परिबद्ध भिन्नता

From Vigyanwiki

गणितीय विश्लेषण में, परिबद्ध भिन्नता का कार्य, जिसे के रूप में भी जाना जाता हैBV फलन', एक वास्तविक संख्या-मूल्यवान फलन (गणित) है, जिसकी कुल भिन्नता परिमित (परिमित) है: इस गुण वाले फलन का ग्राफ एक स्पष्ट अर्थ में अच्छी तरह से व्यवहार किया जाता है। एकल चर (गणित) के निरंतर कार्य के लिए, परिबद्ध भिन्नता होने का अर्थ है कि y-अक्ष की दिशा (ज्यामिति, भूगोल) के साथ दूरी|y-अक्ष, एक्स-अक्ष के साथ गति के योगदान की उपेक्षा करना |x-अक्ष, ग्राफ के साथ चलते हुए एक बिंदु (गणित) द्वारा यात्रा की जाती है, इसका एक परिमित मान होता है। कई चरों के एक सतत कार्य के लिए, परिभाषा का अर्थ समान है, इस तथ्य को छोड़कर कि माना जाने वाला निरंतर पथ दिए गए फलन का संपूर्ण ग्राफ़ नहीं हो सकता है (जो अंतर ज्यामिति और टोपोलॉजी #H की शब्दावली है) इस स्थिति में), किन्तु एक अतिपरवलय (दो चर के कार्यों के स्थिति में, एक प्लेन (गणित)) के साथ ग्राफ का प्रत्येक प्रतिच्छेदन (समुच्चय सिद्धांत) एक निश्चित के समानांतर हो सकता है x-अक्ष और को y-एक्सिस।

परिबद्ध भिन्नता के कार्य स्पष्ट रूप से वे हैं | जिनके संबंध में सभी निरंतर कार्यों के रिमेंन-स्टील्टजेस इंटीग्रल मिल सकते हैं।

एक अन्य लक्षण वर्णन में कहा गया है कि कॉम्पैक्ट अंतराल पर परिबद्ध भिन्नता के कार्य ठीक वही हैं | f जिसे अंतर g − h के रूप में लिखा जा सकता है | जहां दोनों g और h बंधे हुए मोनोटोनिक फलन हैं। विशेष रूप से, BV फलन में असंतोष हो सकता है, किन्तु अधिकतर गिनती में नहीं हो सकता है ।

कई चर के स्थिति में, फलन f खुले उपसमुच्चय पर परिभाषित Ω का कहा जाता है कि यदि इसका वितरण (गणित) सदिश-मूल्यवान कार्य परिमित रेडॉन माप है, तो परिमित भिन्नता है।

परिबद्ध भिन्नता के कार्यों के सबसे महत्वपूर्ण पहलुओं में से एक यह है कि वे निरंतर कार्य के साहचर्य बीजगणित का निर्माण करते हैं | जिसका पहला व्युत्पन्न लगभग प्रत्येक स्थान उपस्थित है | इस तथ्य के कारण, वे कार्यात्मक (गणित) से जुड़ी गैर-रैखिक समस्याओं के सामान्यीकृत समाधान को परिभाषित करने के लिए और अधिकांशतः उपयोग किए जाते हैं। गणित, भौतिकी और अभियांत्रिकी में साधारण अंतर समीकरण और आंशिक अंतर समीकरण है।

हमारे पास वास्तविक रेखा के बंद, परिबद्ध अंतराल पर निरंतर कार्यों के लिए समावेशन की निम्नलिखित श्रृंखलाएं हैं |

निरंतर अवकलनीय ⊆ लिपशित्ज़ निरंतर ⊆ निरंतर ⊆ निरंतर और परिबद्ध भिन्नता ⊆ भिन्न कार्य लगभग प्रत्येक स्थान में होता है |

इतिहास

बोरिस गोलूबोव के अनुसार, चर के BV कार्यों को पहली बार केमिली जॉर्डन द्वारा पेपर में प्रस्तुत किया गया था | (जॉर्डन 1881) फूरियर श्रृंखला के अभिसरण से निपटना इस अवधारणा के सामान्यीकरण में कई चर के कार्यों के लिए पहला सफल कदम लियोनिडा टोनेली के कारण था |,[1] जिन्होंने 1926 में निरंतर BV कार्यों का वर्ग प्रस्तुत किया (सेसरी 1986, pp. 47–48), एक से अधिक चर में विविधताओं की गणना में समस्याओं के समाधान खोजने के लिए विविधताओं की गणना में अपनी प्रत्यक्ष पद्धति का विस्तार करने के लिए। दस साल बाद, में (सेसरी 1936), लैम्बर्टो केसरी ने टोनेली की परिभाषा में निरंतरता की आवश्यकता को कम प्रतिबंधात्मक अभिन्न आवश्यकता में बदल दिया, पहली बार इसकी पूर्ण व्यापकता में कई चरों के परिबद्ध भिन्नता के कार्यों का वर्ग प्राप्त किया था | जैसा कि जॉर्डन ने उससे पहले किया था, उन्होंने हल करने के लिए अवधारणा को प्रयुक्त किया फूरियर श्रृंखला के अभिसरण से संबंधित समस्या, किन्तु दो चर के कार्यों के लिए। उसके बाद, कई लेखकों ने कई चर, ज्यामितीय माप सिद्धांत, विविधताओं की कलन, और गणितीय भौतिकी में फूरियर श्रृंखला का अध्ययन करने के लिए BV कार्यों को प्रयुक्त किया। रेनाटो कैसियोपोली और एन्नियो डी जियोर्गी ने उन्हें समुच्चय (गणित) के सुचारू कार्य सीमा (टोपोलॉजी) के माप सिद्धांत को परिभाषित करने के लिए उपयोग किया (अधिक जानकारी के लिए प्रविष्टि कैसीओपोली समुच्चय देखें)। ओल्गा आर्सेनिवना ओलेनिक ने कागज में अंतरिक्ष BV से कार्यों के रूप में गैर-रैखिक आंशिक अंतर समीकरणों के सामान्यीकृत समाधानों के बारे में अपना विचार प्रस्तुत किया। (ओलेनिक 1957), और पेपर में प्रथम-क्रम आंशिक अंतर समीकरण आंशिक अंतर समीकरण के परिबद्ध भिन्नता के सामान्यीकृत समाधान का निर्माण करने में सक्षम था (ओलेनिक 1959): कुछ साल बाद, एडवर्ड डी. कॉनवे और जोएल ए. स्मोलर ने पेपर में पहले क्रम के एकल अतिपरवलयिक समीकरण के अध्ययन के लिए BV-फलन प्रयुक्त किए (कोनवे & स्मोलर 1966), यह सिद्ध करते हुए कि इस तरह के समीकरणों के लिए कॉची समस्या का समाधान परिबद्ध भिन्नता का एक कार्य है | परंतु कॉची सीमा की स्थिति एक ही वर्ग की हो। आइज़िक इसाकोविच वोलपर्ट ने बड़े मापदंड पर BV कार्यों के लिए कलन विकसित किया: पेपर में (वोल्पर्ट 1967) उन्होंने BV फलन और पुस्तक में बाउंडेड वेरिएशन चेन रूल सिद्ध किया (हुद्जाएव & वोल्पर्ट 1985) उन्होंने अपने शिष्य सर्गेई इवानोविच हुडजाएव के साथ संयुक्त रूप से BV कार्यों और उनके आवेदन के गुणों का व्यापक रूप से पता लगाया। उनके चेन रूल फॉर्मूले को बाद में पेपर में लुइगी एम्ब्रोसियो और ज्ञानी दल मासो द्वारा विस्तारित किया गया था |(एम्ब्रोसियो & दाल मसो 1990).

औपचारिक परिभाषा

चर के B.V.. कार्य करता है |

परिभाषा 1.1. अंतराल (गणित) [ab] ⊂ ℝ पर परिभाषित निरंतर वास्तविक संख्या-मूल्यवान (या अधिक सामान्य रूप से जटिल संख्या-मूल्यवान) फलन (गणित) f, की कुल भिन्नता मात्रा है |

जहां समुच्चय पर सुप्रीमम को ले लिया जाता है | अंतराल के सभी विभाजनों पर विचार किया गया था।


यदि f व्युत्पन्न है और इसका व्युत्पन्न रीमैन-इंटीग्रेबल है, तो इसकी कुल भिन्नता इसके ग्राफ की चाप लंबाई का ऊर्ध्वाधर घटक है | जिसका कहना है |

परिभाषा 1.2. निरंतर वास्तविक-मूल्यवान कार्य वास्तविक रेखा पर चुने हुए अंतराल (गणित) [a, b] ⊂ ℝ पर परिमित भिन्नता (BV फलन) का होना कहा जाता है | यदि इसकी कुल भिन्नता परिमित है |

यह सिद्ध किया जा सकता है कि वास्तविक फलन ƒ में परिबद्ध भिन्नता है | यदि और केवल यदि इसे अंतर ƒ = ƒ1- ƒ2 के रूप में लिखा जा सकता है | दो गैर-घटते कार्यों पर : इस परिणाम को फलन के जॉर्डन अपघटन के रूप में जाना जाता है और यह हैन अपघटन प्रमेय से संबंधित है |

स्टिल्ट्स अभिन्न के माध्यम से, बंद अंतराल पर परिबद्ध भिन्नता का कोई भी कार्य सी पर परिबद्ध रैखिक कार्यात्मक को परिभाषित करता है। इस विशेष स्थिति में,[2] रिज़्ज़-मार्कोव-काकुटानी प्रतिनिधित्व प्रमेय कहता है कि प्रत्येक परिबद्ध रैखिक प्रकार्य इस तरह से विशिष्ट रूप से उत्पन्न होता है। सामान्यीकृत सकारात्मक कार्य या संभाव्यता उपाय सकारात्मक गैर-घटते निचले अर्ध-सतत कार्यों के अनुरूप हैं। में यह दृष्टिकोण महत्वपूर्ण रहा है |

वर्णक्रमीय सिद्धांत,[3] विशेष रूप से साधारण अंतर समीकरणों के वर्णक्रमीय सिद्धांत के लिए इसके अनुप्रयोग में उपयोग होता है।

कई चर के B.V.. कार्य

परिबद्ध भिन्नता के कार्य, B.V.. फलन (गणित), ऐसे फलन हैं | जिनका वितरणात्मक व्युत्पन्न विक्त: परिमित है |[4] रेडॉन माप

परिभाषा 2.1. माना का खुला उपसमुच्चय हो . फलन एलपी स्पेस से संबंधित परिबद्ध भिन्नता (BV फलन) के बारे में कहा जाता है, और लिखा जाता है |

यदि कोई परिमित माप सदिश-मूल्यवान फलन रेडॉन माप उपस्थित है | जैसे कि निम्नलिखित समानता रखती है |

वह , अंतरिक्ष पर रैखिक कार्यात्मक परिभाषित करता है | स्मूथ फलन सदिश-वैल्यू फलन का समर्थन का (गणित) कॉम्पैक्ट समर्थन में निहित है | सदिश माप (गणित) इसलिए वितरण (गणित) का प्रतिनिधित्व करता है | परीक्षण कार्यों और वितरण या अशक्त व्युत्पन्न ढाल की परिभाषा . है |

BV को निम्नलिखित विधि से समान रूप से परिभाषित किया जा सकता है।

परिभाषा 2.2. एक फलन दिया से संबंधित , की कुल भिन्नता [5] में परिभाषित किया जाता है |

जहाँ आवश्यक सुप्रीम नॉर्म (गणित) है। कभी-कभी, विशेष रूप से कैकियोपोली समुच्चय के सिद्धांत में, निम्नलिखित अंकन का उपयोग किया जाता है |

उस पर जोर देने के लिए वितरण (गणित) की कुल भिन्नता है | परीक्षण कार्यों और वितरण की परिभाषा अशक्त व्युत्पन्न ढाल . यह अंकन यह भी याद दिलाता है कि यदि वर्ग का है | (अर्थात सतत कार्य और निरंतर कार्य डेरिवेटिव वाले अलग-अलग कार्य) तो इसकी कुल भिन्नता इसके ढाल के पूर्ण मूल्य का इंटीग्रल (माप सिद्धांत) है।

परिबद्ध भिन्नता (BV कार्यों) के कार्यों का स्थान तब के रूप में परिभाषित किया जा सकता है |

दो परिभाषाएँ if से समतुल्य हैं | तब

इसलिए अंतरिक्ष पर सतत रैखिक कार्यात्मक परिभाषित करता है | . तब से रेखीय उप-स्थान के रूप में, इस निरंतर रेखीय कार्यात्मक को निरंतर कार्य और रैखिकता को संपूर्ण तक बढ़ाया जा सकता है | हान-बनाक प्रमेय द्वारा इसलिए निरंतर रेखीय कार्यात्मक राडोन माप द्वैत को रिज-मार्कोव-काकुटानी प्रतिनिधित्व प्रमेय द्वारा परिभाषित करता है।

स्थानीय रूप से B.V.. कार्य करता है

यदि स्थानीय रूप से एकीकृत कार्यों का कार्य स्थान, अर्थात कार्य (गणित) से संबंधित है |, पूर्ववर्ती परिभाषाओं में माना जाता है | 1.2, 2.1 और 2.2 पूर्णांकीय फलन के अतिरिक्त परिभाषित किया गया फलन स्थान स्थानीय रूप से परिबद्ध भिन्नता के फलनों का है। ठीक है, के लिए इस विचार को विकसित करना परिभाषा 2.2, स्थानीय प्रोपर्टी भिन्नता को निम्नानुसार परिभाषित किया गया है |

प्रत्येक समुच्चय के लिए (गणित) , परिभाषित किया था | सभी अपेक्षाकृत कॉम्पैक्ट सबस्पेस के खुले सबसेट के समुच्चय के रूप में आयाम (गणित) के मानक टोपोलॉजी के संबंध में परिमित-आयामी सदिश रिक्त स्थान, और तदनुसार स्थानीय रूप से बंधे भिन्नता के कार्यों की श्रेणी को परिभाषित किया गया है |

अंकन

मूल रूप से स्थानीय या विश्व स्तर पर परिबद्ध भिन्नता के कार्यों के रिक्त स्थान के अंकन के लिए दो अलग-अलग सम्मेलन हैं, और दुर्भाग्य से वे अधिक समान हैं | पहला, जो इस प्रविष्टि में अपनाया गया है, उदाहरण के लिए संदर्भों में प्रयोग किया जाता है | गिउस्टी (1984) (आंशिक रूप से), हुडजाएव & वोल्पर्ट (1985) (आंशिक रूप से), जियाक्विंटा, मोडिका & सॉसेक (1998) और निम्नलिखित है |

  • विश्व स्तर पर परिबद्ध भिन्नता के कार्यों के स्थान (गणित) की पहचान करता है |
  • स्थानीय रूप से परिबद्ध भिन्नता के कार्यों के स्थान (गणित) की पहचान करता है |

दूसरा, जो सन्दर्भों में ग्रहण किया जाता है वोल्पर्ट (1967) और मज़्या (1985) (आंशिक रूप से), निम्नलिखित है:

  • विश्व स्तर पर परिबद्ध भिन्नता के कार्यों के स्थान (गणित) की पहचान करता है |
  • स्थानीय रूप से परिबद्ध भिन्नता के कार्यों के स्थान (गणित) की पहचान करता है |

मूल गुण

निम्नलिखित में केवल चर के फलन (गणित) और कई चरों के फलन (गणित) के सामान्य गुणों पर विचार किया जाएगा, और गणितीय प्रमाण को केवल कई चरों के कार्यों के लिए किया जाएगा क्योंकि स्थिति के लिए गणितीय प्रमाण एक चर का सीधा अनुकूलन कई चर के स्थिति में है: साथ ही, प्रत्येक खंड में यह बताया जाएगा कि क्या प्रोपर्टी को स्थानीय रूप से बाध्य भिन्नता के कार्यों द्वारा भी साझा किया जाता है या नहीं। संदर्भ (गिउस्टी 1984, pp. 7–9), (हुडजाएव & वोल्पर्ट 1985) और (मालेक et al. 1996) का व्यापक रूप से उपयोग किया जाता है।

BV फलन में केवल जंप-टाइप या रिमूवेबल डिसकंटीन्युटी होती है |

चर के स्थिति में, अभिकथन स्पष्ट है: प्रत्येक बिंदु के लिए अंतराल में (गणित) फलन की परिभाषा , निम्नलिखित दो कथनों में से कोई सत्य है |

जबकि फलन की दोनों सीमाएं उपस्थित हैं और परिमित हैं। कई चर के कार्यों के स्थिति में, समझने के लिए कुछ परिसर हैं: सबसे पहले, दिशा (ज्यामिति, भूगोल) का रैखिक सातत्य है | जिसके साथ किसी दिए गए बिंदु तक पहुंचना संभव है | डोमेन से संबंधित . फलन की सीमा की उपयुक्त अवधारणा को स्पष्ट बनाना आवश्यक है | इकाई सदिश चुनना विभाजित करना संभव है | दो समुच्चय में

फिर प्रत्येक बिंदु के लिए डोमेन से संबंधित B.V.. फलन की , निम्नलिखित दो कथनों में से केवल एक सत्य है |

या के उपसमुच्चय के अंतर्गत आता है शून्य होना -आयामी हौसडॉर्फ उपाय। मात्राएँ

'BV' फलन बिंदु पर . की अनुमानित सीमाएं कहलाती हैं |

V(·, Ω) L1(Ω) पर निचला अर्ध-निरंतर है

कार्यात्मक (गणित) अर्ध-निरंतरता है | निचला अर्ध-निरंतर: इसे देखने के लिए, B.V..-फलन का कॉची अनुक्रम चुनें'स्थानीय रूप से एकीकृत फलन में अभिसरण है |. फिर, चूंकि अनुक्रम के सभी कार्य और उनके सीमा कार्य अभिन्न हैं और निचली सीमा की परिभाषा के अनुसार हैं |

अब कार्यों के समुच्चय पर सर्वोच्चता पर विचार कर रहे हैं ऐसा है कि तो निम्नलिखित असमानता सत्य है |

जो बिल्कुल अर्धसतर्कता की परिभाषा है।

BV (Ω) बानाच स्पेस है | परिभाषा से समाकलनीय फलन का उपसमुच्चय है | , जबकि रैखिकता परिभाषित अभिन्न के रैखिकता गुणों से होती है अर्थात

सभी के लिए इसलिए सभी के लिए , और

सभी के लिए , इसलिए सभी के लिए , और सभी . सिद्ध सदिश स्थान गुण इसका अर्थ है | Lp space| की सदिश उपसमष्टि है | . अब कार्य पर विचार करें के रूप में परिभाषित है |

जहाँ सामान्य एलपी स्पेस है | एलपी स्पेस और लेबेसेग इंटीग्रल | मानदंड: यह सिद्ध करना आसान है कि यह आदर्श (गणित) है . यह देखने के लिए इसके संबंध में पूर्ण मीट्रिक स्थान है, अर्थात यह बैनाच स्थान है, कॉची अनुक्रम पर विचार करें में . परिभाषा के अनुसार यह कॉशी अनुक्रम भी है | और इसलिए अनुक्रम की सीमा होती है में : तब से में बँधा हुआ है प्रत्येक के लिए , तब भिन्नता की अर्ध निरंतरता से , इसलिए BV फलन है। अंत में, फिर से कम अर्ध-निरंतरता से, इच्छानुसार छोटी सकारात्मक संख्या का चयन करना :b इससे हम यह निष्कर्ष निकालते हैं निरंतर है क्योंकि यह आदर्श है।

BV(Ω) वियोज्य नहीं है

इसे देखने के लिए, अंतरिक्ष से संबंधित निम्नलिखित उदाहरण पर विचार करना पर्याप्त है | ':[6] प्रत्येक के लिए 0< α < 1 परिभाषित करें |

अंतराल (गणित) शब्दावली|बाएं बंद अंतराल के सूचक फलन के रूप में . फिर, α,β∈ चुनना ऐसा है कि α≠β निम्नलिखित संबंध सत्य है |

अब, यह सिद्ध करने के लिए कि प्रत्येक घना समुच्चय गणनीय समुच्चय नहीं किया जा सकता है | यह देखने के लिए पर्याप्त है कि प्रत्येक के लिए बॉल (गणित) का निर्माण संभव है |

स्पष्ट रूप से वे गेंदें असम्बद्ध समुच्चय हैं, और समुच्चय (गणित) का अनुक्रमित समूह भी है | जिसका सूचकांक समुच्चय है | . इसका तात्पर्य है कि इस समूह में सातत्य की प्रमुखता है | अब, चूंकि प्रत्येक सघन उपसमुच्चय इस समूह के प्रत्येक सदस्य के अंदर कम से कम बिंदु होना चाहिए | इसकी प्रमुखता कम से कम सातत्य की है और इसलिए इसे गणनीय उपसमुच्चय नहीं बनाया जा सकता है।[7] इस उदाहरण को स्पष्ट रूप से उच्च आयामों तक बढ़ाया जा सकता है, और चूंकि इसमें केवल स्थानीय प्रोपर्टी सम्मिलित है | इसका तात्पर्य है कि वही प्रोपर्टी के लिए भी सत्य है |

BV कार्यों के लिए चेन नियम

सुचारू कार्यों के लिए श्रृंखला नियम गणित और गणितीय भौतिकी में बहुत महत्वपूर्ण हैं | क्योंकि कई महत्वपूर्ण गणितीय मॉडल हैं | जिनके व्यवहार को फलन (गणित) या कार्यात्मक (गणित) द्वारा वर्णित किया गया है | जो बहुत ही सीमित डिग्री के चिकने कार्य के साथ हैं। कागज में निम्नलिखित श्रृंखला नियम सिद्ध होता है |(वोल्पर्ट 1967, p. 248). ध्यान दें कि सभी आंशिक डेरिवेटिव को सामान्यीकृत अर्थ में व्याख्या किया जाना चाहिए, अर्थात, सामान्यीकृत व्युत्पन्न मूल विचार के रूप में होता है।

प्रमेय। माना कक्षा का कार्य हो (अर्थात सतत कार्य और निरंतर कार्य डेरिवेटिव वाले अलग-अलग कार्य) और माना में फलन हो साथ का खुला उपसमुच्चय है | .

तब और

जहाँ बिंदु पर फलन , के रूप में परिभाषित का माध्य मान है |

लिपशिट्ज निरंतरता के लिए अधिक सामान्य श्रृंखला नियम सूत्र लुइगी एम्ब्रोसियो और गियान्नी दल मासो द्वारा पाया गया है और पेपर में प्रकाशित हुआ है (एम्ब्रोसियो & दाल मासो 1990). चूँकि, इस सूत्र के भी बहुत महत्वपूर्ण प्रत्यक्ष परिणाम हैं: उपयोग करना की स्थान , जहाँ एक भी है | फलन और चयन , पूर्ववर्ती सूत्र उत्पाद कार्य नियम के लिए देता है |

इसका तात्पर्य है कि परिबद्ध भिन्नता के दो कार्यों का उत्पाद फिर से परिबद्ध भिन्नता का कार्य है | साहचर्य बीजगणित है।

BV(Ω) बनच बीजगणित है |

यह प्रोपर्टी सीधे इस तथ्य से अनुसरण करती है कि ' बनच स्थान है और साहचर्य बीजगणित भी है | इसका तात्पर्य है कि यदि और के कॉची क्रम हैं कार्य क्रमशः और में कार्य (गणित) में परिवर्तित हो रहे हैं | तब

इसलिए सामान्य बिंदुवार उत्पाद निरंतरता (गणित) है | प्रत्येक तर्क के संबंध में, इस कार्य स्थान को बनच बीजगणित बनाते हैं।

सामान्यीकरण और विस्तार

भारित BV कार्य

कुल भिन्नता की उपरोक्त धारणा को सामान्य बनाना संभव है | जिससे विभिन्न भिन्नताओं को अलग-अलग भारित किया जा सके। अधिक स्पष्ट, माना कोई भी बढ़ता हुआ कार्य हो जैसे कि (वजन फलन) और माना अंतराल से कार्य बनें (गणित) ⊂ℝ आदर्श सदिश स्थान में मान लेना . फिर -की भिन्नता ऊपर परिभाषित किया जाता है

जहाँ, सदैव की तरह, अंतराल के अंतराल के सभी परिमित विभाजनों पर सर्वोच्चता ले ली जाती है | , अर्थात वास्तविक संख्याओं के सभी परिमित समुच्चय ऐसा है कि

ऊपर विचार की गई कुल भिन्नता की मूल धारणा का विशेष स्थिति है | -वैरिएशन जिसके लिए वेट फलन पहचान फलन है | इसलिए इंटीग्रेबल फलन भारित BV कार्य कहा जाता है (वजन का ) यदि और केवल यदि इसकी -भिन्नता परिमित है।

अंतरिक्ष मानदंड (गणित) के संबंध में सांस्थितिक सदिश स्थान है |

जहाँ के सामान्य सर्वोच्च मानदंड को दर्शाता है |. व्लाडिसलाव ऑरलिक्ज़ और जूलियन मुसिलाक द्वारा पेपर में भारित BV कार्यों को पूर्ण सामान्यता में प्रस्तुत किया गया और उनका अध्ययन किया गया मुसीलैक & ऑरलिज़ 1959: लॉरेंस चिशोल्म यंग ने पहले स्थिति का अध्ययन किया था जहाँ सकारात्मक पूर्णांक है।

एसबीवी कार्य

पेपर में लुइगी एम्ब्रोसियो और एन्नियो डी जियोर्गी द्वारा 'एसबीवी फलन' अर्थात बाउंडेड वेरिएशन के विशेष फलन प्रस्तुत किए गए थे | (एम्ब्रोसियो & डी जियोर्गी 1988), मुक्त विच्छिन्नता परिवर्तनशील समस्याओं से निपटना: खुला उपसमुच्चय दिया गया है | का , अंतरिक्ष की उचित रैखिक उपसमष्टि है | , चूंकि इससे संबंधित प्रत्येक कार्य के अशक्त व्युत्पन्न ढाल में एक का योग होता है | -आयाम समर्थन (गणित) और -आयामी समर्थन (गणित) माप (गणित) और कोई मध्यवर्ती-आयामी शब्द नहीं, जैसा कि निम्नलिखित परिभाषा में देखा गया है।

'परिभाषा' स्थानीय रूप से एकीकृत फलन को देखते हुए ', तब यदि और केवल यदि

1. दो बोरेल कार्य उपस्थित हैं | और किसी फलन के डोमेन का और कोडोमेन ऐसा है कि

2. सभी स्मूथ फलन सदिश-वैल्यू फलन के लिए समर्थन का (गणित) कॉम्पैक्ट समर्थन में निहित है , i.e. सभी के लिए निम्नलिखित सूत्र सत्य है |

जहाँ -आयामी हौसडॉर्फ उपाय है ।

एसबीवी कार्यों के गुणों पर विवरण ग्रंथसूची अनुभाग में उद्धृत कार्यों में पाया जा सकता है | विशेष रूप से पेपर (डी जियोर्गी 1992) में उपयोगी ग्रंथसूची है।

BV अनुक्रम

बनच रिक्त स्थान के विशेष उदाहरण के रूप में, डनफोर्ड & श्वार्ट्ज (1958, अध्याय चतुर्थ) परिबद्ध भिन्नता के कार्यों के रिक्त स्थान के अतिरिक्त, परिबद्ध भिन्नता के अनुक्रमों के रिक्त स्थान पर विचार करें। अनुक्रम (गणित) की कुल भिन्नता x = (xi) वास्तविक या जटिल संख्याओं द्वारा परिभाषित किया गया है |

परिमित कुल भिन्नता के सभी अनुक्रमों के स्थान को bv द्वारा निरूपित किया जाता है। BV पर मानदंड द्वारा दिया गया है |

इस मानदंड के साथ, अंतरिक्ष bv बनच स्थान है | जो आइसोमोर्फिक है |

कुल भिन्नता ही BV द्वारा निरूपित BV0 के निश्चित उप-स्थान पर मानदंड को परिभाषित करती है | अनुक्रमों से मिलकर x = (xi) जिसके लिए

BV0 पर मानदंड निरूपित किया जाता है |

इस मानदंड के संबंध में B.V.0 बनच स्पेस भी बन जाता है, जो आइसोमॉर्फिक और आइसोमेट्रिक है (चूँकि प्राकृतिक विधि से नहीं)।

परिबद्ध भिन्नता के उपाय

हस्ताक्षरित माप (या जटिल माप) उपाय (गणित) सिग्मा-बीजगणित पर परिबद्ध भिन्नता का कहा जाता है | यदि इसकी कुल भिन्नता माप सिद्धांत में कुल भिन्नता है | घिरा हुआ है | देखें हल्मोस (1950, p. 123), कोलमोगोरोव & फोमिन (1969, p. 346) या अधिक जानकारी के लिए प्रविष्टि कुल भिन्नता होती है।

उदाहरण

जैसा कि परिचय में उल्लेख किया गया है, BV कार्यों के उदाहरणों के दो बड़े वर्ग एकरस कार्य हैं, और बिल्कुल निरंतर कार्य हैं। नकारात्मक उदाहरण के लिए: फलन

अंतराल पर परिबद्ध भिन्नता का नहीं है |

फ़ाइल:Xsin(x^-1).svg|thumb|right|फलन f(x) = x sin(1/x) अंतराल पर परिबद्ध भिन्नता का नहीं है |

जबकि यह देखना कठिन है, निरंतर कार्य

अंतराल पर परिबद्ध भिन्नता का नहीं है दोनों में से एक है।

फ़ाइल:X^2sin(x^-1).svg|thumb|right|फलन f(x) = x2 sin(1/x) अंतराल पर परिबद्ध भिन्नता का है |

साथ ही, फलन

अंतराल पर परिबद्ध भिन्नता का है | चूँकि, साथ . तीनों कार्य प्रत्येक अंतराल पर परिबद्ध भिन्नता के हैं |

कैंटर फलन परिबद्ध भिन्नता के फलन का प्रसिद्ध उदाहरण है जो बिल्कुल निरंतर नहीं है।[8]

सोबोलेव अंतरिक्ष का उचित उपसमुच्चय है . वास्तव में, प्रत्येक के लिए में माप (गणित) चुनना संभव है | (जहाँ लेबेस्ग उपाय चालू है ) माना

धारण करता है, क्योंकि यह अशक्त व्युत्पन्न की परिभाषा से अधिक कुछ नहीं है, और इसलिए सत्य है। BV फलन का उदाहरण आसानी से मिल सकता है जो 'नहीं है' | आयाम में, गैर-सामान्य वाला कोई भी चरण कार्य करता है |

अनुप्रयोग

गणित

कार्यों की असंततताओं के वर्गीकरण और वास्तविक कार्यों की भिन्नता के संबंध में परिबद्ध भिन्नता के कार्यों का अध्ययन किया गया है, और निम्नलिखित परिणाम अच्छी तरह से ज्ञात हैं। यदि अंतराल पर परिबद्ध भिन्नता का वास्तविक संख्या फलन (गणित) है | तब

  • गणनीय समुच्चय पर अधिकतर को छोड़कर निरंतर कार्य है |
  • प्रत्येक स्थान एकतरफा सीमाएँ हैं (बाएँ से प्रत्येक स्थान अंदर की सीमाएँ , और दाईं ओर से प्रत्येक स्थान में ;है |
  • व्युत्पन्न लगभग प्रत्येक स्थान उपस्थित है (अर्थात माप शून्य के समुच्चय को छोड़कर)।

कई वास्तविक चरों के वास्तविक संख्या फलन (गणित) के लिए

  • कैसीओपोली समुच्चय का संकेतक कार्य BV फलन है | BV फलन परिधि के आधुनिक सिद्धांत के आधार पर स्थित है।
  • न्यूनतम सतह BV कार्यों के कार्यों का ग्राफ हैं | इस संदर्भ में, संदर्भ देखें (गिउस्टी 1984).

भौतिकी और इंजीनियरिंग

विच्छिन्नताओं से निपटने के लिए BV कार्यों की क्षमता ने उनके उपयोग को प्रयुक्त विज्ञानों में व्यापक बना दिया है | यांत्रिकी, भौतिकी, रासायनिक कैनेटीक्स में समस्याओं का समाधान बहुत बार परिबद्ध भिन्नता के कार्यों द्वारा प्रस्तुत किया जा सकता है। पुस्तक (हुडजाएव & वोल्पर्ट 1985) BV कार्यों के गणितीय भौतिकी अनुप्रयोगों के बहुत ही पर्याप्त समुच्चय का विवरण देता है। कुछ आधुनिक अनुप्रयोग भी हैं | जो संक्षिप्त विवरण के योग्य हैं।

  • द ममफोर्ड-शाह कार्यात्मक: द्वि-आयामी छवि के लिए विभाजन की समस्या, अर्थात समोच्चों और ग्रे स्केल के वफादार पुनरुत्पादन की समस्या इस तरह के कार्यात्मक (गणित) के न्यूनतम के समान है।
  • कुल भिन्नता अस्वीकरण

यह भी देखें

  • रेनाटो कैसिओपोली
  • कैकियोपोली समुच्चय
  • लैम्बर्टो केसरी
  • एन्नियो डी जियोर्गी
  • हेली का चयन सिद्धांत
  • स्थानीय रूप से अभिन्न कार्य
  • एलपी स्पेस|एलp(Ω) स्थान
  • लेबेस्ग-स्टील्टजेस इंटीग्रल
  • रेडॉन माप
  • कम व्युत्पन्न
  • रिमेंन-स्टील्टजेस इंटीग्रल
  • कुल भिन्नता
  • एजिक इसाकोविच वोल्पर्ट
  • कुल भिन्नता अस्वीकरण

टिप्पणियाँ

  1. Tonelli introduced what is now called after him Tonelli plane variation: for an analysis of this concept and its relations to other generalizations, see the entry "Total variation".
  2. See for example Kolmogorov & Fomin (1969, pp. 374–376).
  3. For a general reference on this topic, see Riesz & Szőkefalvi-Nagy (1990)
  4. In this context, "finite" means that its value is never infinite, i.e. it is a finite measure.
  5. See the entry "Total variation" for further details and more information.
  6. The example is taken from Giaquinta, Modica & Souček (1998, p. 331): see also (Kannan & Krueger 1996, example 9.4.1, p. 237).
  7. The same argument is used by Kolmogorov & Fomin (1969, example 7, pp. 48–49), in order to prove the non separability of the space of bounded sequences, and also Kannan & Krueger (1996, example 9.4.1, p. 237).
  8. "Real analysis - Continuous and bounded variation does not imply absolutely continuous".

संदर्भ



शोध कार्य

ऐतिहासिक संदर्भ

बाहरी संबंध

सिद्धांत

अन्य


This article incorporates material from BV function on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.


श्रेणी:वास्तविक विश्लेषण श्रेणी:विविधताओं की गणना श्रेणी:माप सिद्धांत