वीन ब्रिज दोलक: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
[[File:Wien Bridge Oscillator.png|right|thumb|300px|थरथरानवाला के इस संस्करण में, आरबी छोटा गरमागरम दीपक है। सामान्यतःR1 = R2 = R और C1 = C2 = C. सामान्य ऑपरेशन में, Rb स्वयं उस बिंदु तक गर्म होता है जहां इसका प्रतिरोध Rf/2 है।]]वीन ब्रिज ऑसिलेटर प्रकार का [[इलेक्ट्रॉनिक थरथरानवाला]] है जो साइन वेव्स उत्पन्न करता है। यह [[आवृत्तियों]] की बड़ी श्रृंखला उत्पन्न कर सकता है। थरथरानवाला [[ब्रिज सर्किट]] पर आधारित है जिसे मूल रूप से 1891 में [[मैक्स वियना]] द्वारा [[विद्युत प्रतिबाधा]] के मापन के लिए विकसित किया गया था।<ref>{{Harvnb|Wien|1891}}</ref>
[[File:Wien Bridge Oscillator.png|right|thumb|300px|थरथरानवाला के इस संस्करण में, आरबी छोटा गरमागरम दीपक है। सामान्यतःR1 = R2 = R और C1 = C2 = C. सामान्य ऑपरेशन में, Rb स्वयं उस बिंदु तक गर्म होता है जहां इसका प्रतिरोध Rf/2 है।]]वीन ब्रिज दोलक प्रकार का [[इलेक्ट्रॉनिक थरथरानवाला]] है जो साइन वेव्स उत्पन्न करता है। यह [[आवृत्तियों]] की बड़ी श्रृंखला उत्पन्न कर सकता है। थरथरानवाला [[ब्रिज सर्किट|ब्रिज]] परिपथपर आधारित है जिसे मूल रूप से 1891 में [[मैक्स वियना]] द्वारा [[विद्युत प्रतिबाधा]] के मापन के लिए विकसित किया गया था।<ref>{{Harvnb|Wien|1891}}</ref>
[[वीन ब्रिज]] में चार प्रतिरोधक और दो [[ संधारित्र |संधारित्र]] होते हैं। थरथरानवाला भी [[सकारात्मक प्रतिक्रिया]] प्रदान करता है कि[[ बंदपास छननी | बंदपास छननी]] के साथ संयुक्त सकारात्मक लाभ प्रवर्धक के रूप में देखा जा सकता है। स्वत: लाभ नियंत्रण, जानबूझकर गैर-रैखिकता और आकस्मिक गैर-रैखिकता ऑसीलेटर के विभिन्न कार्यान्वयन में आउटपुट आयाम को सीमित करती है।
[[वीन ब्रिज]] में चार प्रतिरोधक और दो [[ संधारित्र |संधारित्र]] होते हैं। थरथरानवाला भी [[सकारात्मक प्रतिक्रिया]] प्रदान करता है कि[[ बंदपास छननी | बंदपास छननी]] के साथ संयुक्त सकारात्मक लाभ प्रवर्धक के रूप में देखा जा सकता है। स्वत: लाभ नियंत्रण, जानबूझकर गैर-रैखिकता और आकस्मिक गैर-रैखिकता ऑसीलेटर के विभिन्न कार्यान्वयन में आउटपुट आयाम को सीमित करती है।


Line 10: Line 10:
<math>R_b =  \frac {R_f} {2} </math>
<math>R_b =  \frac {R_f} {2} </math>
== पृष्ठभूमि ==
== पृष्ठभूमि ==
1930 के दशक में ऑसिलेटर्स को बेहतर बनाने के लिए अनेक प्रयास किए गए। रैखिकता को महत्वपूर्ण माना गया। प्रतिरोध-स्थिर थरथरानवाला समायोज्य प्रतिक्रिया रोकनेवाला था; उस अवरोधक को सेट किया जाएगा ताकि थरथरानवाला बस प्रारंभ हो जाए (इस प्रकार लूप लाभ को सिर्फ एकता पर सेट करना)। दोलन तब तक बने रहेंगे जब तक कि वैक्यूम ट्यूब का ग्रिड करंट का संचालन प्रारंभ नहीं कर देता, जिससे हानि बढ़ जाएगा और आउटपुट आयाम सीमित हो जाएगा।<ref>{{harvnb|Terman|1933}}</ref><ref>{{harvnb|Terman|1935|pp=283–289}}</ref><ref>{{harvnb|Terman|1937|pp=371–372}}</ref> स्वचालित आयाम नियंत्रण की परिक्षण की गई।<ref>{{harvnb|Arguimbau|1933}}</ref><ref>{{harvnb|Groszkowski|1934}}</ref> [[फ्रेडरिक टर्मन]] कहते हैं, किसी भी सामान्य ऑसिलेटर की आवृत्ति स्थिरता और तरंग-आकार के रूप को सभी परिस्थितियों में स्थिर दोलनों के आयाम को बनाए रखने के लिए स्वचालित-आयाम-नियंत्रण व्यवस्था का उपयोग करके सुधार किया जा सकता है।<ref>{{harvnb|Terman|1937|p=370}}</ref>
1930 के दशक में दोलक को बेहतर बनाने के लिए अनेक प्रयास किए गए। रैखिकता को महत्वपूर्ण माना गया। प्रतिरोध-स्थिर थरथरानवाला समायोज्य प्रतिक्रिया रोकनेवाला था; उस अवरोधक को सेट किया जाएगा ताकि थरथरानवाला बस प्रारंभ हो जाए (इस प्रकार लूप लाभ को सिर्फ एकता पर सेट करना)। दोलन तब तक बने रहेंगे जब तक कि वैक्यूम ट्यूब का ग्रिड करंट का संचालन प्रारंभ नहीं कर देता, जिससे हानि बढ़ जाएगा और आउटपुट आयाम सीमित हो जाएगा।<ref>{{harvnb|Terman|1933}}</ref><ref>{{harvnb|Terman|1935|pp=283–289}}</ref><ref>{{harvnb|Terman|1937|pp=371–372}}</ref> स्वचालित आयाम नियंत्रण की परिक्षण की गई।<ref>{{harvnb|Arguimbau|1933}}</ref><ref>{{harvnb|Groszkowski|1934}}</ref> [[फ्रेडरिक टर्मन]] कहते हैं, किसी भी सामान्य दोलककी आवृत्ति स्थिरता और तरंग-आकार के रूप को सभी परिस्थितियों में स्थिर दोलनों के आयाम को बनाए रखने के लिए स्वचालित-आयाम-नियंत्रण व्यवस्था का उपयोग करके सुधार किया जा सकता है।<ref>{{harvnb|Terman|1937|p=370}}</ref>
1937 में, लारेड मेचम ने ब्रिज ऑसिलेटर्स में स्वत: लाभ नियंत्रण के लिए फिलामेंट लैंप का उपयोग करने का वर्णन किया।<ref>{{harvnb|Meacham|1939}}</ref><ref name="Meacham 1938">{{Harvnb|Meacham|1938}}</ref>
1937 में, लारेड मेचम ने ब्रिज दोलक में स्वत: लाभ नियंत्रण के लिए फिलामेंट लैंप का उपयोग करने का वर्णन किया।<ref>{{harvnb|Meacham|1939}}</ref><ref name="Meacham 1938">{{Harvnb|Meacham|1938}}</ref>
इसके अतिरिक्त 1937 में, [[हेर्मोन होस्मर स्कॉट]] ने वीन ब्रिज सहित विभिन्न पुलों पर आधारित ऑडियो ऑसिलेटर्स का वर्णन किया।<ref>{{harvnb|Scott|1939}}</ref><ref>{{harvnb|Scott|1938}}</ref>
इसके अतिरिक्त 1937 में, [[हेर्मोन होस्मर स्कॉट]] ने वीन ब्रिज सहित विभिन्न पुलों पर आधारित ऑडियो दोलक का वर्णन किया।<ref>{{harvnb|Scott|1939}}</ref><ref>{{harvnb|Scott|1938}}</ref>
[[स्टैनफोर्ड विश्वविद्यालय]] में टरमन, नकारात्मक प्रतिक्रिया पर [[हेरोल्ड स्टीफन ब्लैक]] के कार्य में रुचि रखते थे,<ref>{{harvnb|Black|1934a}}</ref><ref>{{harvnb|Black|1934b}}</ref> इसलिए उन्होंने नकारात्मक प्रतिक्रिया पर स्नातक संगोष्ठी आयोजित की।<ref>{{harvnb|HP|2002}}</ref> [[बिल हेवलेट]] ने सेमिनार में भाग लिया। संगोष्ठी के दौरान स्कॉट का फरवरी 1938 का ऑसिलेटर पेपर निकला। यहाँ टरमन द्वारा स्मरण है:<ref>{{harvnb|Sharpe|n.d.}}</ref>
[[स्टैनफोर्ड विश्वविद्यालय]] में टरमन, नकारात्मक प्रतिक्रिया पर [[हेरोल्ड स्टीफन ब्लैक]] के कार्य में रुचि रखते थे,<ref>{{harvnb|Black|1934a}}</ref><ref>{{harvnb|Black|1934b}}</ref> इसलिए उन्होंने नकारात्मक प्रतिक्रिया पर स्नातक संगोष्ठी आयोजित की।<ref>{{harvnb|HP|2002}}</ref> [[बिल हेवलेट]] ने सेमिनार में भाग लिया। संगोष्ठी के दौरान स्कॉट का फरवरी 1938 का दोलकपेपर निकला। यहाँ टरमन द्वारा स्मरण है:<ref>{{harvnb|Sharpe|n.d.}}</ref>
:फ्रेड टर्मन बताते हैं: स्टैनफोर्ड में अभियांत्रिक की डिग्री की आवश्यकताओं को पूर्ण करने के लिए बिल को थीसिस तैयार करनी पड़ी। उस समय मैंने अपने स्नातक संगोष्ठी का पूर्ण चौथाई 'नकारात्मक प्रतिक्रिया' के विषय में समर्पित करने का निर्णय लिया था, मुझे इस तत्कालीन नई प्रौद्योगिक में रूचि हो गई थी क्योंकि ऐसा लगता था कि इसमें अनेक उपयोगी चीजें करने की अधिक संभावनाएं हैं। मैं नकारात्मक प्रतिक्रिया पर विचार किए गए कुछ अनुप्रयोगों पर रिपोर्ट करूंगा, और लड़के हाल के लेख पढ़ेंगे और वर्तमान विकास पर दूसरे को रिपोर्ट करेंगे। यह संगोष्ठी अभी उत्तम प्रकार से प्रारंभ हुई थी जब पेपर निकला जो मुझे रोचक लगा। यह जनरल रेडियो के व्यक्ति द्वारा किया गया था और निश्चित-आवृत्ति ऑडियो थरथरानवाला से निपटा गया था जिसमें आवृत्ति को प्रतिरोध-समाई नेटवर्क द्वारा नियंत्रित किया गया था, और पुश-बटन के माध्यम से बदल दिया गया था। नकारात्मक प्रतिक्रिया के सरल अनुप्रयोग द्वारा दोलन प्राप्त किए गए थे।
:फ्रेड टर्मन बताते हैं: स्टैनफोर्ड में अभियांत्रिक की डिग्री की आवश्यकताओं को पूर्ण करने के लिए बिल को थीसिस तैयार करनी पड़ी। उस समय मैंने अपने स्नातक संगोष्ठी का पूर्ण चौथाई 'नकारात्मक प्रतिक्रिया' के विषय में समर्पित करने का निर्णय लिया था, मुझे इस तत्कालीन नई प्रौद्योगिक में रूचि हो गई थी क्योंकि ऐसा लगता था कि इसमें अनेक उपयोगी चीजें करने की अधिक संभावनाएं हैं। मैं नकारात्मक प्रतिक्रिया पर विचार किए गए कुछ अनुप्रयोगों पर रिपोर्ट करूंगा, और लड़के हाल के लेख पढ़ेंगे और वर्तमान विकास पर दूसरे को रिपोर्ट करेंगे। यह संगोष्ठी अभी उत्तम प्रकार से प्रारंभ हुई थी जब पेपर निकला जो मुझे रोचक लगा। यह जनरल रेडियो के व्यक्ति द्वारा किया गया था और निश्चित-आवृत्ति ऑडियो थरथरानवाला से निपटा गया था जिसमें आवृत्ति को प्रतिरोध-समाई नेटवर्क द्वारा नियंत्रित किया गया था, और पुश-बटन के माध्यम से बदल दिया गया था। नकारात्मक प्रतिक्रिया के सरल अनुप्रयोग द्वारा दोलन प्राप्त किए गए थे।


जून 1938 में, टर्मन, आर.आर. बस, हेवलेट और एफ.सी. काहिल ने न्यूयॉर्क में IRE कन्वेंशन में नकारात्मक प्रतिक्रिया के बारे में प्रस्तुति दी; अगस्त 1938 में, पोर्टलैंड, OR में IRE पैसिफिक कोस्ट कन्वेंशन में दूसरी प्रस्तुति हुई; प्रस्तुति IRE पेपर बन गई।<ref>{{harvnb|Terman|Buss|Hewlett|Cahill|1939}}</ref> विषय वीन ब्रिज ऑसिलेटर में आयाम नियंत्रण था। थरथरानवाला पोर्टलैंड में प्रदर्शित किया गया था।<ref>{{harvnb|Sharpe|n.d.|p=???}}{{page needed|date=November 2015}}; Packard remembers first demonstration of the 200A in Portland.</ref> हेवलेट, [[डेविड पैकर्ड]] के साथ, [[हेवलेट पैकर्ड]] की सह-स्थापना की, और हेवलेट-पैकर्ड का पहला उत्पाद [[HP200A]] था, जो सटीक वीन ब्रिज ऑसिलेटर था। पहली बिक्री जनवरी 1939 में हुई थी।<ref>{{harvnb|Sharpe|n.d.|p=xxx}}{{page needed|date=November 2015}}</ref>
जून 1938 में, टर्मन, आर.आर. बस, हेवलेट और एफ.सी. काहिल ने न्यूयॉर्क में IRE कन्वेंशन में नकारात्मक प्रतिक्रिया के बारे में प्रस्तुति दी; अगस्त 1938 में, पोर्टलैंड, OR में IRE पैसिफिक कोस्ट कन्वेंशन में दूसरी प्रस्तुति हुई; प्रस्तुति IRE पेपर बन गई।<ref>{{harvnb|Terman|Buss|Hewlett|Cahill|1939}}</ref> विषय वीन ब्रिज दोलकमें आयाम नियंत्रण था। थरथरानवाला पोर्टलैंड में प्रदर्शित किया गया था।<ref>{{harvnb|Sharpe|n.d.|p=???}}{{page needed|date=November 2015}}; Packard remembers first demonstration of the 200A in Portland.</ref> हेवलेट, [[डेविड पैकर्ड]] के साथ, [[हेवलेट पैकर्ड]] की सह-स्थापना की, और हेवलेट-पैकर्ड का पहला उत्पाद [[HP200A]] था, जो सटीक वीन ब्रिज दोलकथा। पहली बिक्री जनवरी 1939 में हुई थी।<ref>{{harvnb|Sharpe|n.d.|p=xxx}}{{page needed|date=November 2015}}</ref>
हेवलेट के जून 1939 के अभियांत्रिक की डिग्री थीसिस ने वीन ब्रिज ऑसिलेटर के आयाम को नियंत्रित करने के लिए दीपक का उपयोग किया।<ref>{{harvtxt|Williams|1991|p=46}} states, "Hewlett may have adapted this technique from Meacham, who published it in 1938 as a way to stabilize a quartz crystal oscillator.  Meacham's paper, "The Bridge Stabilized Oscillator," is in reference number five in Hewlett's thesis."</ref> हेवलेट के थरथरानवाला स्थिर आयाम और कम [[विरूपण]] के साथ साइनसोइडल आउटपुट का उत्पादन करता है।<ref>{{Harvnb|Hewlett|1942}}</ref><ref>{{Harvnb|Williams|1991|pp=46–47}}</ref>
हेवलेट के जून 1939 के अभियांत्रिक की डिग्री थीसिस ने वीन ब्रिज दोलकके आयाम को नियंत्रित करने के लिए दीपक का उपयोग किया।<ref>{{harvtxt|Williams|1991|p=46}} states, "Hewlett may have adapted this technique from Meacham, who published it in 1938 as a way to stabilize a quartz crystal oscillator.  Meacham's paper, "The Bridge Stabilized Oscillator," is in reference number five in Hewlett's thesis."</ref> हेवलेट के थरथरानवाला स्थिर आयाम और कम [[विरूपण]] के साथ साइनसोइडल आउटपुट का उत्पादन करता है।<ref>{{Harvnb|Hewlett|1942}}</ref><ref>{{Harvnb|Williams|1991|pp=46–47}}</ref>
=== स्वचालित लाभ नियंत्रण के बिना ऑसिलेटर्स ===
=== स्वचालित लाभ नियंत्रण के बिना दोलक ===
[[File:Wien Bridge Oscillator with diode limiting.png|right|thumb|300px|आयाम को नियंत्रित करने के लिए डायोड का उपयोग करने वाले वीन ब्रिज ऑसिलेटर का योजनाबद्ध। यह सर्किट सामान्यतः1-5% की सीमा में कुल हार्मोनिक विरूपण पैदा करता है, यह इस बात पर निर्भर करता है कि इसे कितनी सावधानी से छंटनी की जाती है।]]पारंपरिक ऑसिलेटर सर्किट को इस तरह डिज़ाइन किया गया है कि यह दोलन (स्टार्ट अप) करना प्रारंभ कर देगा और इसका आयाम नियंत्रित हो जाएगा।
[[File:Wien Bridge Oscillator with diode limiting.png|right|thumb|300px|आयाम को नियंत्रित करने के लिए डायोड का उपयोग करने वाले वीन ब्रिज दोलकका योजनाबद्ध। यह परिपथसामान्यतः1-5% की सीमा में कुल हार्मोनिक विरूपण पैदा करता है, यह इस बात पर निर्भर करता है कि इसे कितनी सावधानी से छंटनी की जाती है।]]पारंपरिक दोलक परिपथ को इस तरह डिज़ाइन किया गया है कि यह दोलन (स्टार्ट अप) करना प्रारंभ कर देगा और इसका आयाम नियंत्रित हो जाएगा।


एम्पलीफायर आउटपुट में नियंत्रित संपीड़न जोड़ने के लिए दाईं ओर ऑसीलेटर डायोड का उपयोग करता है। यह 1-5% की सीमा में कुल हार्मोनिक विरूपण उत्पन्न कर सकता है, यह इस बात पर निर्भर करता है कि इसे कितनी सावधानी से छंटनी की जाती है।<ref name="Graeme">{{cite book |last1=Graeme |first1=Jerald G. |last2=Tobey |first2=Gene E. |last3=Huelsman |first3=Lawrence P. |year=1971 |title=परिचालन प्रवर्धक, डिजाइन और अनुप्रयोग|url=https://archive.org/details/operationalampli00grae/page/383 |url-access=registration |edition=1st |publisher=McGraw-Hill |isbn=0-07-064917-0 |pages=[https://archive.org/details/operationalampli00grae/page/383 383–385] }}</ref>
एम्पलीफायर आउटपुट में नियंत्रित संपीड़न जोड़ने के लिए दाईं ओर ऑसीलेटर डायोड का उपयोग करता है। यह 1-5% की सीमा में कुल हार्मोनिक विरूपण उत्पन्न कर सकता है, यह इस बात पर निर्भर करता है कि इसे कितनी सावधानी से छंटनी की जाती है।<ref name="Graeme">{{cite book |last1=Graeme |first1=Jerald G. |last2=Tobey |first2=Gene E. |last3=Huelsman |first3=Lawrence P. |year=1971 |title=परिचालन प्रवर्धक, डिजाइन और अनुप्रयोग|url=https://archive.org/details/operationalampli00grae/page/383 |url-access=registration |edition=1st |publisher=McGraw-Hill |isbn=0-07-064917-0 |pages=[https://archive.org/details/operationalampli00grae/page/383 383–385] }}</ref>
दोलन करने के लिए रैखिक सर्किट के लिए, इसे बार्कहाउज़ेन स्थिरता मानदंड को पूर्ण करना चाहिए: इसका लूप लाभ होना चाहिए और लूप के चारों ओर चरण 360 डिग्री का पूर्णांक होना चाहिए। रैखिक थरथरानवाला सिद्धांत यह नहीं बताता है कि थरथरानवाला कैसे प्रारंभ होता है या आयाम कैसे निर्धारित होता है। रैखिक थरथरानवाला किसी भी आयाम का समर्थन कर सकता है।
दोलन करने के लिए रैखिक परिपथ के लिए, इसे बार्कहाउज़ेन स्थिरता मानदंड को पूर्ण करना चाहिए: इसका लूप लाभ होना चाहिए और लूप के चारों ओर चरण 360 डिग्री का पूर्णांक होना चाहिए। रैखिक थरथरानवाला सिद्धांत यह नहीं बताता है कि थरथरानवाला कैसे प्रारंभ होता है या आयाम कैसे निर्धारित होता है। रैखिक थरथरानवाला किसी भी आयाम का समर्थन कर सकता है।


व्यवहार में, पाश लाभ प्रारंभ में एकता से बड़ा होता है। यादृच्छिक शोर सभी सर्किटों में उपस्थित है, और उस शोर में से कुछ वांछित आवृत्ति के पास होगा। लूप लाभ से अधिक लूप के चारों ओर आवृत्ति के आयाम को हर बार तेजी से बढ़ाने की अनुमति देता है। से अधिक लूप गेन के साथ, ऑसिलेटर प्रारंभ हो जाएगा।
व्यवहार में, पाश लाभ प्रारंभ में एकता से बड़ा होता है। यादृच्छिक शोर सभी सर्किटों में उपस्थित है, और उस शोर में से कुछ वांछित आवृत्ति के पास होगा। लूप लाभ से अधिक लूप के चारों ओर आवृत्ति के आयाम को हर बार तेजी से बढ़ाने की अनुमति देता है। से अधिक लूप गेन के साथ, दोलकप्रारंभ हो जाएगा।


आदर्श रूप से, लूप गेन को से थोड़ा बड़ा होना चाहिए, लेकिन व्यवहार में, यह प्रायः से अधिक अधिक होता है। बड़ा लूप गेन ऑसिलेटर को जल्दी प्रारंभ करता है। बड़ा लूप लाभ तापमान के साथ लाभ भिन्नता और ट्यून करने योग्य ऑसिलेटर की वांछित आवृत्ति के लिए भी क्षतिपूर्ति करता है। थरथरानवाला प्रारंभ करने के लिए, पाश लाभ सभी संभव परिस्थितियों में से अधिक होना चाहिए।
आदर्श रूप से, लूप गेन को से थोड़ा बड़ा होना चाहिए, लेकिन व्यवहार में, यह प्रायः से अधिक अधिक होता है। बड़ा लूप गेन दोलकको जल्दी प्रारंभ करता है। बड़ा लूप लाभ तापमान के साथ लाभ भिन्नता और ट्यून करने योग्य दोलककी वांछित आवृत्ति के लिए भी क्षतिपूर्ति करता है। थरथरानवाला प्रारंभ करने के लिए, पाश लाभ सभी संभव परिस्थितियों में से अधिक होना चाहिए।
से अधिक लूप गेन का नकारात्मक पक्ष होता है। सिद्धांत रूप में, थरथरानवाला आयाम बिना सीमा के बढ़ेगा। व्यवहार में, आयाम तब तक बढ़ेगा जब तक आउटपुट कुछ सीमित कारक जैसे कि बिजली आपूर्ति वोल्टेज (एम्पलीफायर आउटपुट आपूर्ति रेल में चलता है) या एम्पलीफायर आउटपुट वर्तमान सीमा में चलता है। सीमित करने से एम्पलीफायर का प्रभावी लाभ कम हो जाता है (प्रभाव को लाभ संपीड़न कहा जाता है)। स्थिर दोलक में, औसत पाश लाभ होगा।
से अधिक लूप गेन का नकारात्मक पक्ष होता है। सिद्धांत रूप में, थरथरानवाला आयाम बिना सीमा के बढ़ेगा। व्यवहार में, आयाम तब तक बढ़ेगा जब तक आउटपुट कुछ सीमित कारक जैसे कि बिजली आपूर्ति वोल्टेज (एम्पलीफायर आउटपुट आपूर्ति रेल में चलता है) या एम्पलीफायर आउटपुट वर्तमान सीमा में चलता है। सीमित करने से एम्पलीफायर का प्रभावी लाभ कम हो जाता है (प्रभाव को लाभ संपीड़न कहा जाता है)। स्थिर दोलक में, औसत पाश लाभ होगा।


हालांकि सीमित क्रिया आउटपुट वोल्टेज को स्थिर करती है, इसके दो महत्वपूर्ण प्रभाव हैं: यह हार्मोनिक विरूपण का परिचय देती है और यह ऑसिलेटर की आवृत्ति स्थिरता को प्रभावित करती है।
हालांकि सीमित क्रिया आउटपुट वोल्टेज को स्थिर करती है, इसके दो महत्वपूर्ण प्रभाव हैं: यह हार्मोनिक विरूपण का परिचय देती है और यह दोलककी आवृत्ति स्थिरता को प्रभावित करती है।
विरूपण की मात्रा स्टार्टअप के लिए उपयोग किए जाने वाले अतिरिक्त लूप गेन से संबंधित है। यदि छोटे आयामों पर बहुत अधिक अतिरिक्त लूप लाभ होता है, तो उच्च तात्कालिक आयामों पर लाभ में और कमी आनी चाहिए। यानी अधिक विकृति।
विरूपण की मात्रा स्टार्टअप के लिए उपयोग किए जाने वाले अतिरिक्त लूप गेन से संबंधित है। यदि छोटे आयामों पर बहुत अधिक अतिरिक्त लूप लाभ होता है, तो उच्च तात्कालिक आयामों पर लाभ में और कमी आनी चाहिए। यानी अधिक विकृति।


विरूपण की मात्रा दोलन के अंतिम आयाम से भी संबंधित होती है। हालांकि एम्पलीफायर का लाभ आदर्श रूप से रैखिक है, व्यवहार में यह अरैखिक है। नॉनलाइनियर ट्रांसफर फ़ंक्शन को [[टेलर श्रृंखला]] के रूप में व्यक्त किया जा सकता है। छोटे आयामों के लिए, उच्च क्रम की शर्तें बहुत कम प्रभाव डालती हैं। बड़े आयामों के लिए, गैर-रैखिकता का उच्चारण किया जाता है। नतीजतन, कम विरूपण के लिए, ऑसीलेटर का आउटपुट आयाम एम्पलीफायर की गतिशील रेंज का छोटा अंश होना चाहिए।
विरूपण की मात्रा दोलन के अंतिम आयाम से भी संबंधित होती है। हालांकि एम्पलीफायर का लाभ आदर्श रूप से रैखिक है, व्यवहार में यह अरैखिक है। नॉनलाइनियर ट्रांसफर फ़ंक्शन को [[टेलर श्रृंखला]] के रूप में व्यक्त किया जा सकता है। छोटे आयामों के लिए, उच्च क्रम की शर्तें बहुत कम प्रभाव डालती हैं। बड़े आयामों के लिए, गैर-रैखिकता का उच्चारण किया जाता है। नतीजतन, कम विरूपण के लिए, ऑसीलेटर का आउटपुट आयाम एम्पलीफायर की गतिशील रेंज का छोटा अंश होना चाहिए।
=== मेचम का पुल स्थिर दोलक ===
=== मेचम का पुल स्थिर दोलक ===
[[File:Meachams bridge oscillator schematic.png|thumb|300px|बेल सिस्टम टेक्निकल जर्नल, अक्टूबर 1938 में प्रकाशित मीचम ब्रिज ऑसिलेटर का सरलीकृत योजनाबद्ध। अचिह्नित कैपेसिटर में सिग्नल फ्रीक्वेंसी पर शॉर्ट सर्किट माने जाने के लिए पर्याप्त कैपेसिटेंस होता है। वैक्यूम ट्यूब को बायस करने और लोड करने के लिए अचिह्नित प्रतिरोधों और प्रारंभ करनेवाला को उपयुक्त मान माना जाता है। इस चित्र में नोड लेबल प्रकाशन में उपस्थित नहीं हैं।]]
[[File:Meachams bridge oscillator schematic.png|thumb|300px|बेल सिस्टम टेक्निकल जर्नल, अक्टूबर 1938 में प्रकाशित मीचम ब्रिज दोलकका सरलीकृत योजनाबद्ध। अचिह्नित कैपेसिटर में सिग्नल फ्रीक्वेंसी पर शॉर्ट परिपथमाने जाने के लिए पर्याप्त कैपेसिटेंस होता है। वैक्यूम ट्यूब को बायस करने और लोड करने के लिए अचिह्नित प्रतिरोधों और प्रारंभ करनेवाला को उपयुक्त मान माना जाता है। इस चित्र में नोड लेबल प्रकाशन में उपस्थित नहीं हैं।]]


Larned Meacham ने 1938 में दाईं ओर दिखाए गए ब्रिज ऑसिलेटर सर्किट का खुलासा किया। सर्किट को बहुत उच्च आवृत्ति स्थिरता और बहुत शुद्ध साइनसोइडल आउटपुट के रूप में वर्णित किया गया था।<ref name="Meacham 1938"/> आयाम को नियंत्रित करने के लिए ट्यूब ओवरलोडिंग का उपयोग करने के अतिरिक्त, मेचम ने सर्किट प्रस्तावित किया जो लूप लाभ को एकता में सेट करता है जबकि एम्पलीफायर अपने रैखिक क्षेत्र में होता है। मेचम के सर्किट में क्वार्ट्ज क्रिस्टल ऑसिलेटर और [[ व्हीटस्टोन पुल |व्हीटस्टोन पुल]] में लैंप सम्मिलित था।
Larned Meacham ने 1938 में दाईं ओर दिखाए गए ब्रिज दोलकपरिपथका खुलासा किया। परिपथको बहुत उच्च आवृत्ति स्थिरता और बहुत शुद्ध साइनसोइडल आउटपुट के रूप में वर्णित किया गया था।<ref name="Meacham 1938"/> आयाम को नियंत्रित करने के लिए ट्यूब ओवरलोडिंग का उपयोग करने के अतिरिक्त, मेचम ने परिपथप्रस्तावित किया जो लूप लाभ को एकता में सेट करता है जबकि एम्पलीफायर अपने रैखिक क्षेत्र में होता है। मेचम के परिपथमें क्वार्ट्ज क्रिस्टल दोलकऔर [[ व्हीटस्टोन पुल |व्हीटस्टोन पुल]] में लैंप सम्मिलित था।


मेचम के सर्किट में, आवृत्ति निर्धारण घटक पुल की नकारात्मक फ़ीड बैक शाखा में हैं और लाभ नियंत्रण तत्व सकारात्मक फ़ीड बैक शाखा में हैं। क्रिस्टल, जेड<sub>4</sub>, श्रृंखला अनुनाद में संचालित होता है। इस तरह यह अनुनाद पर नकारात्मक प्रतिक्रिया को कम करता है। विशेष क्रिस्टल ने अनुनाद पर 114 ओम का वास्तविक प्रतिरोध प्रदर्शित किया। अनुनाद के नीचे आवृत्तियों पर, क्रिस्टल कैपेसिटिव होता है और नकारात्मक प्रतिक्रिया शाखा के लाभ में नकारात्मक चरण बदलाव होता है। प्रतिध्वनि से ऊपर की आवृत्तियों पर, क्रिस्टल आगमनात्मक होता है और नकारात्मक प्रतिक्रिया शाखा के लाभ में सकारात्मक चरण बदलाव होता है। गुंजयमान आवृत्ति पर चरण बदलाव शून्य से गुजरता है। जैसे ही दीपक गर्म होता है, यह सकारात्मक प्रतिक्रिया को कम करता है। Meacham के सर्किट में क्रिस्टल का Q 104,000 के रूप में दिया गया है। गुंजयमान आवृत्ति से क्रिस्टल की बैंडविड्थ के छोटे से अधिक से अधिक आवृत्ति पर, नकारात्मक प्रतिक्रिया शाखा लूप लाभ पर हावी होती है और क्रिस्टल की संकीर्ण बैंडविड्थ के अतिरिक्त कोई आत्मनिर्भर दोलन नहीं हो सकता है।
मेचम के परिपथमें, आवृत्ति निर्धारण घटक पुल की नकारात्मक फ़ीड बैक शाखा में हैं और लाभ नियंत्रण तत्व सकारात्मक फ़ीड बैक शाखा में हैं। क्रिस्टल, जेड<sub>4</sub>, श्रृंखला अनुनाद में संचालित होता है। इस तरह यह अनुनाद पर नकारात्मक प्रतिक्रिया को कम करता है। विशेष क्रिस्टल ने अनुनाद पर 114 ओम का वास्तविक प्रतिरोध प्रदर्शित किया। अनुनाद के नीचे आवृत्तियों पर, क्रिस्टल कैपेसिटिव होता है और नकारात्मक प्रतिक्रिया शाखा के लाभ में नकारात्मक चरण बदलाव होता है। प्रतिध्वनि से ऊपर की आवृत्तियों पर, क्रिस्टल आगमनात्मक होता है और नकारात्मक प्रतिक्रिया शाखा के लाभ में सकारात्मक चरण बदलाव होता है। गुंजयमान आवृत्ति पर चरण बदलाव शून्य से गुजरता है। जैसे ही दीपक गर्म होता है, यह सकारात्मक प्रतिक्रिया को कम करता है। Meacham के परिपथमें क्रिस्टल का Q 104,000 के रूप में दिया गया है। गुंजयमान आवृत्ति से क्रिस्टल की बैंडविड्थ के छोटे से अधिक से अधिक आवृत्ति पर, नकारात्मक प्रतिक्रिया शाखा लूप लाभ पर हावी होती है और क्रिस्टल की संकीर्ण बैंडविड्थ के अतिरिक्त कोई आत्मनिर्भर दोलन नहीं हो सकता है।


1944 में (हेवलेट के डिजाइन के बाद), जेम्स किलटन क्लैप|जे. के. क्लैप ने ब्रिज को चलाने के लिए ट्रांसफॉर्मर के अतिरिक्त वैक्यूम ट्यूब फेज इन्वर्टर का उपयोग करने के लिए मेचम के सर्किट को संशोधित किया।<ref>{{harvnb|Clapp|1944a}}</ref><ref>{{harvnb|Clapp|1944b}}</ref> संशोधित Meacham थरथरानवाला क्लैप के चरण इन्वर्टर का उपयोग करता है लेकिन टंगस्टन लैंप के लिए डायोड लिमिटर को प्रतिस्थापित करता है।<ref>{{harvnb|Matthys|1992|pp=53–57}}</ref>
1944 में (हेवलेट के डिजाइन के बाद), जेम्स किलटन क्लैप|जे. के. क्लैप ने ब्रिज को चलाने के लिए ट्रांसफॉर्मर के अतिरिक्त वैक्यूम ट्यूब फेज इन्वर्टर का उपयोग करने के लिए मेचम के परिपथको संशोधित किया।<ref>{{harvnb|Clapp|1944a}}</ref><ref>{{harvnb|Clapp|1944b}}</ref> संशोधित Meacham थरथरानवाला क्लैप के चरण इन्वर्टर का उपयोग करता है लेकिन टंगस्टन लैंप के लिए डायोड लिमिटर को प्रतिस्थापित करता है।<ref>{{harvnb|Matthys|1992|pp=53–57}}</ref>


=== हेवलेट का ऑसिलेटर ===
=== हेवलेट का दोलक ===
[[File:Wien bridge oscillator schematic from Hewletts US patent.png|thumb|300px|हेवलेट के यूएस पेटेंट 2,268,872 से वीन ब्रिज ऑसिलेटर का सरलीकृत योजनाबद्ध। अचिह्नित कैपेसिटर में सिग्नल फ्रीक्वेंसी पर शॉर्ट सर्किट माने जाने के लिए पर्याप्त कैपेसिटेंस होता है। वैक्यूम ट्यूबों को बायसिंग और लोड करने के लिए अचिह्नित प्रतिरोधों को उपयुक्त मान माना जाता है। इस आंकड़े में नोड लेबल और संदर्भ डिज़ाइनर पेटेंट में उपयोग किए जाने वाले समान नहीं हैं। हेवलेट के पेटेंट में संकेतित वैक्यूम ट्यूब यहां दिखाए गए ट्रायोड के अतिरिक्त पेंटोड थे।]]विलियम रेडिंगटन हेवलेट | विलियम आर। हेवलेट के वीन ब्रिज ऑसिलेटर को अंतर एम्पलीफायर और वीन ब्रिज के संयोजन के रूप में माना जा सकता है, जो एम्पलीफायर आउटपुट और अंतर इनपुट के मध्य सकारात्मक प्रतिक्रिया पाश में जुड़ा हुआ है। दोलन आवृत्ति पर, पुल लगभग संतुलित होता है और इसका अंतरण अनुपात बहुत कम होता है। [[पाश लाभ]] बहुत उच्च एम्पलीफायर गेन और बहुत कम ब्रिज अनुपात का उत्पाद है।<ref name="Schilling">{{Harvnb|Schilling|Belove|1968|pp=612–614}}</ref> हेवलेट के सर्किट में, एम्पलीफायर को दो वैक्यूम ट्यूबों द्वारा कार्यान्वित किया जाता है। एम्पलीफायर का इन्वर्टिंग इनपुट ट्यूब V का कैथोड है<sub>1</sub> और नॉन-इनवर्टिंग इनपुट ट्यूब V का कंट्रोल ग्रिड है<sub>2</sub>. विश्लेषण को सरल बनाने के लिए, R के अतिरिक्त अन्य सभी घटक<sub>1</sub>, आर<sub>2</sub>, सी<sub>1</sub> और सी<sub>2</sub> 1+R के लाभ के साथ गैर-इनवर्टिंग एम्पलीफायर के रूप में तैयार किया जा सकता है<sub>f</sub>/आर<sub>b</sub> और उच्च इनपुट प्रतिबाधा के साथ। आर<sub>1</sub>, आर<sub>2</sub>, सी<sub>1</sub> और सी<sub>2</sub> बैंडपास फिल्टर बनाएं जो दोलन की आवृत्ति पर सकारात्मक प्रतिक्रिया प्रदान करने के लिए जुड़ा हो। आर<sub>b</sub> स्वयं गर्म होता है और नकारात्मक प्रतिक्रिया को बढ़ाता है जो एम्पलीफायर लाभ को कम करता है जब तक कि बिंदु तक नहीं पहुंच जाता है कि एम्पलीफायर को चलाए बिना साइनसोइडल दोलन को बनाए रखने के लिए पर्याप्त लाभ होता है। अगर आर<sub>1</sub> = आर<sub>2</sub> और सी<sub>1</sub> = सी<sub>2</sub> फिर संतुलन आर पर<sub>f</sub>/आर<sub>b</sub> = 2 और एम्पलीफायर का लाभ 3 है। जब सर्किट पहली बार सक्रिय होता है, तो दीपक ठंडा होता है और सर्किट का लाभ 3 से अधिक होता है जो स्टार्ट अप सुनिश्चित करता है। वैक्यूम ट्यूब V1 का dc बायस करंट भी लैंप से होकर बहता है। यह सर्किट के संचालन के सिद्धांतों को नहीं बदलता है, लेकिन यह संतुलन पर आउटपुट के आयाम को कम करता है क्योंकि पूर्वाग्रह वर्तमान दीपक के ताप का हिस्सा प्रदान करता है।
[[File:Wien bridge oscillator schematic from Hewletts US patent.png|thumb|300px|हेवलेट के यूएस पेटेंट 2,268,872 से वीन ब्रिज दोलकका सरलीकृत योजनाबद्ध। अचिह्नित कैपेसिटर में सिग्नल फ्रीक्वेंसी पर शॉर्ट परिपथमाने जाने के लिए पर्याप्त कैपेसिटेंस होता है। वैक्यूम ट्यूबों को बायसिंग और लोड करने के लिए अचिह्नित प्रतिरोधों को उपयुक्त मान माना जाता है। इस आंकड़े में नोड लेबल और संदर्भ डिज़ाइनर पेटेंट में उपयोग किए जाने वाले समान नहीं हैं। हेवलेट के पेटेंट में संकेतित वैक्यूम ट्यूब यहां दिखाए गए ट्रायोड के अतिरिक्त पेंटोड थे।]]विलियम रेडिंगटन हेवलेट | विलियम आर। हेवलेट के वीन ब्रिज दोलकको अंतर एम्पलीफायर और वीन ब्रिज के संयोजन के रूप में माना जा सकता है, जो एम्पलीफायर आउटपुट और अंतर इनपुट के मध्य सकारात्मक प्रतिक्रिया पाश में जुड़ा हुआ है। दोलन आवृत्ति पर, पुल लगभग संतुलित होता है और इसका अंतरण अनुपात बहुत कम होता है। [[पाश लाभ]] बहुत उच्च एम्पलीफायर गेन और बहुत कम ब्रिज अनुपात का उत्पाद है।<ref name="Schilling">{{Harvnb|Schilling|Belove|1968|pp=612–614}}</ref> हेवलेट के परिपथमें, एम्पलीफायर को दो वैक्यूम ट्यूबों द्वारा कार्यान्वित किया जाता है। एम्पलीफायर का इन्वर्टिंग इनपुट ट्यूब V का कैथोड है<sub>1</sub> और नॉन-इनवर्टिंग इनपुट ट्यूब V का कंट्रोल ग्रिड है<sub>2</sub>. विश्लेषण को सरल बनाने के लिए, R के अतिरिक्त अन्य सभी घटक<sub>1</sub>, आर<sub>2</sub>, सी<sub>1</sub> और सी<sub>2</sub> 1+R के लाभ के साथ गैर-इनवर्टिंग एम्पलीफायर के रूप में तैयार किया जा सकता है<sub>f</sub>/आर<sub>b</sub> और उच्च इनपुट प्रतिबाधा के साथ। आर<sub>1</sub>, आर<sub>2</sub>, सी<sub>1</sub> और सी<sub>2</sub> बैंडपास फिल्टर बनाएं जो दोलन की आवृत्ति पर सकारात्मक प्रतिक्रिया प्रदान करने के लिए जुड़ा हो। आर<sub>b</sub> स्वयं गर्म होता है और नकारात्मक प्रतिक्रिया को बढ़ाता है जो एम्पलीफायर लाभ को कम करता है जब तक कि बिंदु तक नहीं पहुंच जाता है कि एम्पलीफायर को चलाए बिना साइनसोइडल दोलन को बनाए रखने के लिए पर्याप्त लाभ होता है। अगर आर<sub>1</sub> = आर<sub>2</sub> और सी<sub>1</sub> = सी<sub>2</sub> फिर संतुलन आर पर<sub>f</sub>/आर<sub>b</sub> = 2 और एम्पलीफायर का लाभ 3 है। जब परिपथपहली बार सक्रिय होता है, तो दीपक ठंडा होता है और परिपथका लाभ 3 से अधिक होता है जो स्टार्ट अप सुनिश्चित करता है। वैक्यूम ट्यूब V1 का dc बायस करंट भी लैंप से होकर बहता है। यह परिपथके संचालन के सिद्धांतों को नहीं बदलता है, लेकिन यह संतुलन पर आउटपुट के आयाम को कम करता है क्योंकि पूर्वाग्रह वर्तमान दीपक के ताप का हिस्सा प्रदान करता है।


हेवलेट की थीसिस ने निम्नलिखित निष्कर्ष निकाले:<ref>{{harvnb|Hewlett|1939|p=13}}</ref>
हेवलेट की थीसिस ने निम्नलिखित निष्कर्ष निकाले:<ref>{{harvnb|Hewlett|1939|p=13}}</ref>
: अभी वर्णित प्रकार का प्रतिरोध-क्षमता दोलक प्रयोगशाला सेवा के लिए उपयुक्त होना चाहिए। इसमें बीट-फ्रीक्वेंसी ऑसिलेटर को संभालने में आसानी होती है और फिर भी इसके कुछ हानि हैं। पहली बात तो यह है कि बीट-फ्रीक्वेंसी प्रकार के मुकाबले कम आवृत्तियों पर आवृत्ति स्थिरता बहुत बेहतर है। छोटे तापमान परिवर्तनों को सुनिश्चित करने के लिए पुर्जों के महत्वपूर्ण प्लेसमेंट की आवश्यकता नहीं है, न ही ऑसिलेटर्स के इंटरलॉकिंग को रोकने के लिए सावधानीपूर्वक डिज़ाइन किए गए डिटेक्टर सर्किट। इसके परिणामस्वरूप, ऑसिलेटर का समग्र भार कम से कम रखा जा सकता है। तुलनीय प्रदर्शन के सामान्य रेडियो बीट-फ्रीक्वेंसी ऑसिलेटर के लिए 93 पाउंड के विपरीत, 1 वाट एम्पलीफायर और बिजली की आपूर्ति सहित इस प्रकार के ऑसिलेटर का वजन केवल 18 पाउंड था। आउटपुट की विकृति और स्थिरता अब उपलब्ध सर्वोत्तम बीट-फ़्रीक्वेंसी ऑसिलेटर्स के साथ अनुकूल रूप से तुलना करती है। अंत में, इस प्रकार के ऑसिलेटर को वाणिज्यिक प्रसारण रिसीवर के समान आधार पर बनाया और बनाया जा सकता है, लेकिन बनाने के लिए कम समायोजन के साथ। इस प्रकार यह आदर्श प्रयोगशाला ऑसिलेटर देने के लिए लागत की कम लागत के साथ प्रदर्शन की गुणवत्ता को जोड़ती है।
: अभी वर्णित प्रकार का प्रतिरोध-क्षमता दोलक प्रयोगशाला सेवा के लिए उपयुक्त होना चाहिए। इसमें बीट-फ्रीक्वेंसी दोलकको संभालने में आसानी होती है और फिर भी इसके कुछ हानि हैं। पहली बात तो यह है कि बीट-फ्रीक्वेंसी प्रकार के मुकाबले कम आवृत्तियों पर आवृत्ति स्थिरता बहुत बेहतर है। छोटे तापमान परिवर्तनों को सुनिश्चित करने के लिए पुर्जों के महत्वपूर्ण प्लेसमेंट की आवश्यकता नहीं है, न ही दोलक के इंटरलॉकिंग को रोकने के लिए सावधानीपूर्वक डिज़ाइन किए गए डिटेक्टर सर्किट। इसके परिणामस्वरूप, दोलकका समग्र भार कम से कम रखा जा सकता है। तुलनीय प्रदर्शन के सामान्य रेडियो बीट-फ्रीक्वेंसी दोलकके लिए 93 पाउंड के विपरीत, 1 वाट एम्पलीफायर और बिजली की आपूर्ति सहित इस प्रकार के दोलकका वजन केवल 18 पाउंड था। आउटपुट की विकृति और स्थिरता अब उपलब्ध सर्वोत्तम बीट-फ़्रीक्वेंसी दोलक के साथ अनुकूल रूप से तुलना करती है। अंत में, इस प्रकार के दोलकको वाणिज्यिक प्रसारण रिसीवर के समान आधार पर बनाया और बनाया जा सकता है, लेकिन बनाने के लिए कम समायोजन के साथ। इस प्रकार यह आदर्श प्रयोगशाला दोलकदेने के लिए लागत की कम लागत के साथ प्रदर्शन की गुणवत्ता को जोड़ती है।


== वीन ब्रिज ==
== वीन ब्रिज ==
{{Main article|Wien bridge}}
{{Main article|Wien bridge}}


ब्रिज सर्किट घटक मूल्यों को ज्ञात मूल्यों से तुलना करके मापने का सामान्य तरीका था। प्रायः अज्ञात घटक को पुल की भुजा में रखा जाता है, और फिर अन्य भुजाओं को समायोजित करके या वोल्टेज स्रोत की आवृत्ति को बदलकर पुल को अशक्त कर दिया जाता है (देखें, उदाहरण के लिए, व्हीटस्टोन ब्रिज)।
ब्रिज परिपथघटक मूल्यों को ज्ञात मूल्यों से तुलना करके मापने का सामान्य तरीका था। प्रायः अज्ञात घटक को पुल की भुजा में रखा जाता है, और फिर अन्य भुजाओं को समायोजित करके या वोल्टेज स्रोत की आवृत्ति को बदलकर पुल को अशक्त कर दिया जाता है (देखें, उदाहरण के लिए, व्हीटस्टोन ब्रिज)।


वीन पुल अनेक आम पुलों में से है।<ref>{{Harvnb|Terman|1943|p=904}}</ref> प्रतिरोध और आवृत्ति के मामले में समाई के सटीक माप के लिए वीन के पुल का उपयोग किया जाता है।<ref>{{Harvnb|Terman|1943|p=904}} citing {{Harvnb|Ferguson|Bartlett|1928}}</ref> इसका उपयोग ऑडियो आवृत्तियों को मापने के लिए भी किया जाता था।
वीन पुल अनेक आम पुलों में से है।<ref>{{Harvnb|Terman|1943|p=904}}</ref> प्रतिरोध और आवृत्ति के मामले में समाई के सटीक माप के लिए वीन के पुल का उपयोग किया जाता है।<ref>{{Harvnb|Terman|1943|p=904}} citing {{Harvnb|Ferguson|Bartlett|1928}}</ref> इसका उपयोग ऑडियो आवृत्तियों को मापने के लिए भी किया जाता था।


वीन ब्रिज को आर या सी के समान मूल्यों की आवश्यकता नहीं है। वी पर सिग्नल का चरण<sub>p</sub> वी पर संकेत के सापेक्ष<sub>out</sub> निम्न आवृत्ति पर लगभग 90° से लेकर उच्च आवृत्ति पर लगभग 90° पश्चगामी से भिन्न होता है। कुछ मध्यवर्ती आवृत्ति पर, चरण परिवर्तन शून्य होगा। उस आवृत्ति पर Z का अनुपात<sub>1</sub> यह से है<sub>2</sub> विशुद्ध रूप से वास्तविक (शून्य काल्पनिक भाग) होगा। यदि आर का अनुपात<sub>b</sub>आर के लिए<sub>f</sub>उसी अनुपात में समायोजित किया जाता है, तो पुल संतुलित होता है और सर्किट दोलन को बनाए रख सकता है। परिपथ दोलन करेगा भले ही R<sub>b</sub>/ आर<sub>f</sub> छोटा फेज शिफ्ट है और भले ही एम्पलीफायर के इनवर्टिंग और नॉन-इनवर्टिंग इनपुट में अलग-अलग फेज शिफ्ट हों। हमेशा आवृत्ति होगी जिस पर पुल की प्रत्येक शाखा का कुल चरण बदलाव बराबर होगा। अगर आर<sub>b</sub>/ आर<sub>f</sub>कोई फेज शिफ्ट नहीं है और एम्पलीफायरों के इनपुट का फेज शिफ्ट शून्य है तो ब्रिज संतुलित है जब:<ref>{{Harvnb|Terman|1943|p=905}}</ref>
वीन ब्रिज को आर या सी के समान मूल्यों की आवश्यकता नहीं है। वी पर सिग्नल का चरण<sub>p</sub> वी पर संकेत के सापेक्ष<sub>out</sub> निम्न आवृत्ति पर लगभग 90° से लेकर उच्च आवृत्ति पर लगभग 90° पश्चगामी से भिन्न होता है। कुछ मध्यवर्ती आवृत्ति पर, चरण परिवर्तन शून्य होगा। उस आवृत्ति पर Z का अनुपात<sub>1</sub> यह से है<sub>2</sub> विशुद्ध रूप से वास्तविक (शून्य काल्पनिक भाग) होगा। यदि आर का अनुपात<sub>b</sub>आर के लिए<sub>f</sub>उसी अनुपात में समायोजित किया जाता है, तो पुल संतुलित होता है और परिपथदोलन को बनाए रख सकता है। परिपथ दोलन करेगा भले ही R<sub>b</sub>/ आर<sub>f</sub> छोटा फेज शिफ्ट है और भले ही एम्पलीफायर के इनवर्टिंग और नॉन-इनवर्टिंग इनपुट में अलग-अलग फेज शिफ्ट हों। हमेशा आवृत्ति होगी जिस पर पुल की प्रत्येक शाखा का कुल चरण बदलाव बराबर होगा। अगर आर<sub>b</sub>/ आर<sub>f</sub>कोई फेज शिफ्ट नहीं है और एम्पलीफायरों के इनपुट का फेज शिफ्ट शून्य है तो ब्रिज संतुलित है जब:<ref>{{Harvnb|Terman|1943|p=905}}</ref>
:<math>\omega^2 = {1 \over R_1 R_2 C_1 C_2}</math> और <math> {R_f \over R_b} = {C_1 \over C_2} + {R_2 \over R_1}  </math>
:<math>\omega^2 = {1 \over R_1 R_2 C_1 C_2}</math> और <math> {R_f \over R_b} = {C_1 \over C_2} + {R_2 \over R_1}  </math>
जहां ω रेडियन आवृत्ति है।
जहां ω रेडियन आवृत्ति है।
Line 66: Line 66:


=== लूप गेन === से विश्लेषण किया गया
=== लूप गेन === से विश्लेषण किया गया
शिलिंग के अनुसार,<ref name="Schilling"/>वीन ब्रिज ऑसिलेटर का लूप गेन, इस शर्त के अनुसार कि आर<sub>1</sub>= आर<sub>2</sub>= आर और सी<sub>1</sub>= सी<sub>2</sub>= सी, द्वारा दिया गया है
शिलिंग के अनुसार,<ref name="Schilling"/>वीन ब्रिज दोलकका लूप गेन, इस शर्त के अनुसार कि आर<sub>1</sub>= आर<sub>2</sub>= आर और सी<sub>1</sub>= सी<sub>2</sub>= सी, द्वारा दिया गया है


:<math>T = \left( \frac { R C s  } {R^2 C^2 s^2 + 3RCs +1 } - \frac {R_b} {R_b + R_f } \right) A_0  \,</math>
:<math>T = \left( \frac { R C s  } {R^2 C^2 s^2 + 3RCs +1 } - \frac {R_b} {R_b + R_f } \right) A_0  \,</math>
Line 92: Line 92:


== आयाम स्थिरीकरण ==
== आयाम स्थिरीकरण ==
वीन ब्रिज ऑसिलेटर के कम विरूपण दोलन की कुंजी आयाम स्थिरीकरण विधि है जो क्लिपिंग का उपयोग नहीं करती है। आयाम स्थिरीकरण के लिए पुल विन्यास में दीपक का उपयोग करने का विचार 1938 में मीचम द्वारा प्रकाशित किया गया था।<ref>{{Harvnb|Meacham|1938}}. {{Harvnb|Meacham1938a}}. Meacham presented his work at the Thirteenth Annual Convention of the Institute of Radio Engineers, New York City, June 16, 1938 and published in ''Proc. IRE'' October 1938.  Hewlett's patent (filed July 11, 1939) does not mention Meacham.</ref> [[क्लिपिंग (सिग्नल प्रोसेसिंग)]] या अन्य गेन (इलेक्ट्रॉनिक्स) सीमा तक पहुंचने तक इलेक्ट्रॉनिक ऑसिलेटर्स का आयाम बढ़ जाता है। इससे उच्च हार्मोनिक विरूपण होता है, जो प्रायः अवांछनीय होता है।
वीन ब्रिज दोलकके कम विरूपण दोलन की कुंजी आयाम स्थिरीकरण विधि है जो क्लिपिंग का उपयोग नहीं करती है। आयाम स्थिरीकरण के लिए पुल विन्यास में दीपक का उपयोग करने का विचार 1938 में मीचम द्वारा प्रकाशित किया गया था।<ref>{{Harvnb|Meacham|1938}}. {{Harvnb|Meacham1938a}}. Meacham presented his work at the Thirteenth Annual Convention of the Institute of Radio Engineers, New York City, June 16, 1938 and published in ''Proc. IRE'' October 1938.  Hewlett's patent (filed July 11, 1939) does not mention Meacham.</ref> [[क्लिपिंग (सिग्नल प्रोसेसिंग)]] या अन्य गेन (इलेक्ट्रॉनिक्स) सीमा तक पहुंचने तक इलेक्ट्रॉनिक दोलक का आयाम बढ़ जाता है। इससे उच्च हार्मोनिक विरूपण होता है, जो प्रायः अवांछनीय होता है।
 
हेवलेट ने आउटपुट आयाम को नियंत्रित करने के लिए ऑसिलेटर फीडबैक पथ में पावर डिटेक्टर, लो पास फिल्टर और गेन कंट्रोल एलिमेंट के रूप में तापदीप्त बल्ब का उपयोग किया। प्रकाश बल्ब फिलामेंट का प्रतिरोध (विद्युत प्रतिरोधकता और चालकता#तापमान निर्भरता देखें) जैसे-जैसे इसका तापमान बढ़ता है, बढ़ता जाता है। फिलामेंट का तापमान फिलामेंट में छितरी हुई शक्ति और कुछ अन्य कारकों पर निर्भर करता है। यदि थरथरानवाला की अवधि (इसकी आवृत्ति का व्युत्क्रम) फिलामेंट के थर्मल समय स्थिरांक से अधिक कम है, तो फिलामेंट का तापमान चक्र पर अधिक हद तक स्थिर रहेगा। फिलामेंट प्रतिरोध तब आउटपुट सिग्नल के आयाम को निर्धारित करेगा। यदि आयाम बढ़ता है, तो फिलामेंट गर्म हो जाता है और इसका प्रतिरोध बढ़ जाता है। सर्किट को डिज़ाइन किया गया है ताकि बड़ा फिलामेंट प्रतिरोध लूप लाभ को कम कर दे, जो बदले में आउटपुट आयाम को कम कर देगा। नतीजा नकारात्मक प्रतिक्रिया प्रणाली है जो आउटपुट आयाम को स्थिर मूल्य पर स्थिर करता है। आयाम नियंत्रण के इस रूप के साथ, थरथरानवाला निकट आदर्श रैखिक प्रणाली के रूप में कार्य करता है और बहुत कम विरूपण आउटपुट सिग्नल प्रदान करता है। ऑसिलेटर्स जो आयाम नियंत्रण के लिए सीमित करने का उपयोग करते हैं, उनमें प्रायः महत्वपूर्ण हार्मोनिक विरूपण होता है। कम आवृत्तियों पर, जैसे-जैसे वीन ब्रिज ऑसिलेटर की समयावधि [[गरमागरम बल्ब]] के तापीय समय स्थिरांक तक पहुँचती है, सर्किट का संचालन अधिक अरैखिक हो जाता है, और आउटपुट विरूपण अधिक बढ़ जाता है।
 
वीन ब्रिज ऑसिलेटर्स में लाभ नियंत्रण तत्वों के रूप में उपयोग किए जाने पर प्रकाश बल्बों के अपने हानि होते हैं, विशेष रूप से बल्ब के [[microphonics]] प्रकृति आयाम मॉडुलन ऑसिलेटर आउटपुट के कारण कंपन के लिए बहुत ही उच्च संवेदनशीलता, कॉइल की आगमनात्मक प्रकृति के कारण उच्च आवृत्ति प्रतिक्रिया में सीमा फिलामेंट, और वर्तमान आवश्यकताएं जो अनेक ऑप-एम्प्स की क्षमता से अधिक हैं। आधुनिक वीन ब्रिज ऑसिलेटर्स ने प्रकाश बल्बों के स्थान पर आयाम स्थिरीकरण के लिए [[डायोड]], [[ thermistor |thermistor]] ्स, [[ फील्ड इफ़ेक्ट ट्रांजिस्टर |फील्ड इफ़ेक्ट ट्रांजिस्टर]] , या फोटोकल्स जैसे अन्य अरेखीय तत्वों का उपयोग किया है। हेवलेट के लिए अनुपलब्ध आधुनिक घटकों के साथ 0.0003% (3 ppm) जितना कम विरूपण प्राप्त किया जा सकता है।<ref>{{Harvnb|Williams|1990|pp=32–33}}</ref>
थर्मिस्टर्स का उपयोग करने वाले वीन ब्रिज ऑसिलेटर्स गरमागरम दीपक की तुलना में थर्मिस्टर के कम परिचालन तापमान के कारण परिवेश के तापमान के प्रति अत्यधिक संवेदनशीलता प्रदर्शित करते हैं।<ref>{{Harvnb|Strauss|1970|p=710}}, stating "For acceptable amplitude stability, some form of temperature compensation would be necessary."</ref>


हेवलेट ने आउटपुट आयाम को नियंत्रित करने के लिए दोलकफीडबैक पथ में पावर डिटेक्टर, लो पास फिल्टर और गेन कंट्रोल एलिमेंट के रूप में तापदीप्त बल्ब का उपयोग किया। प्रकाश बल्ब फिलामेंट का प्रतिरोध (विद्युत प्रतिरोधकता और चालकता#तापमान निर्भरता देखें) जैसे-जैसे इसका तापमान बढ़ता है, बढ़ता जाता है। फिलामेंट का तापमान फिलामेंट में छितरी हुई शक्ति और कुछ अन्य कारकों पर निर्भर करता है। यदि थरथरानवाला की अवधि (इसकी आवृत्ति का व्युत्क्रम) फिलामेंट के थर्मल समय स्थिरांक से अधिक कम है, तो फिलामेंट का तापमान चक्र पर अधिक हद तक स्थिर रहेगा। फिलामेंट प्रतिरोध तब आउटपुट सिग्नल के आयाम को निर्धारित करेगा। यदि आयाम बढ़ता है, तो फिलामेंट गर्म हो जाता है और इसका प्रतिरोध बढ़ जाता है। परिपथको डिज़ाइन किया गया है ताकि बड़ा फिलामेंट प्रतिरोध लूप लाभ को कम कर दे, जो बदले में आउटपुट आयाम को कम कर देगा। नतीजा नकारात्मक प्रतिक्रिया प्रणाली है जो आउटपुट आयाम को स्थिर मूल्य पर स्थिर करता है। आयाम नियंत्रण के इस रूप के साथ, थरथरानवाला निकट आदर्श रैखिक प्रणाली के रूप में कार्य करता है और बहुत कम विरूपण आउटपुट सिग्नल प्रदान करता है। दोलक जो आयाम नियंत्रण के लिए सीमित करने का उपयोग करते हैं, उनमें प्रायः महत्वपूर्ण हार्मोनिक विरूपण होता है। कम आवृत्तियों पर, जैसे-जैसे वीन ब्रिज दोलककी समयावधि [[गरमागरम बल्ब]] के तापीय समय स्थिरांक तक पहुँचती है, परिपथका संचालन अधिक अरैखिक हो जाता है, और आउटपुट विरूपण अधिक बढ़ जाता है।


वीन ब्रिज दोलक में लाभ नियंत्रण तत्वों के रूप में उपयोग किए जाने पर प्रकाश बल्बों के अपने हानि होते हैं, विशेष रूप से बल्ब के [[microphonics]] प्रकृति आयाम मॉडुलन दोलकआउटपुट के कारण कंपन के लिए बहुत ही उच्च संवेदनशीलता, कॉइल की आगमनात्मक प्रकृति के कारण उच्च आवृत्ति प्रतिक्रिया में सीमा फिलामेंट, और वर्तमान आवश्यकताएं जो अनेक ऑप-एम्प्स की क्षमता से अधिक हैं। आधुनिक वीन ब्रिज दोलक ने प्रकाश बल्बों के स्थान पर आयाम स्थिरीकरण के लिए [[डायोड]], [[ thermistor |thermistor]] ्स, [[ फील्ड इफ़ेक्ट ट्रांजिस्टर |फील्ड इफ़ेक्ट ट्रांजिस्टर]] , या फोटोकल्स जैसे अन्य अरेखीय तत्वों का उपयोग किया है। हेवलेट के लिए अनुपलब्ध आधुनिक घटकों के साथ 0.0003% (3 ppm) जितना कम विरूपण प्राप्त किया जा सकता है।<ref>{{Harvnb|Williams|1990|pp=32–33}}</ref>
थर्मिस्टर्स का उपयोग करने वाले वीन ब्रिज दोलक गरमागरम दीपक की तुलना में थर्मिस्टर के कम परिचालन तापमान के कारण परिवेश के तापमान के प्रति अत्यधिक संवेदनशीलता प्रदर्शित करते हैं।<ref>{{Harvnb|Strauss|1970|p=710}}, stating "For acceptable amplitude stability, some form of temperature compensation would be necessary."</ref>
== स्वचालित लाभ नियंत्रण गतिकी ==
== स्वचालित लाभ नियंत्रण गतिकी ==
[[File:Root Locus.png|thumb|400px|आर के लिए वीन ब्रिज ऑसिलेटर पोल पोजिशन का रूट लोकस प्लॉट<sub>1</sub> = आर<sub>2</sub> = 1 और सी<sub>1</sub> = सी<sub>2</sub> =1 बनाम के = (आर<sub>b</sub> + आर<sub>f</sub>)/आर<sub>b</sub>. K के संख्यात्मक मान बैंगनी फ़ॉन्ट में दिखाए जाते हैं। K=3 के लिए ध्रुवों का प्रक्षेपवक्र काल्पनिक (β) अक्ष के लंबवत है। K >> 5 के लिए, ध्रुव मूल की ओर और दूसरा K की ओर पहुंचता है।<ref>{{Harvnb|Strauss|1970|p=667}}</ref>]]आर के मूल्य में छोटे गड़बड़ी<sub>b</sub> प्रमुख ध्रुवों को jω (काल्पनिक) अक्ष पर आगे और पीछे जाने का कारण बनता है। यदि ध्रुव बाएँ आधे तल में चले जाते हैं, तो दोलन घातीय रूप से शून्य हो जाता है। यदि ध्रुव दाहिने आधे तल में चले जाते हैं, तो दोलन तेजी से बढ़ता है जब तक कि कुछ इसे सीमित न कर दे। यदि क्षोभ बहुत छोटा है, तो समतुल्य Q का परिमाण इतना बड़ा है कि आयाम धीरे-धीरे बदलता है। यदि गड़बड़ी छोटी है और थोड़े समय के बाद उलट जाती है, तो लिफाफा रैंप का अनुसरण करता है। लिफाफा लगभग गड़बड़ी का अभिन्न अंग है। एनवेलप ट्रांसफर फंक्शन में गड़बड़ी 6 dB/ऑक्टेव पर रोल ऑफ होती है और -90° फेज शिफ्ट का कारण बनती है।
[[File:Root Locus.png|thumb|400px|आर के लिए वीन ब्रिज दोलकपोल पोजिशन का रूट लोकस प्लॉट<sub>1</sub> = आर<sub>2</sub> = 1 और सी<sub>1</sub> = सी<sub>2</sub> =1 बनाम के = (आर<sub>b</sub> + आर<sub>f</sub>)/आर<sub>b</sub>. K के संख्यात्मक मान बैंगनी फ़ॉन्ट में दिखाए जाते हैं। K=3 के लिए ध्रुवों का प्रक्षेपवक्र काल्पनिक (β) अक्ष के लंबवत है। K >> 5 के लिए, ध्रुव मूल की ओर और दूसरा K की ओर पहुंचता है।<ref>{{Harvnb|Strauss|1970|p=667}}</ref>]]आर के मूल्य में छोटे गड़बड़ी<sub>b</sub> प्रमुख ध्रुवों को jω (काल्पनिक) अक्ष पर आगे और पीछे जाने का कारण बनता है। यदि ध्रुव बाएँ आधे तल में चले जाते हैं, तो दोलन घातीय रूप से शून्य हो जाता है। यदि ध्रुव दाहिने आधे तल में चले जाते हैं, तो दोलन तेजी से बढ़ता है जब तक कि कुछ इसे सीमित न कर दे। यदि क्षोभ बहुत छोटा है, तो समतुल्य Q का परिमाण इतना बड़ा है कि आयाम धीरे-धीरे बदलता है। यदि गड़बड़ी छोटी है और थोड़े समय के बाद उलट जाती है, तो लिफाफा रैंप का अनुसरण करता है। लिफाफा लगभग गड़बड़ी का अभिन्न अंग है। एनवेलप ट्रांसफर फंक्शन में गड़बड़ी 6 dB/ऑक्टेव पर रोल ऑफ होती है और -90° फेज शिफ्ट का कारण बनती है।


प्रकाश बल्ब में ऊष्मीय जड़ता होती है ताकि प्रतिरोध हस्तांतरण समारोह की शक्ति एकल पोल कम पास फिल्टर प्रदर्शित करे। एनवेलप ट्रांसफर फंक्शन और बल्ब ट्रांसफर फंक्शन कैस्केड में प्रभावी रूप से होते हैं, जिससे कंट्रोल लूप में प्रभावी रूप से लो पास पोल और शून्य पर पोल और लगभग -180° का नेट फेज शिफ्ट होता है। यह कम [[ चरण मार्जिन |चरण मार्जिन]] के कारण नियंत्रण पाश में खराब क्षणिक प्रतिक्रिया का कारण बनेगा। आउटपुट [[निचोड़ना]] प्रदर्शित कर सकता है। बर्नार्ड एम ओलिवर<ref>{{harvnb|Oliver|1960}}</ref> दिखाया गया है कि एम्पलीफायर द्वारा लाभ का मामूली संपीड़न लिफ़ाफ़ा स्थानांतरण फ़ंक्शन को कम करता है ताकि अधिकांश ऑसिलेटर अच्छी क्षणिक प्रतिक्रिया दिखाते हैं, दुर्लभ मामले को छोड़कर जहां [[ वेक्यूम - ट्यूब |वेक्यूम - ट्यूब]] ों में गैर-रैखिकता दूसरे को असामान्य रूप से रैखिक एम्पलीफायर का उत्पादन करती है।
प्रकाश बल्ब में ऊष्मीय जड़ता होती है ताकि प्रतिरोध हस्तांतरण समारोह की शक्ति एकल पोल कम पास फिल्टर प्रदर्शित करे। एनवेलप ट्रांसफर फंक्शन और बल्ब ट्रांसफर फंक्शन कैस्केड में प्रभावी रूप से होते हैं, जिससे कंट्रोल लूप में प्रभावी रूप से लो पास पोल और शून्य पर पोल और लगभग -180° का नेट फेज शिफ्ट होता है। यह कम [[ चरण मार्जिन |चरण मार्जिन]] के कारण नियंत्रण पाश में खराब क्षणिक प्रतिक्रिया का कारण बनेगा। आउटपुट [[निचोड़ना]] प्रदर्शित कर सकता है। बर्नार्ड एम ओलिवर<ref>{{harvnb|Oliver|1960}}</ref> दिखाया गया है कि एम्पलीफायर द्वारा लाभ का मामूली संपीड़न लिफ़ाफ़ा स्थानांतरण फ़ंक्शन को कम करता है ताकि अधिकांश दोलकअच्छी क्षणिक प्रतिक्रिया दिखाते हैं, दुर्लभ मामले को छोड़कर जहां [[ वेक्यूम - ट्यूब |वेक्यूम - ट्यूब]] ों में गैर-रैखिकता दूसरे को असामान्य रूप से रैखिक एम्पलीफायर का उत्पादन करती है।


==संदर्भ==
==संदर्भ==

Revision as of 18:05, 2 April 2023

थरथरानवाला के इस संस्करण में, आरबी छोटा गरमागरम दीपक है। सामान्यतःR1 = R2 = R और C1 = C2 = C. सामान्य ऑपरेशन में, Rb स्वयं उस बिंदु तक गर्म होता है जहां इसका प्रतिरोध Rf/2 है।

वीन ब्रिज दोलक प्रकार का इलेक्ट्रॉनिक थरथरानवाला है जो साइन वेव्स उत्पन्न करता है। यह आवृत्तियों की बड़ी श्रृंखला उत्पन्न कर सकता है। थरथरानवाला ब्रिज परिपथपर आधारित है जिसे मूल रूप से 1891 में मैक्स वियना द्वारा विद्युत प्रतिबाधा के मापन के लिए विकसित किया गया था।[1]

वीन ब्रिज में चार प्रतिरोधक और दो संधारित्र होते हैं। थरथरानवाला भी सकारात्मक प्रतिक्रिया प्रदान करता है कि बंदपास छननी के साथ संयुक्त सकारात्मक लाभ प्रवर्धक के रूप में देखा जा सकता है। स्वत: लाभ नियंत्रण, जानबूझकर गैर-रैखिकता और आकस्मिक गैर-रैखिकता ऑसीलेटर के विभिन्न कार्यान्वयन में आउटपुट आयाम को सीमित करती है।

दाईं ओर दिखाया गया परिपथ गरमागरम दीपक का उपयोग करके स्वत: लाभ नियंत्रण के साथ, थरथरानवाला के बार-सामान्य कार्यान्वयन को दर्शाता है। शर्त के अनुसार कि आर1= आर2= आर और सी1= सी2=सी, दोलन की आवृत्ति द्वारा दिया जाता है:

और स्थिर दोलन की स्थिति इसके द्वारा दी गई है

पृष्ठभूमि

1930 के दशक में दोलक को बेहतर बनाने के लिए अनेक प्रयास किए गए। रैखिकता को महत्वपूर्ण माना गया। प्रतिरोध-स्थिर थरथरानवाला समायोज्य प्रतिक्रिया रोकनेवाला था; उस अवरोधक को सेट किया जाएगा ताकि थरथरानवाला बस प्रारंभ हो जाए (इस प्रकार लूप लाभ को सिर्फ एकता पर सेट करना)। दोलन तब तक बने रहेंगे जब तक कि वैक्यूम ट्यूब का ग्रिड करंट का संचालन प्रारंभ नहीं कर देता, जिससे हानि बढ़ जाएगा और आउटपुट आयाम सीमित हो जाएगा।[2][3][4] स्वचालित आयाम नियंत्रण की परिक्षण की गई।[5][6] फ्रेडरिक टर्मन कहते हैं, किसी भी सामान्य दोलककी आवृत्ति स्थिरता और तरंग-आकार के रूप को सभी परिस्थितियों में स्थिर दोलनों के आयाम को बनाए रखने के लिए स्वचालित-आयाम-नियंत्रण व्यवस्था का उपयोग करके सुधार किया जा सकता है।[7] 1937 में, लारेड मेचम ने ब्रिज दोलक में स्वत: लाभ नियंत्रण के लिए फिलामेंट लैंप का उपयोग करने का वर्णन किया।[8][9] इसके अतिरिक्त 1937 में, हेर्मोन होस्मर स्कॉट ने वीन ब्रिज सहित विभिन्न पुलों पर आधारित ऑडियो दोलक का वर्णन किया।[10][11] स्टैनफोर्ड विश्वविद्यालय में टरमन, नकारात्मक प्रतिक्रिया पर हेरोल्ड स्टीफन ब्लैक के कार्य में रुचि रखते थे,[12][13] इसलिए उन्होंने नकारात्मक प्रतिक्रिया पर स्नातक संगोष्ठी आयोजित की।[14] बिल हेवलेट ने सेमिनार में भाग लिया। संगोष्ठी के दौरान स्कॉट का फरवरी 1938 का दोलकपेपर निकला। यहाँ टरमन द्वारा स्मरण है:[15]

फ्रेड टर्मन बताते हैं: स्टैनफोर्ड में अभियांत्रिक की डिग्री की आवश्यकताओं को पूर्ण करने के लिए बिल को थीसिस तैयार करनी पड़ी। उस समय मैंने अपने स्नातक संगोष्ठी का पूर्ण चौथाई 'नकारात्मक प्रतिक्रिया' के विषय में समर्पित करने का निर्णय लिया था, मुझे इस तत्कालीन नई प्रौद्योगिक में रूचि हो गई थी क्योंकि ऐसा लगता था कि इसमें अनेक उपयोगी चीजें करने की अधिक संभावनाएं हैं। मैं नकारात्मक प्रतिक्रिया पर विचार किए गए कुछ अनुप्रयोगों पर रिपोर्ट करूंगा, और लड़के हाल के लेख पढ़ेंगे और वर्तमान विकास पर दूसरे को रिपोर्ट करेंगे। यह संगोष्ठी अभी उत्तम प्रकार से प्रारंभ हुई थी जब पेपर निकला जो मुझे रोचक लगा। यह जनरल रेडियो के व्यक्ति द्वारा किया गया था और निश्चित-आवृत्ति ऑडियो थरथरानवाला से निपटा गया था जिसमें आवृत्ति को प्रतिरोध-समाई नेटवर्क द्वारा नियंत्रित किया गया था, और पुश-बटन के माध्यम से बदल दिया गया था। नकारात्मक प्रतिक्रिया के सरल अनुप्रयोग द्वारा दोलन प्राप्त किए गए थे।

जून 1938 में, टर्मन, आर.आर. बस, हेवलेट और एफ.सी. काहिल ने न्यूयॉर्क में IRE कन्वेंशन में नकारात्मक प्रतिक्रिया के बारे में प्रस्तुति दी; अगस्त 1938 में, पोर्टलैंड, OR में IRE पैसिफिक कोस्ट कन्वेंशन में दूसरी प्रस्तुति हुई; प्रस्तुति IRE पेपर बन गई।[16] विषय वीन ब्रिज दोलकमें आयाम नियंत्रण था। थरथरानवाला पोर्टलैंड में प्रदर्शित किया गया था।[17] हेवलेट, डेविड पैकर्ड के साथ, हेवलेट पैकर्ड की सह-स्थापना की, और हेवलेट-पैकर्ड का पहला उत्पाद HP200A था, जो सटीक वीन ब्रिज दोलकथा। पहली बिक्री जनवरी 1939 में हुई थी।[18] हेवलेट के जून 1939 के अभियांत्रिक की डिग्री थीसिस ने वीन ब्रिज दोलकके आयाम को नियंत्रित करने के लिए दीपक का उपयोग किया।[19] हेवलेट के थरथरानवाला स्थिर आयाम और कम विरूपण के साथ साइनसोइडल आउटपुट का उत्पादन करता है।[20][21]

स्वचालित लाभ नियंत्रण के बिना दोलक

आयाम को नियंत्रित करने के लिए डायोड का उपयोग करने वाले वीन ब्रिज दोलकका योजनाबद्ध। यह परिपथसामान्यतः1-5% की सीमा में कुल हार्मोनिक विरूपण पैदा करता है, यह इस बात पर निर्भर करता है कि इसे कितनी सावधानी से छंटनी की जाती है।

पारंपरिक दोलक परिपथ को इस तरह डिज़ाइन किया गया है कि यह दोलन (स्टार्ट अप) करना प्रारंभ कर देगा और इसका आयाम नियंत्रित हो जाएगा।

एम्पलीफायर आउटपुट में नियंत्रित संपीड़न जोड़ने के लिए दाईं ओर ऑसीलेटर डायोड का उपयोग करता है। यह 1-5% की सीमा में कुल हार्मोनिक विरूपण उत्पन्न कर सकता है, यह इस बात पर निर्भर करता है कि इसे कितनी सावधानी से छंटनी की जाती है।[22] दोलन करने के लिए रैखिक परिपथ के लिए, इसे बार्कहाउज़ेन स्थिरता मानदंड को पूर्ण करना चाहिए: इसका लूप लाभ होना चाहिए और लूप के चारों ओर चरण 360 डिग्री का पूर्णांक होना चाहिए। रैखिक थरथरानवाला सिद्धांत यह नहीं बताता है कि थरथरानवाला कैसे प्रारंभ होता है या आयाम कैसे निर्धारित होता है। रैखिक थरथरानवाला किसी भी आयाम का समर्थन कर सकता है।

व्यवहार में, पाश लाभ प्रारंभ में एकता से बड़ा होता है। यादृच्छिक शोर सभी सर्किटों में उपस्थित है, और उस शोर में से कुछ वांछित आवृत्ति के पास होगा। लूप लाभ से अधिक लूप के चारों ओर आवृत्ति के आयाम को हर बार तेजी से बढ़ाने की अनुमति देता है। से अधिक लूप गेन के साथ, दोलकप्रारंभ हो जाएगा।

आदर्श रूप से, लूप गेन को से थोड़ा बड़ा होना चाहिए, लेकिन व्यवहार में, यह प्रायः से अधिक अधिक होता है। बड़ा लूप गेन दोलकको जल्दी प्रारंभ करता है। बड़ा लूप लाभ तापमान के साथ लाभ भिन्नता और ट्यून करने योग्य दोलककी वांछित आवृत्ति के लिए भी क्षतिपूर्ति करता है। थरथरानवाला प्रारंभ करने के लिए, पाश लाभ सभी संभव परिस्थितियों में से अधिक होना चाहिए। से अधिक लूप गेन का नकारात्मक पक्ष होता है। सिद्धांत रूप में, थरथरानवाला आयाम बिना सीमा के बढ़ेगा। व्यवहार में, आयाम तब तक बढ़ेगा जब तक आउटपुट कुछ सीमित कारक जैसे कि बिजली आपूर्ति वोल्टेज (एम्पलीफायर आउटपुट आपूर्ति रेल में चलता है) या एम्पलीफायर आउटपुट वर्तमान सीमा में चलता है। सीमित करने से एम्पलीफायर का प्रभावी लाभ कम हो जाता है (प्रभाव को लाभ संपीड़न कहा जाता है)। स्थिर दोलक में, औसत पाश लाभ होगा।

हालांकि सीमित क्रिया आउटपुट वोल्टेज को स्थिर करती है, इसके दो महत्वपूर्ण प्रभाव हैं: यह हार्मोनिक विरूपण का परिचय देती है और यह दोलककी आवृत्ति स्थिरता को प्रभावित करती है। विरूपण की मात्रा स्टार्टअप के लिए उपयोग किए जाने वाले अतिरिक्त लूप गेन से संबंधित है। यदि छोटे आयामों पर बहुत अधिक अतिरिक्त लूप लाभ होता है, तो उच्च तात्कालिक आयामों पर लाभ में और कमी आनी चाहिए। यानी अधिक विकृति।

विरूपण की मात्रा दोलन के अंतिम आयाम से भी संबंधित होती है। हालांकि एम्पलीफायर का लाभ आदर्श रूप से रैखिक है, व्यवहार में यह अरैखिक है। नॉनलाइनियर ट्रांसफर फ़ंक्शन को टेलर श्रृंखला के रूप में व्यक्त किया जा सकता है। छोटे आयामों के लिए, उच्च क्रम की शर्तें बहुत कम प्रभाव डालती हैं। बड़े आयामों के लिए, गैर-रैखिकता का उच्चारण किया जाता है। नतीजतन, कम विरूपण के लिए, ऑसीलेटर का आउटपुट आयाम एम्पलीफायर की गतिशील रेंज का छोटा अंश होना चाहिए।

मेचम का पुल स्थिर दोलक

बेल सिस्टम टेक्निकल जर्नल, अक्टूबर 1938 में प्रकाशित मीचम ब्रिज दोलकका सरलीकृत योजनाबद्ध। अचिह्नित कैपेसिटर में सिग्नल फ्रीक्वेंसी पर शॉर्ट परिपथमाने जाने के लिए पर्याप्त कैपेसिटेंस होता है। वैक्यूम ट्यूब को बायस करने और लोड करने के लिए अचिह्नित प्रतिरोधों और प्रारंभ करनेवाला को उपयुक्त मान माना जाता है। इस चित्र में नोड लेबल प्रकाशन में उपस्थित नहीं हैं।

Larned Meacham ने 1938 में दाईं ओर दिखाए गए ब्रिज दोलकपरिपथका खुलासा किया। परिपथको बहुत उच्च आवृत्ति स्थिरता और बहुत शुद्ध साइनसोइडल आउटपुट के रूप में वर्णित किया गया था।[9] आयाम को नियंत्रित करने के लिए ट्यूब ओवरलोडिंग का उपयोग करने के अतिरिक्त, मेचम ने परिपथप्रस्तावित किया जो लूप लाभ को एकता में सेट करता है जबकि एम्पलीफायर अपने रैखिक क्षेत्र में होता है। मेचम के परिपथमें क्वार्ट्ज क्रिस्टल दोलकऔर व्हीटस्टोन पुल में लैंप सम्मिलित था।

मेचम के परिपथमें, आवृत्ति निर्धारण घटक पुल की नकारात्मक फ़ीड बैक शाखा में हैं और लाभ नियंत्रण तत्व सकारात्मक फ़ीड बैक शाखा में हैं। क्रिस्टल, जेड4, श्रृंखला अनुनाद में संचालित होता है। इस तरह यह अनुनाद पर नकारात्मक प्रतिक्रिया को कम करता है। विशेष क्रिस्टल ने अनुनाद पर 114 ओम का वास्तविक प्रतिरोध प्रदर्शित किया। अनुनाद के नीचे आवृत्तियों पर, क्रिस्टल कैपेसिटिव होता है और नकारात्मक प्रतिक्रिया शाखा के लाभ में नकारात्मक चरण बदलाव होता है। प्रतिध्वनि से ऊपर की आवृत्तियों पर, क्रिस्टल आगमनात्मक होता है और नकारात्मक प्रतिक्रिया शाखा के लाभ में सकारात्मक चरण बदलाव होता है। गुंजयमान आवृत्ति पर चरण बदलाव शून्य से गुजरता है। जैसे ही दीपक गर्म होता है, यह सकारात्मक प्रतिक्रिया को कम करता है। Meacham के परिपथमें क्रिस्टल का Q 104,000 के रूप में दिया गया है। गुंजयमान आवृत्ति से क्रिस्टल की बैंडविड्थ के छोटे से अधिक से अधिक आवृत्ति पर, नकारात्मक प्रतिक्रिया शाखा लूप लाभ पर हावी होती है और क्रिस्टल की संकीर्ण बैंडविड्थ के अतिरिक्त कोई आत्मनिर्भर दोलन नहीं हो सकता है।

1944 में (हेवलेट के डिजाइन के बाद), जेम्स किलटन क्लैप|जे. के. क्लैप ने ब्रिज को चलाने के लिए ट्रांसफॉर्मर के अतिरिक्त वैक्यूम ट्यूब फेज इन्वर्टर का उपयोग करने के लिए मेचम के परिपथको संशोधित किया।[23][24] संशोधित Meacham थरथरानवाला क्लैप के चरण इन्वर्टर का उपयोग करता है लेकिन टंगस्टन लैंप के लिए डायोड लिमिटर को प्रतिस्थापित करता है।[25]

हेवलेट का दोलक

हेवलेट के यूएस पेटेंट 2,268,872 से वीन ब्रिज दोलकका सरलीकृत योजनाबद्ध। अचिह्नित कैपेसिटर में सिग्नल फ्रीक्वेंसी पर शॉर्ट परिपथमाने जाने के लिए पर्याप्त कैपेसिटेंस होता है। वैक्यूम ट्यूबों को बायसिंग और लोड करने के लिए अचिह्नित प्रतिरोधों को उपयुक्त मान माना जाता है। इस आंकड़े में नोड लेबल और संदर्भ डिज़ाइनर पेटेंट में उपयोग किए जाने वाले समान नहीं हैं। हेवलेट के पेटेंट में संकेतित वैक्यूम ट्यूब यहां दिखाए गए ट्रायोड के अतिरिक्त पेंटोड थे।

विलियम रेडिंगटन हेवलेट | विलियम आर। हेवलेट के वीन ब्रिज दोलकको अंतर एम्पलीफायर और वीन ब्रिज के संयोजन के रूप में माना जा सकता है, जो एम्पलीफायर आउटपुट और अंतर इनपुट के मध्य सकारात्मक प्रतिक्रिया पाश में जुड़ा हुआ है। दोलन आवृत्ति पर, पुल लगभग संतुलित होता है और इसका अंतरण अनुपात बहुत कम होता है। पाश लाभ बहुत उच्च एम्पलीफायर गेन और बहुत कम ब्रिज अनुपात का उत्पाद है।[26] हेवलेट के परिपथमें, एम्पलीफायर को दो वैक्यूम ट्यूबों द्वारा कार्यान्वित किया जाता है। एम्पलीफायर का इन्वर्टिंग इनपुट ट्यूब V का कैथोड है1 और नॉन-इनवर्टिंग इनपुट ट्यूब V का कंट्रोल ग्रिड है2. विश्लेषण को सरल बनाने के लिए, R के अतिरिक्त अन्य सभी घटक1, आर2, सी1 और सी2 1+R के लाभ के साथ गैर-इनवर्टिंग एम्पलीफायर के रूप में तैयार किया जा सकता हैf/आरb और उच्च इनपुट प्रतिबाधा के साथ। आर1, आर2, सी1 और सी2 बैंडपास फिल्टर बनाएं जो दोलन की आवृत्ति पर सकारात्मक प्रतिक्रिया प्रदान करने के लिए जुड़ा हो। आरb स्वयं गर्म होता है और नकारात्मक प्रतिक्रिया को बढ़ाता है जो एम्पलीफायर लाभ को कम करता है जब तक कि बिंदु तक नहीं पहुंच जाता है कि एम्पलीफायर को चलाए बिना साइनसोइडल दोलन को बनाए रखने के लिए पर्याप्त लाभ होता है। अगर आर1 = आर2 और सी1 = सी2 फिर संतुलन आर परf/आरb = 2 और एम्पलीफायर का लाभ 3 है। जब परिपथपहली बार सक्रिय होता है, तो दीपक ठंडा होता है और परिपथका लाभ 3 से अधिक होता है जो स्टार्ट अप सुनिश्चित करता है। वैक्यूम ट्यूब V1 का dc बायस करंट भी लैंप से होकर बहता है। यह परिपथके संचालन के सिद्धांतों को नहीं बदलता है, लेकिन यह संतुलन पर आउटपुट के आयाम को कम करता है क्योंकि पूर्वाग्रह वर्तमान दीपक के ताप का हिस्सा प्रदान करता है।

हेवलेट की थीसिस ने निम्नलिखित निष्कर्ष निकाले:[27]

अभी वर्णित प्रकार का प्रतिरोध-क्षमता दोलक प्रयोगशाला सेवा के लिए उपयुक्त होना चाहिए। इसमें बीट-फ्रीक्वेंसी दोलकको संभालने में आसानी होती है और फिर भी इसके कुछ हानि हैं। पहली बात तो यह है कि बीट-फ्रीक्वेंसी प्रकार के मुकाबले कम आवृत्तियों पर आवृत्ति स्थिरता बहुत बेहतर है। छोटे तापमान परिवर्तनों को सुनिश्चित करने के लिए पुर्जों के महत्वपूर्ण प्लेसमेंट की आवश्यकता नहीं है, न ही दोलक के इंटरलॉकिंग को रोकने के लिए सावधानीपूर्वक डिज़ाइन किए गए डिटेक्टर सर्किट। इसके परिणामस्वरूप, दोलकका समग्र भार कम से कम रखा जा सकता है। तुलनीय प्रदर्शन के सामान्य रेडियो बीट-फ्रीक्वेंसी दोलकके लिए 93 पाउंड के विपरीत, 1 वाट एम्पलीफायर और बिजली की आपूर्ति सहित इस प्रकार के दोलकका वजन केवल 18 पाउंड था। आउटपुट की विकृति और स्थिरता अब उपलब्ध सर्वोत्तम बीट-फ़्रीक्वेंसी दोलक के साथ अनुकूल रूप से तुलना करती है। अंत में, इस प्रकार के दोलकको वाणिज्यिक प्रसारण रिसीवर के समान आधार पर बनाया और बनाया जा सकता है, लेकिन बनाने के लिए कम समायोजन के साथ। इस प्रकार यह आदर्श प्रयोगशाला दोलकदेने के लिए लागत की कम लागत के साथ प्रदर्शन की गुणवत्ता को जोड़ती है।

वीन ब्रिज

ब्रिज परिपथघटक मूल्यों को ज्ञात मूल्यों से तुलना करके मापने का सामान्य तरीका था। प्रायः अज्ञात घटक को पुल की भुजा में रखा जाता है, और फिर अन्य भुजाओं को समायोजित करके या वोल्टेज स्रोत की आवृत्ति को बदलकर पुल को अशक्त कर दिया जाता है (देखें, उदाहरण के लिए, व्हीटस्टोन ब्रिज)।

वीन पुल अनेक आम पुलों में से है।[28] प्रतिरोध और आवृत्ति के मामले में समाई के सटीक माप के लिए वीन के पुल का उपयोग किया जाता है।[29] इसका उपयोग ऑडियो आवृत्तियों को मापने के लिए भी किया जाता था।

वीन ब्रिज को आर या सी के समान मूल्यों की आवश्यकता नहीं है। वी पर सिग्नल का चरणp वी पर संकेत के सापेक्षout निम्न आवृत्ति पर लगभग 90° से लेकर उच्च आवृत्ति पर लगभग 90° पश्चगामी से भिन्न होता है। कुछ मध्यवर्ती आवृत्ति पर, चरण परिवर्तन शून्य होगा। उस आवृत्ति पर Z का अनुपात1 यह से है2 विशुद्ध रूप से वास्तविक (शून्य काल्पनिक भाग) होगा। यदि आर का अनुपातbआर के लिएfउसी अनुपात में समायोजित किया जाता है, तो पुल संतुलित होता है और परिपथदोलन को बनाए रख सकता है। परिपथ दोलन करेगा भले ही Rb/ आरf छोटा फेज शिफ्ट है और भले ही एम्पलीफायर के इनवर्टिंग और नॉन-इनवर्टिंग इनपुट में अलग-अलग फेज शिफ्ट हों। हमेशा आवृत्ति होगी जिस पर पुल की प्रत्येक शाखा का कुल चरण बदलाव बराबर होगा। अगर आरb/ आरfकोई फेज शिफ्ट नहीं है और एम्पलीफायरों के इनपुट का फेज शिफ्ट शून्य है तो ब्रिज संतुलित है जब:[30]

और

जहां ω रेडियन आवृत्ति है।

यदि कोई आर चुनता है1= आर2और सी1= सी2फिर आरf= 2 आरb.

व्यवहार में, R और C के मान कभी भी बिल्कुल समान नहीं होंगे, लेकिन ऊपर दिए गए समीकरणों से पता चलता है कि Z में निश्चित मानों के लिए1 और जेड2 प्रतिबाधा, पुल कुछ ω और R के कुछ अनुपात पर संतुलित होगाb/आरf.

विश्लेषण

=== लूप गेन === से विश्लेषण किया गया शिलिंग के अनुसार,[26]वीन ब्रिज दोलकका लूप गेन, इस शर्त के अनुसार कि आर1= आर2= आर और सी1= सी2= सी, द्वारा दिया गया है

कहाँ ऑप-एम्प का आवृत्ति-निर्भर लाभ है (ध्यान दें, शिलिंग में घटक नामों को पहले चित्र में घटक नामों से बदल दिया गया है)।

शिलिंग आगे कहता है कि दोलन की स्थिति T = 1 है, जो संतुष्ट है

और

साथ

अन्य विश्लेषण, विशेष रूप से आवृत्ति स्थिरता और चयनात्मकता के संदर्भ में, में है Strauss (1970, p. 671) और Hamilton (2003, p. 449).

आवृत्ति निर्धारण नेटवर्क

चलो आर = आर1= आर2 और सी = सी1= सी2

सीआर = 1 को सामान्य करें।

इस प्रकार आवृत्ति निर्धारण नेटवर्क में 0 पर शून्य और ध्रुव पर होता है या -2.6180 और -0.38197।

आयाम स्थिरीकरण

वीन ब्रिज दोलकके कम विरूपण दोलन की कुंजी आयाम स्थिरीकरण विधि है जो क्लिपिंग का उपयोग नहीं करती है। आयाम स्थिरीकरण के लिए पुल विन्यास में दीपक का उपयोग करने का विचार 1938 में मीचम द्वारा प्रकाशित किया गया था।[31] क्लिपिंग (सिग्नल प्रोसेसिंग) या अन्य गेन (इलेक्ट्रॉनिक्स) सीमा तक पहुंचने तक इलेक्ट्रॉनिक दोलक का आयाम बढ़ जाता है। इससे उच्च हार्मोनिक विरूपण होता है, जो प्रायः अवांछनीय होता है।

हेवलेट ने आउटपुट आयाम को नियंत्रित करने के लिए दोलकफीडबैक पथ में पावर डिटेक्टर, लो पास फिल्टर और गेन कंट्रोल एलिमेंट के रूप में तापदीप्त बल्ब का उपयोग किया। प्रकाश बल्ब फिलामेंट का प्रतिरोध (विद्युत प्रतिरोधकता और चालकता#तापमान निर्भरता देखें) जैसे-जैसे इसका तापमान बढ़ता है, बढ़ता जाता है। फिलामेंट का तापमान फिलामेंट में छितरी हुई शक्ति और कुछ अन्य कारकों पर निर्भर करता है। यदि थरथरानवाला की अवधि (इसकी आवृत्ति का व्युत्क्रम) फिलामेंट के थर्मल समय स्थिरांक से अधिक कम है, तो फिलामेंट का तापमान चक्र पर अधिक हद तक स्थिर रहेगा। फिलामेंट प्रतिरोध तब आउटपुट सिग्नल के आयाम को निर्धारित करेगा। यदि आयाम बढ़ता है, तो फिलामेंट गर्म हो जाता है और इसका प्रतिरोध बढ़ जाता है। परिपथको डिज़ाइन किया गया है ताकि बड़ा फिलामेंट प्रतिरोध लूप लाभ को कम कर दे, जो बदले में आउटपुट आयाम को कम कर देगा। नतीजा नकारात्मक प्रतिक्रिया प्रणाली है जो आउटपुट आयाम को स्थिर मूल्य पर स्थिर करता है। आयाम नियंत्रण के इस रूप के साथ, थरथरानवाला निकट आदर्श रैखिक प्रणाली के रूप में कार्य करता है और बहुत कम विरूपण आउटपुट सिग्नल प्रदान करता है। दोलक जो आयाम नियंत्रण के लिए सीमित करने का उपयोग करते हैं, उनमें प्रायः महत्वपूर्ण हार्मोनिक विरूपण होता है। कम आवृत्तियों पर, जैसे-जैसे वीन ब्रिज दोलककी समयावधि गरमागरम बल्ब के तापीय समय स्थिरांक तक पहुँचती है, परिपथका संचालन अधिक अरैखिक हो जाता है, और आउटपुट विरूपण अधिक बढ़ जाता है।

वीन ब्रिज दोलक में लाभ नियंत्रण तत्वों के रूप में उपयोग किए जाने पर प्रकाश बल्बों के अपने हानि होते हैं, विशेष रूप से बल्ब के microphonics प्रकृति आयाम मॉडुलन दोलकआउटपुट के कारण कंपन के लिए बहुत ही उच्च संवेदनशीलता, कॉइल की आगमनात्मक प्रकृति के कारण उच्च आवृत्ति प्रतिक्रिया में सीमा फिलामेंट, और वर्तमान आवश्यकताएं जो अनेक ऑप-एम्प्स की क्षमता से अधिक हैं। आधुनिक वीन ब्रिज दोलक ने प्रकाश बल्बों के स्थान पर आयाम स्थिरीकरण के लिए डायोड, thermistor ्स, फील्ड इफ़ेक्ट ट्रांजिस्टर , या फोटोकल्स जैसे अन्य अरेखीय तत्वों का उपयोग किया है। हेवलेट के लिए अनुपलब्ध आधुनिक घटकों के साथ 0.0003% (3 ppm) जितना कम विरूपण प्राप्त किया जा सकता है।[32] थर्मिस्टर्स का उपयोग करने वाले वीन ब्रिज दोलक गरमागरम दीपक की तुलना में थर्मिस्टर के कम परिचालन तापमान के कारण परिवेश के तापमान के प्रति अत्यधिक संवेदनशीलता प्रदर्शित करते हैं।[33]

स्वचालित लाभ नियंत्रण गतिकी

आर के लिए वीन ब्रिज दोलकपोल पोजिशन का रूट लोकस प्लॉट1 = आर2 = 1 और सी1 = सी2 =1 बनाम के = (आरb + आरf)/आरb. K के संख्यात्मक मान बैंगनी फ़ॉन्ट में दिखाए जाते हैं। K=3 के लिए ध्रुवों का प्रक्षेपवक्र काल्पनिक (β) अक्ष के लंबवत है। K >> 5 के लिए, ध्रुव मूल की ओर और दूसरा K की ओर पहुंचता है।[34]

आर के मूल्य में छोटे गड़बड़ीb प्रमुख ध्रुवों को jω (काल्पनिक) अक्ष पर आगे और पीछे जाने का कारण बनता है। यदि ध्रुव बाएँ आधे तल में चले जाते हैं, तो दोलन घातीय रूप से शून्य हो जाता है। यदि ध्रुव दाहिने आधे तल में चले जाते हैं, तो दोलन तेजी से बढ़ता है जब तक कि कुछ इसे सीमित न कर दे। यदि क्षोभ बहुत छोटा है, तो समतुल्य Q का परिमाण इतना बड़ा है कि आयाम धीरे-धीरे बदलता है। यदि गड़बड़ी छोटी है और थोड़े समय के बाद उलट जाती है, तो लिफाफा रैंप का अनुसरण करता है। लिफाफा लगभग गड़बड़ी का अभिन्न अंग है। एनवेलप ट्रांसफर फंक्शन में गड़बड़ी 6 dB/ऑक्टेव पर रोल ऑफ होती है और -90° फेज शिफ्ट का कारण बनती है।

प्रकाश बल्ब में ऊष्मीय जड़ता होती है ताकि प्रतिरोध हस्तांतरण समारोह की शक्ति एकल पोल कम पास फिल्टर प्रदर्शित करे। एनवेलप ट्रांसफर फंक्शन और बल्ब ट्रांसफर फंक्शन कैस्केड में प्रभावी रूप से होते हैं, जिससे कंट्रोल लूप में प्रभावी रूप से लो पास पोल और शून्य पर पोल और लगभग -180° का नेट फेज शिफ्ट होता है। यह कम चरण मार्जिन के कारण नियंत्रण पाश में खराब क्षणिक प्रतिक्रिया का कारण बनेगा। आउटपुट निचोड़ना प्रदर्शित कर सकता है। बर्नार्ड एम ओलिवर[35] दिखाया गया है कि एम्पलीफायर द्वारा लाभ का मामूली संपीड़न लिफ़ाफ़ा स्थानांतरण फ़ंक्शन को कम करता है ताकि अधिकांश दोलकअच्छी क्षणिक प्रतिक्रिया दिखाते हैं, दुर्लभ मामले को छोड़कर जहां वेक्यूम - ट्यूब ों में गैर-रैखिकता दूसरे को असामान्य रूप से रैखिक एम्पलीफायर का उत्पादन करती है।

संदर्भ

  1. Wien 1891
  2. Terman 1933
  3. Terman 1935, pp. 283–289
  4. Terman 1937, pp. 371–372
  5. Arguimbau 1933
  6. Groszkowski 1934
  7. Terman 1937, p. 370
  8. Meacham 1939
  9. 9.0 9.1 Meacham 1938
  10. Scott 1939
  11. Scott 1938
  12. Black 1934a
  13. Black 1934b
  14. HP 2002
  15. Sharpe n.d.
  16. Terman et al. 1939
  17. Sharpe n.d., p. ???[page needed]; Packard remembers first demonstration of the 200A in Portland.
  18. Sharpe n.d., p. xxx[page needed]
  19. Williams (1991, p. 46) states, "Hewlett may have adapted this technique from Meacham, who published it in 1938 as a way to stabilize a quartz crystal oscillator. Meacham's paper, "The Bridge Stabilized Oscillator," is in reference number five in Hewlett's thesis."
  20. Hewlett 1942
  21. Williams 1991, pp. 46–47
  22. Graeme, Jerald G.; Tobey, Gene E.; Huelsman, Lawrence P. (1971). परिचालन प्रवर्धक, डिजाइन और अनुप्रयोग (1st ed.). McGraw-Hill. pp. 383–385. ISBN 0-07-064917-0.
  23. Clapp 1944a
  24. Clapp 1944b
  25. Matthys 1992, pp. 53–57
  26. 26.0 26.1 Schilling & Belove 1968, pp. 612–614
  27. Hewlett 1939, p. 13
  28. Terman 1943, p. 904
  29. Terman 1943, p. 904 citing Ferguson & Bartlett 1928
  30. Terman 1943, p. 905
  31. Meacham 1938. Meacham1938a. Meacham presented his work at the Thirteenth Annual Convention of the Institute of Radio Engineers, New York City, June 16, 1938 and published in Proc. IRE October 1938. Hewlett's patent (filed July 11, 1939) does not mention Meacham.
  32. Williams 1990, pp. 32–33
  33. Strauss 1970, p. 710, stating "For acceptable amplitude stability, some form of temperature compensation would be necessary."
  34. Strauss 1970, p. 667
  35. Oliver 1960


अन्य संदर्भ

बाहरी संबंध