पूर्ण निरंतरता: Difference between revisions
(Created page with "{{Short description|Form of continuity for functions}} कलन में, निरपेक्ष निरंतरता फलन (गणित) की एक चि...") |
No edit summary |
||
(13 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Form of continuity for functions}} | {{Short description|Form of continuity for functions}} | ||
कलन में, | कलन में, पूर्ण निरंतरता फलन (गणित) का एक [[चिकनाई (गणित)|सहज (गणित)]] गुण है जो [[निरंतर कार्य|निरंतरता]] और समान निरंतरता से अधिक मजबूत है। पूर्ण निरंतरता की धारणा किसी को कलन-व्युत्पन्न और [[अभिन्न]] के दो केंद्रीय फलन के बीच संबंधों के सामान्यीकरण को प्राप्त करने की अनुमति देती है। [[रीमैन एकीकरण|रीमैन पूर्णांक]] की रूपरेखा में (कलन के मौलिक प्रमेय द्वारा) चित्रित किया जाता है, लेकिन पूर्ण निरंतरता के साथ इसे [[लेबेसेग एकीकरण|लेबेसेग पूर्णांक]] के संदर्भ में तैयार किया जा सकता है। वास्तविक मूल्यांकित फलन के लिए [[वास्तविक रेखा]] पर, दो परस्पर संबंधित धारणाएँ फलन की पूर्ण निरंतरता और मापों की पूर्ण निरंतरता दिखाई देती हैं। इन दो धारणाओं को अलग-अलग दिशाओं में सामान्यीकृत किया जाता है। फलन का सामान्य व्युत्पन्न एक माप के'' रेडॉन-निकोडीम व्युत्पन्न '', या ''घनत्व '' से संबंधित है। हमारे पास वास्तविक रेखा के एक [[ कॉम्पैक्ट जगह |कॉम्पैक्ट]] उपसमुच्चय पर फलन के लिए निम्नलिखित अनुक्रम हैं: | ||
हमारे पास वास्तविक रेखा के [[ कॉम्पैक्ट जगह ]] | |||
: ''[[बिल्कुल निरंतर]]'' ⊆ ''[[समान रूप से निरंतर]]'' <math>=</math> निरंतर | : ''[[बिल्कुल निरंतर|पूर्णतः निरंतर]]'' ⊆ ''[[समान रूप से निरंतर]]'' <math>=</math> निरंतर फलन | ||
और, एक संक्षिप्त | और, एक संक्षिप्त अंतर के लिए, | ||
: निरंतर अवकलनीय ⊆ | : निरंतर अवकलनीय ⊆ लिप्सचिट्ज़ निरंतर ⊆ पूर्णतः निरंतर ⊆ [[परिबद्ध भिन्नता]] ⊆ अवकलनीय फलन [[लगभग हर जगह|लगभग रेखांतर]] है। | ||
== | == फलन की पूर्ण निरंतरता == | ||
एक | एक सतत फलन पूर्णतः निरंतर होने में विफल रहता है, यदि यह एकसमान रूप से निरंतर होने में विफल रहता है, और यह तब हो सकता है जब फलन का डोमेन कॉम्पैक्ट न हो - उदाहरण हैं tan(''x'') over {{closed-open|0, ''π''/2}}, ''x''<sup>2</sup> संपूर्ण वास्तविक रेखा पर, और sin(1/''x'') over (0, 1] है। लेकिन एक निरंतर फलन ''f'' कॉम्पैक्ट अंतर पर भी पूरी तरह से निरंतर होने में विफल हो सकता है। यह लगभग हर जगह ([[वीयरस्ट्रैस समारोह|वीयरस्ट्रैस फलन]] की तरह, जो कहीं भी भिन्न नहीं है) भिन्न नहीं हो सकता है। या यह लगभग हर जगह अलग-अलग फलन हो सकता है और इसका व्युत्पन्न ''f'' ' लेबेस्ग पूर्णांक हो सकता है, लेकिन ''f'' ' का अभिन्न अंतर ''f'' की वृद्धि से भिन्न होता है (कितना ''f'' एक अंतर पर बदलता है ) यह उदाहरण के लिए [[कैंटर समारोह|कैंटर फलन]] के साथ होता है। | ||
=== परिभाषा === | === परिभाषा === | ||
मान ले कि <math>I</math> वास्तविक रेखा में एक [[अंतराल (गणित)|अंतर (गणित)]] <math>\R</math> हो, एक फलन <math>f\colon I \to \R</math> पूर्णतः निरंतर है <math>I</math> अगर धनात्मक संख्या के लिए <math>\varepsilon</math>, एक धनात्मक संख्या है <math>\delta</math> ऐसा है कि जब भी एक परिमित अनुक्रम जोड़ीवार संयुक्त उप-अंतर <math>(x_k, y_k)</math> का <math>I</math> साथ <math>x_k < y_k \in I</math> को अलग करता है।<ref>{{harvnb|Royden|1988|loc=Sect. 5.4, page 108}}; {{harvnb|Nielsen|1997|loc=Definition 15.6 on page 251}}; {{harvnb|Athreya|Lahiri|2006|loc=Definitions 4.4.1, 4.4.2 on pages 128,129}}. The interval <math>I</math> is assumed to be bounded and closed in the former two books but not the latter book.</ref> | |||
:<math>\sum_k (y_k - x_k) < \delta </math> | :<math>\sum_k (y_k - x_k) < \delta </math> | ||
तब | तब | ||
:<math> \sum_k | f(y_k) - f(x_k) | < \varepsilon.</math> | :<math> \sum_k | f(y_k) - f(x_k) | < \varepsilon.</math> | ||
पर सभी पूर्णतः निरंतर | पर सभी पूर्णतः निरंतर फलन का संग्रह <math>I</math> को <math>\operatorname{AC}(I)</math> से निरूपित किया जाता है। | ||
=== समतुल्य परिभाषाएं === | === समतुल्य परिभाषाएं === | ||
एक कॉम्पैक्ट | एक कॉम्पैक्ट अंतर [''a'',''b''] पर वास्तविक-मूल्यवान फलन ''f'' पर निम्न स्थितियां समान हैं:<ref>{{harvnb|Nielsen|1997|loc=Theorem 20.8 on page 354}}; also {{harvnb|Royden|1988|loc=Sect. 5.4, page 110}} and {{harvnb|Athreya|Lahiri|2006|loc=Theorems 4.4.1, 4.4.2 on pages 129,130}}.</ref> | ||
# f पूर्णतया सतत है; | # ''f'' पूर्णतया सतत है; | ||
# f का व्युत्पन्न | # ''f'' का व्युत्पन्न ''f'' ' लगभग हर जगह व्युत्पन्न लेब्सग पूर्णांक है, और <math display="block"> f(x) = f(a) + \int_a^x f'(t) \, dt </math> [''a'',''b''] पर सभी ''x'' के लिए है; | ||
# [a,b] पर एक | # [''a'',''b''] पर एक लेब्ज़ैग ग्रेबल फलन ''g'' सम्मिलित है जैसे कि <math display="block"> f(x) = f(a) + \int_a^x g(t) \, dt </math> [''a'',''b''] में सभी ''x'' के लिए है। | ||
यदि | यदि इन समान स्थितियों का समाधान हो जाता है तो अनिवार्य रूप से ''g'' = ''f'' ′ लगभग हर जगह है। | ||
(1) और (3) के बीच समानता को लेबेसेग के कारण '[[लेबेस्ग]] | (1) और (3) के बीच समानता को लेबेसेग के कारण ''''[[लेबेस्ग]] अविभाज्य कलन के मौलिक प्रमेय'''<nowiki/>' के रूप में जाना जाता है।<ref>{{harvnb|Athreya|Lahiri|2006|loc=before Theorem 4.4.1 on page 129}}.</ref> | ||
माप के संदर्भ में एक समान परिभाषा के लिए पूर्ण निरंतरता की दो धारणाओं के बीच अनुभाग संबंध देखें। | |||
=== गुण === | === गुण === | ||
* दो पूर्णतः सतत फलनों का योग और अंतर भी पूर्णतया सतत होता है। यदि दो फलन परिबद्ध संवृत्त | * दो पूर्णतः सतत फलनों का योग और अंतर भी पूर्णतया सतत होता है। यदि दो फलन परिबद्ध संवृत्त अंतर पर परिभाषित हैं, तो उनका गुणनफल भी पूर्णतः संतत होता है।<ref>{{harvnb |Royden|1988|loc=Problem 5.14(a,b) on page 111}}.</ref> | ||
* यदि एक परिबद्ध बंद | * यदि एक परिबद्ध बंद अंतर पर एक पूर्णतः निरंतर फलन परिभाषित किया गया है और कहीं भी शून्य नहीं है तो इसका व्युत्क्रम पूर्णतः निरंतर है।<ref>{{harvnb |Royden|1988|loc=Problem 5.14(c) on page 111}}.</ref> | ||
* | * प्रत्येक पूर्णतया सतत फलन (संहत अंतराल पर) समान रूप से सतत होता है और इसलिए निरंतर होता है। प्रत्येक (वैश्विक स्तर पर) लिपशिट्ज-निरंतर फलन पूर्णतः निरंतर है।<ref>{{harvnb |Royden|1988|loc=Problem 5.20(a) on page 112}}.</ref> | ||
* यदि f: [a,b] → 'R' | * यदि ''f'': [''a'',''b''] → ''''R'''<nowiki/>' पूर्णतः निरंतर है, तो यह [''a'',''b''] पर परिबद्ध भिन्नता का है।<ref>{{harvnb|Royden|1988|loc=Lemma 5.11 on page 108}}.</ref> | ||
* यदि f: [ | * यदि ''f'': [''a'',''b''] → ''''R'''<nowiki/>' पूर्णतः निरंतर है, तो इसे [''a'',''b''] पर दो मोनोटोनिक गैर-घटते पूर्णतः निरंतर फलन के अंतर के रूप में लिखा जा सकता है। | ||
* यदि f: [a,b] → 'R' | * यदि ''f'': [''a'',''b''] → ''''R'''<nowiki/>' पूर्णतः निरंतर है, तो इसमें लूज़िन ''N'' गुण है (अर्थात, किसी के लिए भी) <math>N \subseteq [a,b]</math> ऐसा है कि <math>\lambda(N) = 0</math>, यह मानता है <math>\lambda(f(N)) = 0</math>, जहाँ <math>\lambda</math> R पर लेबेस्ग माप के लिए खड़ा है)। | ||
* '' | * ''f'': ''I'' → '''R''' पूर्णतः निरंतर है अगर और केवल अगर यह निरंतर है, परिबद्ध विविधता का है और लुज़िन ''N'' गुण है। इस कथन को बनच-ज़ारेकी प्रमेय के रूप में भी जाना जाता है।<ref>{{harvnb |Bruckner|Bruckner|Thomson|1997|loc=Theorem 7.11}}.</ref> | ||
* यदि f: I → 'R' | * यदि ''f'': ''I'' → ''''R'''<nowiki/>' पूर्णतः निरंतर है और ''g'': '''R''' → '''R''' विश्व स्तर पर लिपशिट्ज-निरंतर है, तो रचना ''g ∘ f'' पूर्णतः निरंतर है। इसके विपरीत, प्रत्येक फलन ''g'' के लिए जो विश्व स्तर पर लिप्सचिट्ज़ निरंतर नहीं है, एक पूर्णतः निरंतर फलन ''f'' मौजूद है जैसे कि ''g ∘ f'' पूर्णतः निरंतर नहीं है।<ref>{{harvnb |Fichtenholz|1923}}.</ref> | ||
=== उदाहरण === | === उदाहरण === | ||
निम्नलिखित | निम्नलिखित फलन समान रूप से निरंतर हैं लेकिन पूर्णतः निरंतर नहीं हैं: | ||
* कैंटर | * कैंटर फलन [0, 1] पर (यह परिबद्ध भिन्नता का है लेकिन पूर्णतः निरंतर नहीं है); | ||
* | * फलनक्रम <math display="block"> f(x) = \begin{cases} | ||
0, & \text{if }x =0 \\ | 0, & \text{if }x =0 \\ | ||
x \sin(1/x), & \text{if } x \neq 0 | x \sin(1/x), & \text{if } x \neq 0 | ||
\end{cases} </math> | \end{cases} </math> एक परिमित अंतराल पर जिसमें मूल है। | ||
निम्नलिखित | निम्नलिखित फलन पूर्णतः निरंतर हैं लेकिन α-होल्डर निरंतर नहीं हैं: | ||
* | * फलन f(x) = x<sup>β</sup> [0, c] पर, किसी के लिए भी {{nowrap|0 < ''β'' < ''α'' < 1}} | ||
निम्नलिखित | निम्नलिखित फलन बिल्कुल निरंतर हैं और α-होल्डर निरंतर हैं लेकिन लिप्सचिट्ज़ निरंतर नहीं हैं: | ||
* फलन f(x) ={{radic|''x''}} [0, c] पर, α ≤ 1/2 के | * फलन f(x) ={{radic|''x''}} [0, c] पर, α ≤ 1/2 के लिए हैं। | ||
=== सामान्यीकरण === | === सामान्यीकरण === | ||
मान ले कि (''X'', ''d'') एक [[मीट्रिक स्थान]] हो और ''I'' वास्तविक रेखा ''''R'''<nowiki/>' में एक अंतर (गणित) हो। एक फलन ''f'': ''I'' → ''X'', ''I'' पर ''''पूर्णतः निरंतर'''<nowiki/>' है यदि प्रत्येक धनात्मक संख्या के लिए <math>\epsilon</math>, एक धनात्मक संख्या है <math>\delta</math> ऐसा है कि जब भी ''I'' के उप-अंतरों [''x<sub>k</sub>'', ''y<sub>k</sub>''] को जोड़ो में अलग करने का एक परिमित अनुक्रम समाधान करता है, | |||
:<math>\sum_{k} \left| y_k - x_k \right| < \delta</math> | :<math>\sum_{k} \left| y_k - x_k \right| < \delta</math> | ||
Line 63: | Line 61: | ||
:<math>\sum_{k} d \left( f(y_k), f(x_k) \right) < \epsilon.</math> | :<math>\sum_{k} d \left( f(y_k), f(x_k) \right) < \epsilon.</math> | ||
I से X तक सभी पूर्ण निरंतर | ''I'' से ''X'' तक सभी पूर्ण निरंतर फलन का संग्रह AC(''I''; ''X'') को दर्शाता है। | ||
एक और सामान्यीकरण | एक और सामान्यीकरण रेखांतर AC<sup>''p''</sup>(''I''; ''X'') वक्र ''f'': ''I'' → ''X'' ऐसा है कि<ref>{{harvnb|Ambrosio|Gigli|Savaré|2005|loc=Definition 1.1.1 on page 23}}</ref> | ||
:<math>d \left( f(s), f(t) \right) \leq \int_s^t m(\tau) \,d\tau \text{ for all } [s, t] \subseteq I</math> | :<math>d \left( f(s), f(t) \right) \leq \int_s^t m(\tau) \,d\tau \text{ for all } [s, t] \subseteq I</math> | ||
''L<sup>p</sup>'' रेखांतर में ''L<sup>p</sup>''(I) कुछ ''m'' के लिए है| | |||
=== इन सामान्यीकरणों के गुण === | === इन सामान्यीकरणों के गुण === | ||
* | * प्रत्येक पूर्णतया सतत फलन (संहत अंतराल पर) समान रूप से सतत होता है और इसलिए निरंतर होता है। प्रत्येक लिपशिट्ज-निरंतर फलन पूर्णतया निरंतर है। | ||
* यदि f: [a,b] → X | * यदि ''f'': [''a'',''b''] → ''X'' पूर्णतः निरंतर है, तो यह [''a'',''b''] पर परिबद्ध भिन्नता का है। | ||
* | * ''f'' ∈ AC<sup>''p''</sup>(''I''; ''X''), ''f'' का [[मीट्रिक व्युत्पन्न]] ''λ''-लगभग हर समय ''I'' में मौजूद है, और मीट्रिक डेरिवेटिव सबसे छोटा ''m'' ∈ ''L<sup>p</sup>''(''I''; '''R''') ऐसा कि<ref>{{harvnb |Ambrosio|Gigli|Savaré|2005|loc=Theorem 1.1.2 on page 24}}</ref><math display="block">d \left( f(s), f(t) \right) \leq \int_s^t m(\tau) \,d\tau \text{ for all } [s, t] \subseteq I.</math> | ||
== | == मापो की पूर्ण निरंतरता == | ||
=== परिभाषा === | === परिभाषा === | ||
[[उपाय (गणित)|माप (गणित)]] <math>\mu</math> वास्तविक रेखा के [[बोरेल सेट]] पर लेबेस्ग माप के संबंध में पूर्णतः निरंतर है <math>\lambda</math> यदि प्रत्येक के लिए <math>\lambda</math>-मापने योग्य सेट <math>A,</math> <math>\lambda(A) = 0</math> का अर्थ <math>\mu(A) = 0</math> है। इसे <math>\mu \ll \lambda</math> इस प्रकार लिखा जाता है। हम कहते हैं <math>\mu</math> का <math>\lambda.</math>प्रभुत्व है। | |||
अधिकांश अनुप्रयोगों में, यदि वास्तविक रेखा पर एक माप को पूरी तरह से निरंतर कहा जाता है - यह निर्दिष्ट किए बिना कि यह किस अन्य माप के संबंध में पूर्णतः निरंतर है - तो लेबेसेग माप के संबंध में पूर्ण निरंतरता का मतलब है। | |||
यही सिद्धांत बोरल उपसमूहों पर मापो <math>\mathbb{R}^n, n \geq 2.</math> के लिए लागू होता है। | |||
=== समतुल्य परिभाषाएं === | === समतुल्य परिभाषाएं === | ||
परिमित माप पर निम्नलिखित शर्तें <math>\mu</math> वास्तविक रेखा के बोरेल उपसमुच्चय समतुल्य हैं:<ref>Equivalence between (1) and (2) is a special case of {{harvnb|Nielsen|1997|loc=Proposition 15.5 on page 251}} (fails for σ-finite measures); equivalence between (1) and (3) is a special case of the [[Radon–Nikodym theorem]], see {{harvnb|Nielsen|1997|loc=Theorem 15.4 on page 251}} or {{harvnb|Athreya|Lahiri|2006|loc=Item (ii) of Theorem 4.1.1 on page 115}} (still holds for σ-finite measures).</ref> | परिमित माप पर निम्नलिखित शर्तें <math>\mu</math> वास्तविक रेखा के बोरेल उपसमुच्चय समतुल्य हैं:<ref>Equivalence between (1) and (2) is a special case of {{harvnb|Nielsen|1997|loc=Proposition 15.5 on page 251}} (fails for σ-finite measures); equivalence between (1) and (3) is a special case of the [[Radon–Nikodym theorem]], see {{harvnb|Nielsen|1997|loc=Theorem 15.4 on page 251}} or {{harvnb|Athreya|Lahiri|2006|loc=Item (ii) of Theorem 4.1.1 on page 115}} (still holds for σ-finite measures).</ref> | ||
# <math>\mu</math> | # <math>\mu</math> पूर्णतः निरंतर है; | ||
# हर | # हर धनात्मक संख्या के लिए <math>\varepsilon</math> एक धनात्मक संख्या है <math>\delta > 0</math> ऐसा है कि <math>\mu(A) < \varepsilon</math> सभी बोरेल सेट के लिए <math>A</math> लेबेसेग <math>\delta</math> माप से कम है। | ||
# एक | # एक लेबेसेग पूर्णांक फलन मौजूद है <math>g</math> वास्तविक रेखा पर ऐसा है <math display="block">\mu(A) = \int_A g \,d\lambda</math> सभी बोरेल सबसेट के लिए <math>A</math> वास्तविक रेखा का है। | ||
फलन के संदर्भ में एक समतुल्य परिभाषा के लिए पूर्ण निरंतरता की दो धारणाओं के बीच अनुभाग संबंध देखें। | |||
कोई अन्य फलन जो समाधान करता है (3) के बराबर है <math>g</math> लगभग रेखांतर में है। इस तरह के एक फलन को पूर्णतः निरंतर माप के रेडॉन-निकोडीम व्युत्पन्न या घनत्व <math>\mu.</math>कहा जाता है। | |||
(1), (2) और (3) के बीच <math>\R^n</math> समानता भी लागू होती है, सभी के लिए <math>n = 1, 2, 3, \ldots.</math> | |||
इस प्रकार, पूर्णतः निरंतर माप <math>\R^n</math> ठीक वही हैं जिनमें घनत्व है; एक विशेष मामले के रूप में, पूरी तरह से निरंतर संभाव्यता माप ठीक वही होते हैं जिनमें प्रायिकता घनत्व फलन होते हैं। | |||
इस प्रकार, | |||
=== सामान्यीकरण === | === सामान्यीकरण === | ||
अगर <math>\mu</math> और <math>\nu</math> एक ही [[मापने योग्य स्थान]] पर दो माप (गणित) | अगर <math>\mu</math> और <math>\nu</math> एक ही [[मापने योग्य स्थान|मापने योग्य रेखांतर]] पर दो माप (गणित) <math>(X, \mathcal{A})</math> हैं, <math>\mu</math> बताया गया {{visible anchor|Absolutely continuous measure|text=पूर्णतः निरंतर}} इसके संबंध में <math>\nu</math>अगर <math>\mu(A) = 0</math> हर सेट के लिए <math>A</math> जिसके लिए <math>\nu(A) = 0.</math><ref>{{harvnb|Nielsen|1997|loc=Definition 15.3 on page 250}}; {{harvnb|Royden|1988|loc=Sect. 11.6, page 276}}; {{harvnb|Athreya|Lahiri|2006|loc=Definition 4.1.1 on page 113}}.</ref> इसे इस प्रकार लिखा जाता है<math>\mu\ll\nu</math>. वह है: | ||
<math display=block>\mu \ll \nu \qquad \text{ if and only if } \qquad \text{ for all } A\in\mathcal{A}, \quad (\nu(A) = 0\ \text{ implies } \ \mu (A) = 0).</math> | <math display=block>\mu \ll \nu \qquad \text{ if and only if } \qquad \text{ for all } A\in\mathcal{A}, \quad (\nu(A) = 0\ \text{ implies } \ \mu (A) = 0).</math> | ||
जब <math>\mu\ll\nu,</math> तब <math>\nu</math> बताया गया {{visible anchor|Domination (measure theory)|text=डामनैटिंग}} <math>\mu.</math> | |||
मापों की पूर्ण निरंतरता रिफ्लेक्टिव संबंध और [[सकर्मक संबंध]] है, लेकिन [[एंटीसिमेट्रिक संबंध]] नहीं है, इसलिए यह [[आंशिक आदेश]] के बजाय एक [[पूर्व आदेश]] है। इसके बजाय, अगर <math>\mu \ll \nu</math> और <math>\nu \ll \mu,</math> माप <math>\mu</math> और <math>\nu</math> तुल्यता (माप सिद्धांत) कहा जाता है। इस प्रकार पूर्ण निरंतरता ऐसे [[तुल्यता वर्ग|तुल्यता वर्गो]] के आंशिक क्रम को प्रेरित करती है। | |||
अगर <math>\mu</math> एक हस्ताक्षरित माप या [[जटिल उपाय|जटिल माप]] है, ऐसा कहा जाता है <math>\mu</math> के संबंध में पूर्णतः निरंतर है <math>\nu</math> अगर इसकी भिन्नता है <math>|\mu|</math> समाधान <math>|\mu| \ll \nu;</math> समकक्ष, अगर हर सेट <math>A</math> जिसके लिए <math>\nu(A) = 0</math> है <math>\mu</math>-[[शून्य सेट|शून्य सेट है]]। | |||
<math | |||
रैडॉन-निकोडिम प्रमेय<ref>{{harvnb|Royden|1988|loc=Theorem 11.23 on page 276}}; {{harvnb|Nielsen|1997|loc=Theorem 15.4 on page 251}}; {{harvnb|Athreya|Lahiri|2006|loc=Item (ii) of Theorem 4.1.1 on page 115}}.</ref> बताता है कि अगर <math>\mu</math> के संबंध में पूर्णतः निरंतर है <math>\nu,</math> और दोनों माप σ-परिमित हैं, तब <math>\mu</math> के संबंध में घनत्व, या रेडॉन-निकोडिम व्युत्पन्न है <math>\nu,</math> जिसका अर्थ है कि एक मौजूद है <math>\nu</math>-मापने योग्य फलन <math>f</math> मान लेना <math>[0, +\infty),</math> द्वारा चिह्नित <math>f = d\mu / d\nu,</math> ऐसा कि किसी के लिए <math>\nu</math>-मापने योग्य सेट <math>A</math> अपने पास | |||
=== | <math display="block">\mu(A) = \int_A f \,d\nu.</math> | ||
लेबेस्ग अपघटन प्रमेय के लिए,<ref>{{harvnb|Royden|1988|loc=Proposition 11.24 on page 278}}; {{harvnb|Nielsen|1997|loc=Theorem 15.14 on page 262}}; {{harvnb|Athreya|Lahiri|2006|loc=Item (i) of Theorem 4.1.1 on page 115}}.</ref> प्रत्येक σ-परिमित माप को एक पूर्णतया सतत माप और एक अन्य σ-सीमित माप के संबंध में एक विलक्षण माप के योग में विघटित किया जा सकता है। उन मापों के उदाहरणों के लिए | ===विशिष्ट माप=== | ||
लेबेस्ग अपघटन प्रमेय के लिए,<ref>{{harvnb|Royden|1988|loc=Proposition 11.24 on page 278}}; {{harvnb|Nielsen|1997|loc=Theorem 15.14 on page 262}}; {{harvnb|Athreya|Lahiri|2006|loc=Item (i) of Theorem 4.1.1 on page 115}}.</ref> प्रत्येक σ- परिमित माप को एक पूर्णतया सतत माप और एक अन्य σ- सीमित माप के संबंध में एक विलक्षण माप के योग में विघटित किया जा सकता है। उन मापों के उदाहरणों के लिए विशिष्ट माप देखें जो पूर्णतः निरंतर नहीं हैं। | |||
== पूर्ण निरंतरता की दो धारणाओं के बीच संबंध == | == पूर्ण निरंतरता की दो धारणाओं के बीच संबंध == | ||
वास्तविक रेखा के बोरेल सेट पर एक परिमित माप μ | वास्तविक रेखा के बोरेल सेट पर एक परिमित माप μ लेबेस्ग माप के संबंध में पूर्णतः निरंतर है यदि और केवल यदि बिंदु फलन करता है, | ||
:<math>F(x)=\mu((-\infty,x])</math> | :<math>F(x)=\mu((-\infty,x])</math> | ||
एक | एक पूर्णतः निरंतर वास्तविक फलन है। | ||
अधिक सामान्यतः एक फलन स्थानीय रूप से होता है (अर्थात् हर बाध्य अंतर पर) पूर्णतः निरंतर अगर और केवल अगर इसका [[वितरण व्युत्पन्न]] एक माप है जो लेबेस्गु माप के संबंध में पूर्णतः निरंतर है। | |||
अधिक | |||
यदि पूर्ण निरंतरता बनी रहती है तो ''μ'' का रेडॉन-निकोडीम व्युत्पन्न एफ के व्युत्पन्न के लगभग हर जगह बराबर होता है।<ref>{{harvnb|Royden|1988|loc=Problem 12.17(b) on page 303}}.</ref> | |||
अधिक सामान्यतः माप ''μ'' को स्थानीय रूप से परिमित (परिमित के बजाय) माना जाता है और ''F''(''x'') को ''μ''((0,''x'']) के रूप में परिभाषित किया जाता है {{nowrap|''x'' > 0}}, 0 के लिए {{nowrap|1=''x'' = 0}}, और −''μ''((''x'',0]) के लिए {{nowrap|''x'' < 0}}. इस स्थितियो में ''μ'' लेबेस्ग-स्टिल्टजेस पूर्णांक हैl लेबेस्ग-स्टिल्टजेस माप ''F'' द्वारा उत्पन्न किया गया है।<ref>{{harvnb|Athreya|Lahiri|2006|loc=Sect. 1.3.2, page 26}}.</ref> पूर्ण निरंतरता की दो धारणाओं के बीच संबंध अभी भी कायम है।<ref>{{harvnb|Nielsen|1997|loc=Proposition 15.7 on page 252}}; {{harvnb|Athreya|Lahiri|2006|loc=Theorem 4.4.3 on page 131}}; {{harvnb|Royden|1988|loc=Problem 12.17(a) on page 303}}.</ref> | |||
==टिप्पणियाँ== | ==टिप्पणियाँ== | ||
{{reflist|29em}} | {{reflist|29em}} | ||
==संदर्भ== | ==संदर्भ== | ||
* {{citation | last1=Ambrosio | first1=Luigi | last2=Gigli | first2=Nicola | last3=Savaré | first3=Giuseppe | title=Gradient Flows in Metric Spaces and in the Space of Probability Measures | publisher=ETH Zürich, Birkhäuser Verlag, Basel | year=2005 | isbn=3-7643-2428-7 }} | * {{citation | last1=Ambrosio | first1=Luigi | last2=Gigli | first2=Nicola | last3=Savaré | first3=Giuseppe | title=Gradient Flows in Metric Spaces and in the Space of Probability Measures | publisher=ETH Zürich, Birkhäuser Verlag, Basel | year=2005 | isbn=3-7643-2428-7 }} | ||
Line 135: | Line 129: | ||
* {{citation | last=Nielsen | first=Ole A. | title = An introduction to integration and measure theory | publisher = Wiley-Interscience | year = 1997 | isbn=0-471-59518-7 }} | * {{citation | last=Nielsen | first=Ole A. | title = An introduction to integration and measure theory | publisher = Wiley-Interscience | year = 1997 | isbn=0-471-59518-7 }} | ||
* {{citation | last=Royden | first=H.L. | title = Real Analysis | publisher = Collier Macmillan | edition=third| year = 1988 | isbn=0-02-404151-3 }} | * {{citation | last=Royden | first=H.L. | title = Real Analysis | publisher = Collier Macmillan | edition=third| year = 1988 | isbn=0-02-404151-3 }} | ||
==बाहरी संबंध== | ==बाहरी संबंध== | ||
* [https://www.encyclopediaofmath.org/index.php/Absolute_continuity Absolute continuity] at [http://www.encyclopediaofmath.org/ Encyclopedia of Mathematics] | * [https://www.encyclopediaofmath.org/index.php/Absolute_continuity Absolute continuity] at [http://www.encyclopediaofmath.org/ Encyclopedia of Mathematics] | ||
* [https://www.mat.univie.ac.at/~gerald/ftp/book-fa/index.html Topics in Real and Functional Analysis] by [[Gerald Teschl]] | * [https://www.mat.univie.ac.at/~gerald/ftp/book-fa/index.html Topics in Real and Functional Analysis] by [[Gerald Teschl]] | ||
[[Category:Created On 20/03/2023]] | [[Category:Created On 20/03/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:निरंतर कार्यों का सिद्धांत]] | |||
[[Category:माप सिद्धांत]] | |||
[[Category:वास्तविक विश्लेषण]] |
Latest revision as of 09:26, 16 April 2023
कलन में, पूर्ण निरंतरता फलन (गणित) का एक सहज (गणित) गुण है जो निरंतरता और समान निरंतरता से अधिक मजबूत है। पूर्ण निरंतरता की धारणा किसी को कलन-व्युत्पन्न और अभिन्न के दो केंद्रीय फलन के बीच संबंधों के सामान्यीकरण को प्राप्त करने की अनुमति देती है। रीमैन पूर्णांक की रूपरेखा में (कलन के मौलिक प्रमेय द्वारा) चित्रित किया जाता है, लेकिन पूर्ण निरंतरता के साथ इसे लेबेसेग पूर्णांक के संदर्भ में तैयार किया जा सकता है। वास्तविक मूल्यांकित फलन के लिए वास्तविक रेखा पर, दो परस्पर संबंधित धारणाएँ फलन की पूर्ण निरंतरता और मापों की पूर्ण निरंतरता दिखाई देती हैं। इन दो धारणाओं को अलग-अलग दिशाओं में सामान्यीकृत किया जाता है। फलन का सामान्य व्युत्पन्न एक माप के रेडॉन-निकोडीम व्युत्पन्न , या घनत्व से संबंधित है। हमारे पास वास्तविक रेखा के एक कॉम्पैक्ट उपसमुच्चय पर फलन के लिए निम्नलिखित अनुक्रम हैं:
- पूर्णतः निरंतर ⊆ समान रूप से निरंतर निरंतर फलन
और, एक संक्षिप्त अंतर के लिए,
- निरंतर अवकलनीय ⊆ लिप्सचिट्ज़ निरंतर ⊆ पूर्णतः निरंतर ⊆ परिबद्ध भिन्नता ⊆ अवकलनीय फलन लगभग रेखांतर है।
फलन की पूर्ण निरंतरता
एक सतत फलन पूर्णतः निरंतर होने में विफल रहता है, यदि यह एकसमान रूप से निरंतर होने में विफल रहता है, और यह तब हो सकता है जब फलन का डोमेन कॉम्पैक्ट न हो - उदाहरण हैं tan(x) over [0, π/2), x2 संपूर्ण वास्तविक रेखा पर, और sin(1/x) over (0, 1] है। लेकिन एक निरंतर फलन f कॉम्पैक्ट अंतर पर भी पूरी तरह से निरंतर होने में विफल हो सकता है। यह लगभग हर जगह (वीयरस्ट्रैस फलन की तरह, जो कहीं भी भिन्न नहीं है) भिन्न नहीं हो सकता है। या यह लगभग हर जगह अलग-अलग फलन हो सकता है और इसका व्युत्पन्न f ' लेबेस्ग पूर्णांक हो सकता है, लेकिन f ' का अभिन्न अंतर f की वृद्धि से भिन्न होता है (कितना f एक अंतर पर बदलता है ) यह उदाहरण के लिए कैंटर फलन के साथ होता है।
परिभाषा
मान ले कि वास्तविक रेखा में एक अंतर (गणित) हो, एक फलन पूर्णतः निरंतर है अगर धनात्मक संख्या के लिए , एक धनात्मक संख्या है ऐसा है कि जब भी एक परिमित अनुक्रम जोड़ीवार संयुक्त उप-अंतर का साथ को अलग करता है।[1]
तब
पर सभी पूर्णतः निरंतर फलन का संग्रह को से निरूपित किया जाता है।
समतुल्य परिभाषाएं
एक कॉम्पैक्ट अंतर [a,b] पर वास्तविक-मूल्यवान फलन f पर निम्न स्थितियां समान हैं:[2]
- f पूर्णतया सतत है;
- f का व्युत्पन्न f ' लगभग हर जगह व्युत्पन्न लेब्सग पूर्णांक है, और [a,b] पर सभी x के लिए है;
- [a,b] पर एक लेब्ज़ैग ग्रेबल फलन g सम्मिलित है जैसे कि [a,b] में सभी x के लिए है।
यदि इन समान स्थितियों का समाधान हो जाता है तो अनिवार्य रूप से g = f ′ लगभग हर जगह है।
(1) और (3) के बीच समानता को लेबेसेग के कारण 'लेबेस्ग अविभाज्य कलन के मौलिक प्रमेय' के रूप में जाना जाता है।[3]
माप के संदर्भ में एक समान परिभाषा के लिए पूर्ण निरंतरता की दो धारणाओं के बीच अनुभाग संबंध देखें।
गुण
- दो पूर्णतः सतत फलनों का योग और अंतर भी पूर्णतया सतत होता है। यदि दो फलन परिबद्ध संवृत्त अंतर पर परिभाषित हैं, तो उनका गुणनफल भी पूर्णतः संतत होता है।[4]
- यदि एक परिबद्ध बंद अंतर पर एक पूर्णतः निरंतर फलन परिभाषित किया गया है और कहीं भी शून्य नहीं है तो इसका व्युत्क्रम पूर्णतः निरंतर है।[5]
- प्रत्येक पूर्णतया सतत फलन (संहत अंतराल पर) समान रूप से सतत होता है और इसलिए निरंतर होता है। प्रत्येक (वैश्विक स्तर पर) लिपशिट्ज-निरंतर फलन पूर्णतः निरंतर है।[6]
- यदि f: [a,b] → 'R' पूर्णतः निरंतर है, तो यह [a,b] पर परिबद्ध भिन्नता का है।[7]
- यदि f: [a,b] → 'R' पूर्णतः निरंतर है, तो इसे [a,b] पर दो मोनोटोनिक गैर-घटते पूर्णतः निरंतर फलन के अंतर के रूप में लिखा जा सकता है।
- यदि f: [a,b] → 'R' पूर्णतः निरंतर है, तो इसमें लूज़िन N गुण है (अर्थात, किसी के लिए भी) ऐसा है कि , यह मानता है , जहाँ R पर लेबेस्ग माप के लिए खड़ा है)।
- f: I → R पूर्णतः निरंतर है अगर और केवल अगर यह निरंतर है, परिबद्ध विविधता का है और लुज़िन N गुण है। इस कथन को बनच-ज़ारेकी प्रमेय के रूप में भी जाना जाता है।[8]
- यदि f: I → 'R' पूर्णतः निरंतर है और g: R → R विश्व स्तर पर लिपशिट्ज-निरंतर है, तो रचना g ∘ f पूर्णतः निरंतर है। इसके विपरीत, प्रत्येक फलन g के लिए जो विश्व स्तर पर लिप्सचिट्ज़ निरंतर नहीं है, एक पूर्णतः निरंतर फलन f मौजूद है जैसे कि g ∘ f पूर्णतः निरंतर नहीं है।[9]
उदाहरण
निम्नलिखित फलन समान रूप से निरंतर हैं लेकिन पूर्णतः निरंतर नहीं हैं:
- कैंटर फलन [0, 1] पर (यह परिबद्ध भिन्नता का है लेकिन पूर्णतः निरंतर नहीं है);
- फलनक्रम एक परिमित अंतराल पर जिसमें मूल है।
निम्नलिखित फलन पूर्णतः निरंतर हैं लेकिन α-होल्डर निरंतर नहीं हैं:
- फलन f(x) = xβ [0, c] पर, किसी के लिए भी 0 < β < α < 1
निम्नलिखित फलन बिल्कुल निरंतर हैं और α-होल्डर निरंतर हैं लेकिन लिप्सचिट्ज़ निरंतर नहीं हैं:
- फलन f(x) =√x [0, c] पर, α ≤ 1/2 के लिए हैं।
सामान्यीकरण
मान ले कि (X, d) एक मीट्रिक स्थान हो और I वास्तविक रेखा 'R' में एक अंतर (गणित) हो। एक फलन f: I → X, I पर 'पूर्णतः निरंतर' है यदि प्रत्येक धनात्मक संख्या के लिए , एक धनात्मक संख्या है ऐसा है कि जब भी I के उप-अंतरों [xk, yk] को जोड़ो में अलग करने का एक परिमित अनुक्रम समाधान करता है,
तब
I से X तक सभी पूर्ण निरंतर फलन का संग्रह AC(I; X) को दर्शाता है।
एक और सामान्यीकरण रेखांतर ACp(I; X) वक्र f: I → X ऐसा है कि[10]
Lp रेखांतर में Lp(I) कुछ m के लिए है|
इन सामान्यीकरणों के गुण
- प्रत्येक पूर्णतया सतत फलन (संहत अंतराल पर) समान रूप से सतत होता है और इसलिए निरंतर होता है। प्रत्येक लिपशिट्ज-निरंतर फलन पूर्णतया निरंतर है।
- यदि f: [a,b] → X पूर्णतः निरंतर है, तो यह [a,b] पर परिबद्ध भिन्नता का है।
- f ∈ ACp(I; X), f का मीट्रिक व्युत्पन्न λ-लगभग हर समय I में मौजूद है, और मीट्रिक डेरिवेटिव सबसे छोटा m ∈ Lp(I; R) ऐसा कि[11]
मापो की पूर्ण निरंतरता
परिभाषा
माप (गणित) वास्तविक रेखा के बोरेल सेट पर लेबेस्ग माप के संबंध में पूर्णतः निरंतर है यदि प्रत्येक के लिए -मापने योग्य सेट का अर्थ है। इसे इस प्रकार लिखा जाता है। हम कहते हैं का प्रभुत्व है।
अधिकांश अनुप्रयोगों में, यदि वास्तविक रेखा पर एक माप को पूरी तरह से निरंतर कहा जाता है - यह निर्दिष्ट किए बिना कि यह किस अन्य माप के संबंध में पूर्णतः निरंतर है - तो लेबेसेग माप के संबंध में पूर्ण निरंतरता का मतलब है।
यही सिद्धांत बोरल उपसमूहों पर मापो के लिए लागू होता है।
समतुल्य परिभाषाएं
परिमित माप पर निम्नलिखित शर्तें वास्तविक रेखा के बोरेल उपसमुच्चय समतुल्य हैं:[12]
- पूर्णतः निरंतर है;
- हर धनात्मक संख्या के लिए एक धनात्मक संख्या है ऐसा है कि सभी बोरेल सेट के लिए लेबेसेग माप से कम है।
- एक लेबेसेग पूर्णांक फलन मौजूद है वास्तविक रेखा पर ऐसा है सभी बोरेल सबसेट के लिए वास्तविक रेखा का है।
फलन के संदर्भ में एक समतुल्य परिभाषा के लिए पूर्ण निरंतरता की दो धारणाओं के बीच अनुभाग संबंध देखें।
कोई अन्य फलन जो समाधान करता है (3) के बराबर है लगभग रेखांतर में है। इस तरह के एक फलन को पूर्णतः निरंतर माप के रेडॉन-निकोडीम व्युत्पन्न या घनत्व कहा जाता है।
(1), (2) और (3) के बीच समानता भी लागू होती है, सभी के लिए
इस प्रकार, पूर्णतः निरंतर माप ठीक वही हैं जिनमें घनत्व है; एक विशेष मामले के रूप में, पूरी तरह से निरंतर संभाव्यता माप ठीक वही होते हैं जिनमें प्रायिकता घनत्व फलन होते हैं।
सामान्यीकरण
अगर और एक ही मापने योग्य रेखांतर पर दो माप (गणित) हैं, बताया गया पूर्णतः निरंतर इसके संबंध में अगर हर सेट के लिए जिसके लिए [13] इसे इस प्रकार लिखा जाता है. वह है:
मापों की पूर्ण निरंतरता रिफ्लेक्टिव संबंध और सकर्मक संबंध है, लेकिन एंटीसिमेट्रिक संबंध नहीं है, इसलिए यह आंशिक आदेश के बजाय एक पूर्व आदेश है। इसके बजाय, अगर और माप और तुल्यता (माप सिद्धांत) कहा जाता है। इस प्रकार पूर्ण निरंतरता ऐसे तुल्यता वर्गो के आंशिक क्रम को प्रेरित करती है।
अगर एक हस्ताक्षरित माप या जटिल माप है, ऐसा कहा जाता है के संबंध में पूर्णतः निरंतर है अगर इसकी भिन्नता है समाधान समकक्ष, अगर हर सेट जिसके लिए है -शून्य सेट है।
रैडॉन-निकोडिम प्रमेय[14] बताता है कि अगर के संबंध में पूर्णतः निरंतर है और दोनों माप σ-परिमित हैं, तब के संबंध में घनत्व, या रेडॉन-निकोडिम व्युत्पन्न है जिसका अर्थ है कि एक मौजूद है -मापने योग्य फलन मान लेना द्वारा चिह्नित ऐसा कि किसी के लिए -मापने योग्य सेट अपने पास
विशिष्ट माप
लेबेस्ग अपघटन प्रमेय के लिए,[15] प्रत्येक σ- परिमित माप को एक पूर्णतया सतत माप और एक अन्य σ- सीमित माप के संबंध में एक विलक्षण माप के योग में विघटित किया जा सकता है। उन मापों के उदाहरणों के लिए विशिष्ट माप देखें जो पूर्णतः निरंतर नहीं हैं।
पूर्ण निरंतरता की दो धारणाओं के बीच संबंध
वास्तविक रेखा के बोरेल सेट पर एक परिमित माप μ लेबेस्ग माप के संबंध में पूर्णतः निरंतर है यदि और केवल यदि बिंदु फलन करता है,
एक पूर्णतः निरंतर वास्तविक फलन है।
अधिक सामान्यतः एक फलन स्थानीय रूप से होता है (अर्थात् हर बाध्य अंतर पर) पूर्णतः निरंतर अगर और केवल अगर इसका वितरण व्युत्पन्न एक माप है जो लेबेस्गु माप के संबंध में पूर्णतः निरंतर है।
यदि पूर्ण निरंतरता बनी रहती है तो μ का रेडॉन-निकोडीम व्युत्पन्न एफ के व्युत्पन्न के लगभग हर जगह बराबर होता है।[16]
अधिक सामान्यतः माप μ को स्थानीय रूप से परिमित (परिमित के बजाय) माना जाता है और F(x) को μ((0,x]) के रूप में परिभाषित किया जाता है x > 0, 0 के लिए x = 0, और −μ((x,0]) के लिए x < 0. इस स्थितियो में μ लेबेस्ग-स्टिल्टजेस पूर्णांक हैl लेबेस्ग-स्टिल्टजेस माप F द्वारा उत्पन्न किया गया है।[17] पूर्ण निरंतरता की दो धारणाओं के बीच संबंध अभी भी कायम है।[18]
टिप्पणियाँ
- ↑ Royden 1988, Sect. 5.4, page 108; Nielsen 1997, Definition 15.6 on page 251; Athreya & Lahiri 2006, Definitions 4.4.1, 4.4.2 on pages 128,129. The interval is assumed to be bounded and closed in the former two books but not the latter book.
- ↑ Nielsen 1997, Theorem 20.8 on page 354; also Royden 1988, Sect. 5.4, page 110 and Athreya & Lahiri 2006, Theorems 4.4.1, 4.4.2 on pages 129,130.
- ↑ Athreya & Lahiri 2006, before Theorem 4.4.1 on page 129.
- ↑ Royden 1988, Problem 5.14(a,b) on page 111.
- ↑ Royden 1988, Problem 5.14(c) on page 111.
- ↑ Royden 1988, Problem 5.20(a) on page 112.
- ↑ Royden 1988, Lemma 5.11 on page 108.
- ↑ Bruckner, Bruckner & Thomson 1997, Theorem 7.11.
- ↑ Fichtenholz 1923.
- ↑ Ambrosio, Gigli & Savaré 2005, Definition 1.1.1 on page 23
- ↑ Ambrosio, Gigli & Savaré 2005, Theorem 1.1.2 on page 24
- ↑ Equivalence between (1) and (2) is a special case of Nielsen 1997, Proposition 15.5 on page 251 (fails for σ-finite measures); equivalence between (1) and (3) is a special case of the Radon–Nikodym theorem, see Nielsen 1997, Theorem 15.4 on page 251 or Athreya & Lahiri 2006, Item (ii) of Theorem 4.1.1 on page 115 (still holds for σ-finite measures).
- ↑ Nielsen 1997, Definition 15.3 on page 250; Royden 1988, Sect. 11.6, page 276; Athreya & Lahiri 2006, Definition 4.1.1 on page 113.
- ↑ Royden 1988, Theorem 11.23 on page 276; Nielsen 1997, Theorem 15.4 on page 251; Athreya & Lahiri 2006, Item (ii) of Theorem 4.1.1 on page 115.
- ↑ Royden 1988, Proposition 11.24 on page 278; Nielsen 1997, Theorem 15.14 on page 262; Athreya & Lahiri 2006, Item (i) of Theorem 4.1.1 on page 115.
- ↑ Royden 1988, Problem 12.17(b) on page 303.
- ↑ Athreya & Lahiri 2006, Sect. 1.3.2, page 26.
- ↑ Nielsen 1997, Proposition 15.7 on page 252; Athreya & Lahiri 2006, Theorem 4.4.3 on page 131; Royden 1988, Problem 12.17(a) on page 303.
संदर्भ
- Ambrosio, Luigi; Gigli, Nicola; Savaré, Giuseppe (2005), Gradient Flows in Metric Spaces and in the Space of Probability Measures, ETH Zürich, Birkhäuser Verlag, Basel, ISBN 3-7643-2428-7
- Athreya, Krishna B.; Lahiri, Soumendra N. (2006), Measure theory and probability theory, Springer, ISBN 0-387-32903-X
- Bruckner, A. M.; Bruckner, J. B.; Thomson, B. S. (1997), Real Analysis, Prentice Hall, ISBN 0-134-58886-X
- Fichtenholz, Grigorii (1923). "Note sur les fonctions absolument continues". Matematicheskii Sbornik. 31 (2): 286–295.
- Leoni, Giovanni (2009), A First Course in Sobolev Spaces, Graduate Studies in Mathematics, American Mathematical Society, pp. xvi+607 ISBN 978-0-8218-4768-8, MR2527916, Zbl 1180.46001, MAA
- Nielsen, Ole A. (1997), An introduction to integration and measure theory, Wiley-Interscience, ISBN 0-471-59518-7
- Royden, H.L. (1988), Real Analysis (third ed.), Collier Macmillan, ISBN 0-02-404151-3