation of silicon and its application in semiconductor-device technology,” PHILIPS RESEARCH Reports, vol. 25, no. 2, pp. 118–132, Apr. 1970.
  4. A. Kuiper, M. Willemsen, J. M. G. Bax, and F. H. P. H. Habraken, “Oxidation behaviour of LPCVD silicon oxynitride films,” Applied Surface Science, vol. 33, no. 34, pp. 757–764, Oct. 1988.
Sources

बाहरी संबंध