समूह वेग: Difference between revisions
m (8 revisions imported from alpha:समूह_वेग) |
No edit summary |
||
Line 265: | Line 265: | ||
{{Authority control}} | {{Authority control}} | ||
{{DEFAULTSORT:Group Velocity}} | {{DEFAULTSORT:Group Velocity}} | ||
[[Category:Articles with hatnote templates targeting a nonexistent page|Group Velocity]] | |||
[[Category:Collapse templates|Group Velocity]] | |||
[[Category: | [[Category:Created On 09/03/2023|Group Velocity]] | ||
[[Category:Created On 09/03/2023]] | [[Category:Lua-based templates|Group Velocity]] | ||
[[Category:Vigyan Ready]] | [[Category:Machine Translated Page|Group Velocity]] | ||
[[Category:Missing redirects|Group Velocity]] | |||
[[Category:Multi-column templates|Group Velocity]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists|Group Velocity]] | |||
[[Category:Pages using div col with small parameter|Group Velocity]] | |||
[[Category:Pages with script errors|Group Velocity]] | |||
[[Category:Short description with empty Wikidata description|Group Velocity]] | |||
[[Category:Sidebars with styles needing conversion|Group Velocity]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready|Group Velocity]] | |||
[[Category:Templates generating microformats|Group Velocity]] | |||
[[Category:Templates that add a tracking category|Group Velocity]] | |||
[[Category:Templates that are not mobile friendly|Group Velocity]] | |||
[[Category:Templates that generate short descriptions|Group Velocity]] | |||
[[Category:Templates using TemplateData|Group Velocity]] | |||
[[Category:Templates using under-protected Lua modules|Group Velocity]] | |||
[[Category:Wikipedia fully protected templates|Div col]] | |||
[[Category:Wikipedia metatemplates|Group Velocity]] | |||
[[Category:गणितीय भौतिकी|Group Velocity]] | |||
[[Category:तरंग यांत्रिकी|Group Velocity]] | |||
[[Category:प्रकाशिकी|Group Velocity]] | |||
[[Category:भौतिक मात्रा|Group Velocity]] | |||
[[Category:रेडियो आवृत्ति प्रसार|Group Velocity]] |
Latest revision as of 10:42, 17 April 2023
एक तरंग का समूह वेग वह वेग है जिसके साथ तरंग के आयाम का समग्र लिफाफा आकार- जिसे तरंग के मॉडुलन या लिफाफा के रूप में जाना जाता है-जगह के माध्यम से फैलता है।
उदाहरण के लिए, यदि एक शांत तालाब के बीच में एक पत्थर फेंका जाता है, तो पानी में एक शांत केंद्र वाली तरंगों का एक गोलाकार पैटर्न दिखाई देता है, जिसे केशिका तरंग के रूप में भी जाना जाता है। तरंगों का बढ़ता हुआ वलय तरंग समूह है, जिसके भीतर एक व्यक्ति उन तरंगों को पहचान सकता है जो पूरे समूह की तुलना में तेजी से यात्रा करता है। व्यक्तिगत तरंगों के आयाम बढ़ते है क्योंकि वे समूह के अनुगामी किनारे से निकलते है और जैसे-जैसे वे समूह के अग्रणी किनारे तक पहुँचते है, कम होते जाते है।
परिभाषा और व्याख्या
परिभाषा
समूह वेग vg समीकरण द्वारा परिभाषित किया गया है:[2][3][4][5]
जहाँ ω तरंग की कोणीय आवृत्ति है (सामान्यतः पर प्रति सेकंड रेडियन में व्यक्त की जाती है), और k कोणीय तरंग संख्या है (सामान्यतः पर प्रति मीटर रेडियन में व्यक्त)। चरण वेग है: vp = ω/k.
समारोह (गणित) ω(k), जो देता है ω के कार्य के रूप में k, फैलाव संबंध के रूप में जाना जाता है।
- अगर ω आनुपातिकता (गणित) है k, तब समूह वेग ठीक चरण वेग के बराबर होता है। किसी भी आकार की तरंग इस वेग से बिना विकृत हुए यात्रा करता है।
- यदि ω k का एक रैखिक फलन है, लेकिन सीधे आनुपातिक नहीं है (ω = ak + b), तब समूह वेग और चरण वेग भिन्न होते है। एक तरंग पैकेट का लिफाफा समूह वेग से यात्रा करेगा, जबकि लिफाफे के भीतर अलग-अलग चोटियाँ और गर्त चरण वेग से आगे बढ़ता है।
- अगर ω का एक रैखिक कार्य नहीं है k, तरंग पैकेट का लिफाफा यात्रा के दौरान विकृत हो जाता है। चूंकि एक तरंग पैकेट में विभिन्न आवृत्तियों की एक श्रृंखला होती है (और इसलिए इसके विभिन्न मान k), समूह वेग ∂ω/∂k के विभिन्न मूल्यों के लिए अलग होता है k. इसलिए, लिफाफा एक ही वेग से नहीं चलता है, लेकिन इसके तरंग संख्या घटक (k) लिफाफे को विकृत करते हुए, विभिन्न वेगों पर चलता है। यदि तरंग पैकेट में आवृत्तियों की एक संकीर्ण सीमा होती है, और ω(k) उस संकीर्ण सीमा पर लगभग रैखिक होती है, छोटी अशुद्धता के संबंध में नाड़ी विरूपण छोटा होता है। उदाहरण के लिए, गुरुत्वाकर्षण तरंगें के लिए, , और इसलिए vg = vp /2 यह सभी जहाजों और तैरने वाली वस्तुओं की धनुष तरंग के लिए केल्विन वेक पैटर्न को रेखांकित करता है। यदि वे कितनी तेजी से आगे बढ़ रहे हों, जब तक उनका वेग स्थिर होता है, प्रत्येक तरफ वेकेशन यात्रा की रेखा के साथ 19.47° = आर्क्सिन (1/3) का कोण बनाता है।[6]
व्युत्पत्ति
समूह वेग के सूत्र की एक व्युत्पत्ति इस प्रकार है।[7][8]
स्थिति के कार्य के रूप में तरंग पैकेट पर विचार करता है x और समय t: α(x,t).
होने देना A(k) समय पर इसका फूरियर रूपांतरण होता है t = 0,
सुपरपोज़िशन सिद्धांत द्वारा, किसी भी समय तरंग पैकेट t है
जहाँ ω निहित रूप से एक कार्य है k.
मान लीजिए कि तरंग पैकेट α लगभग है, जिससे कि A(k) एक केंद्रीय के आसपास तेजी से चरम पर होता है k0.
फिर, रैखिककरण देता है
जहाँ
- और
- (इस चरण की चर्चा के लिए अगला भाग देखें)। फिर, कुछ बीजगणित के बाद देखें,
इस अभिव्यक्ति में दो कारक होते है। पहला कारक, , तरंग वेक्टर के साथ एक परिपूर्ण मोनोक्रोमैटिक तरंग का वर्णन करता है k0, चोटियों और कुंडों के साथ चरण वेग से चलती है तरंग पैकेट के लिफाफे के भीतर होता है।
अन्य कारक,
- ,
तरंग पैकेट का लिफाफा देता है। यह लिफाफा कार्य संयोजन के माध्यम से ही स्थिति और समय पर निर्भर करता है .
इसलिए, तरंग पैकेट का लिफाफा वेग से यात्रा करता है
- जो समूह वेग सूत्र की व्याख्या करता है।
फैलाव में उच्च-क्रम की शर्तें
पिछली व्युत्पत्ति का एक भाग टेलर श्रृंखला है:
यदि तरंग पैकेट में अपेक्षाकृत बड़ी आवृत्ति फैलती है, या यदि फैलाव होता है ω(k) में तीव्र विविधताएं होती है, या यदि पैकेट बहुत लंबी दूरी पर यात्रा करता है, तो यह धारणा मान्य नहीं होती है, और टेलर विस्तार में उच्च-क्रम की शर्तें महत्वपूर्ण हो जाती है।
परिणाम स्वरुप, तरंग पैकेट का लिफाफा न केवल चलता है, जबकि विकृत भी होता है, जिसे सामग्री के समूह वेग फैलाव द्वारा वर्णित किया जा सकता है। शिथिल रूप से, तरंग पैकेट के विभिन्न आवृत्ति-घटक अलग-अलग गति से यात्रा करते है, तेज़ घटक तरंग पैकेट के सामने की ओर बढ़ते है और धीमी गति से पीछे की ओर बढ़ते है। आखिरकार, तरंग पैकेट खिंच जाता है। प्रकाशित तंतु के माध्यम से सिग्नल के प्रसार और उच्च ऊर्जा, शॉर्ट-पल्स लेजर के डिजाइन में यह एक महत्वपूर्ण प्रभाव होता है।
इतिहास
एक तरंग के चरण वेग से भिन्न समूह तरंग का विचार सबसे पहले विलियम रोवन हैमिल्टन द्वारा प्रस्तावित किया गया था। डब्ल्यू.आर. हैमिल्टन द्वारा 1839 में किया गया था, और पहला पूर्ण उपचार 1877 में जॉन स्ट्रट, तीसरे बैरन रेले ने अपने थ्योरी ऑफ़ साउंड में किया था।[9]
अन्य भाव
प्रकाश के लिए, अपवर्तक सूचकांक n, वैक्यूम तरंग लेंथ λ0, और माध्यम में तरंग दैर्ध्य λ, से संबंधित है
साथ vp = ω/k चरण वेग है।
समूह वेग, इसलिए, निम्नलिखित में से किसी भी सूत्र द्वारा गणना की जा सकती है,
तीन आयामों में
प्रकाश तरंगों, ध्वनि तरंगों और पदार्थ तरंगों जैसे तीन आयामों से यात्रा करने वाली तरंगों के लिए, चरण और समूह वेग के सूत्र सीधी विधि से सामान्यीकृत होते है:[10]
- एक आयाम:
- तीन आयाम:
जहाँ
यदि तरंगें एनिस्ट्रोपिक (अर्थात्, घूर्णी रूप से सममित नहीं) माध्यम से फैल रही होती है, उदाहरण के लिए एक क्रिस्टल, तो चरण वेग वेक्टर और समूह वेग वेक्टर अलग-अलग दिशाओं में इंगित कर सकते है।
हानिकारक या लाभकारी मीडिया में
समूह वेग को अधिकांशतः उस वेग के रूप में माना जाता है जिस पर एक तरंग के साथ ऊर्जा या सूचना का संचार होता है। ज्यादातर स्थितियों में यह त्रुटिहीन होता है, और समूह वेग को तरंग के संकेत वेग के रूप में माना जा सकता है। चूँकि, यदि तरंग एक अवशोषणशील या लाभकारी माध्यम से यात्रा करता है, तो यह हमेशा पकड़ में नहीं आता है। इन स्थितियों में समूह वेग एक परिभाषित मात्रा नहीं हो सकती है या सार्थक मात्रा नहीं हो सकती है।
अपने पाठ में "आवधिक संरचनाओं में तरंग प्रसार",[11] लियोन ब्रिलौइन ने तर्क दिया कि एक अपव्यय माध्यम में समूह वेग का स्पष्ट भौतिक अर्थ नहीं रह जाता है। एक परमाणु गैस के माध्यम से विद्युत चुम्बकीय तरंगों के संचरण से संबंधित एक उदाहरण लाउडॉन द्वारा दिया गया है।[12] एक अन्य उदाहरण सौर प्रकाशमंडल में यांत्रिक तरंगें है: तरंगें अवमंदित होती है, और उससे संबंधित, ऊर्जा वेग अधिकांशतः तरंगों के समूह वेग से अधिक कम होता है।[13]
इस अस्पष्टता के अतिरिक्त, समूह वेग की अवधारणा को जटिल मीडिया तक विस्तारित करने का एक सामान्य विधि माध्यम के अंदर स्थानिक रूप से नम विमान तरंग समाधानों पर विचार करता है, जो एक जटिल-मूल्यवान तरंग वेक्टर द्वारा विशेषता होती है। फिर, तरंग वेक्टर के काल्पनिक भाग को मनमाने ढंग से छोड़ दिया जाता है और समूह वेग के लिए सामान्य सूत्र को तरंग वेक्टर के वास्तविक भाग पर लागू किया जाता है, अर्थात
या, समतुल्य, जटिल अपवर्तक सूचकांक के वास्तविक भाग के संदर्भ में, n = n + iκ, किसी के पास है[14]
यह दिखाया जा सकता है कि समूह वेग का यह सामान्यीकरण एक तरंग पैकेट के शिखर की स्पष्ट गति से संबंधित है।[15] उपरोक्त परिभाषा सार्वभौमिक नहीं है, चूंकि, वैकल्पिक रूप से कोई भी खड़ी तरंगों के समय को कम करने पर विचार करता है (वास्तविक k, जटिल ω), या, समूह वेग को एक जटिल-मूल्यवान मात्रा होने देता है।[16][17] अलग-अलग विचार अलग-अलग वेग उत्पन्न करते है, फिर भी दोषरहित, लाभहीन माध्यम के स्थिति में सभी परिभाषाएँ सहमत होती है।
जटिल मीडिया के लिए समूह वेग के उपरोक्त सामान्यीकरण अजीब तरह से व्यवहार करते है, और विषम फैलाव का एक अच्छा उदाहरण के रूप में कार्य करता है। विषम फैलाव के एक क्षेत्र के किनारों पर, अनंत हो जाता है (निर्वात में प्रकाश की गति को भी पार कर जाता है), और आसानी से नकारात्मक हो जाता है (इसका चिन्ह रे का विरोध करता है k)।[18][19][20]
सुपरल्यूमिनल समूह वेग
1980 के दशक के बाद से, विभिन्न प्रयोगों ने सत्यापित किया है कि हानिपूर्ण सामग्रियों, या लाभकारी सामग्रियों के माध्यम से भेजे गए लेज़र प्रकाश दालों के समूह वेग के लिए वैक्यूम में प्रकाश की गति से अधिक होना संभव होता है। c. तरंग पैकेट्स की चोटियों को भी इससे तेज गति से चलते देखा गया है c.
चूंकि, इन सभी स्थितियों में, इस बात की कोई संभावना नहीं होती है कि संकेतों को प्रकाश की तुलना में तेजी से ले जाया जा सकता है, क्योंकि उच्च मान है vg तेज तरंगाग्र की वास्तविक गति को तेज करने में मदद नहीं करता है जो किसी भी वास्तविक संकेत की प्रारंभ में होता है। अनिवार्य रूप से प्रतीत होता है सुपरल्यूमिनल ट्रांसमिशन समूह वेग को परिभाषित करने के लिए ऊपर उपयोग किए जाने वाले संकीर्ण बैंड सन्निकटन का एक आर्टिफैक्ट है और मध्यवर्ती माध्यम में अनुनाद घटना के कारण होता है। एक व्यापक बैंड विश्लेषण में यह देखा गया है कि सिग्नल लिफाफे के प्रसार की स्पष्ट रूप से वास्तव में कई चक्रों पर आवृत्तियों के व्यापक बैंड के स्थानीय हस्तक्षेप का परिणाम होता है, जो सभी पूरी तरह से चरण वेग पर फैलते है। परिणाम इस तथ्य के समान यह है कि छाया प्रकाश की तुलना में तेजी से यात्रा करती है, चूँकि जिस घटना को मापा जाता है, वह केवल कार्य-कारण के साथ शिथिल रूप से जुड़ी हुई होती है, यह अनिवार्य रूप से कारण प्रसार के नियमों का सम्मान नहीं करती है, यदि वह सामान्य परिस्थितियों में ऐसा करती है तो एक सामान्य अंतर्ज्ञान की ओर ले जाती है।[14][18][19][21][22]
यह भी देखें
- लहर प्रसार
- फैलाव (पानी की लहरें)
- फैलाव (प्रकाशिकी)
- तरंग प्रसार गति
- समूह विलंब
- समूह वेग फैलाव
- समूह विलंब फैलाव
- चरण विलंब
- चरण वेग
- सिग्नल वेग
- धीमी रोशनी
- अग्र वेग
- मैटर वेव # ग्रुप वेलोसिटी
- सॉलिटन
संदर्भ
टिप्पणियाँ
- ↑ Nemirovsky, Jonathan; Rechtsman, Mikael C; Segev, Mordechai (9 April 2012). "Negative radiation pressure and negative effective refractive index via dielectric birefringence". Optics Express. 20 (8): 8907–8914. Bibcode:2012OExpr..20.8907N. doi:10.1364/OE.20.008907. PMID 22513601.
- ↑ Brillouin, Léon (2003) [1946], Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices, Dover, p. 75, ISBN 978-0-486-49556-9
- ↑ Lighthill, James (2001) [1978], Waves in fluids, Cambridge University Press, p. 242, ISBN 978-0-521-01045-0
- ↑ Lighthill (1965)
- ↑ Hayes (1973)
- ↑ G.B. Whitham (1974). Linear and Nonlinear Waves (John Wiley & Sons Inc., 1974) pp 409–410 Online scan
- ↑ Griffiths, David J. (1995). Introduction to Quantum Mechanics. Prentice Hall. p. 48. ISBN 9780131244054.
- ↑ David K. Ferry (2001). Quantum Mechanics: An Introduction for Device Physicists and Electrical Engineers (2nd ed.). CRC Press. pp. 18–19. Bibcode:2001qmid.book.....F. ISBN 978-0-7503-0725-3.
- ↑ Brillouin, Léon (1960), Wave Propagation and Group Velocity, New York: Academic Press Inc., OCLC 537250
- ↑ Atmospheric and oceanic fluid dynamics: fundamentals and large-scale circulation, by Geoffrey K. Vallis, p239
- ↑ Brillouin, L. (1946). आवधिक संरचनाओं में तरंग प्रसार. New York: McGraw Hill.
- ↑ Loudon, R. (1973). प्रकाश का क्वांटम सिद्धांत. Oxford.
- ↑ Worrall, G. (2012). "सौर वातावरण में मैकेनिकल-वेव एनर्जी के प्रवाह पर रेडिएटिव रिलैक्सेशन के प्रभाव पर". Solar Physics. 279 (1): 43–52. Bibcode:2012SoPh..279...43W. doi:10.1007/s11207-012-9982-z. S2CID 119595058.
- ↑ 14.0 14.1 Boyd, R. W.; Gauthier, D. J. (2009). "प्रकाश दालों के वेग को नियंत्रित करना" (PDF). Science. 326 (5956): 1074–7. Bibcode:2009Sci...326.1074B. CiteSeerX 10.1.1.630.2223. doi:10.1126/science.1170885. PMID 19965419. S2CID 2370109.
- ↑ Morin, David (2009). "फैलाव" (PDF). people.fas.harvard.edu. Archived (PDF) from the original on 2012-05-21. Retrieved 2019-07-11.
- ↑ Muschietti, L.; Dum, C. T. (1993). "अपव्यय के साथ एक माध्यम में वास्तविक समूह वेग". Physics of Fluids B: Plasma Physics. 5 (5): 1383. Bibcode:1993PhFlB...5.1383M. doi:10.1063/1.860877.
- ↑ Gerasik, Vladimir; Stastna, Marek (2010). "मीडिया को अवशोषित करने में जटिल समूह वेग और ऊर्जा परिवहन". Physical Review E. 81 (5): 056602. Bibcode:2010PhRvE..81e6602G. doi:10.1103/PhysRevE.81.056602. PMID 20866345.
- ↑ 18.0 18.1 Dolling, Gunnar; Enkrich, Christian; Wegener, Martin; Soukoulis, Costas M.; Linden, Stefan (2006), "Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial", Science, 312 (5775): 892–894, Bibcode:2006Sci...312..892D, doi:10.1126/science.1126021, PMID 16690860, S2CID 29012046
- ↑ 19.0 19.1 Bigelow, Matthew S.; Lepeshkin, Nick N.; Shin, Heedeuk; Boyd, Robert W. (2006), "Propagation of a smooth and discontinuous pulses through materials with very large or very small group velocities", Journal of Physics: Condensed Matter, 18 (11): 3117–3126, Bibcode:2006JPCM...18.3117B, doi:10.1088/0953-8984/18/11/017, S2CID 38556364
- ↑ Withayachumnankul, W.; Fischer, B. M.; Ferguson, B.; Davis, B. R.; Abbott, D. (2010), "A Systemized View of Superluminal Wave Propagation", Proceedings of the IEEE, 98 (10): 1775–1786, doi:10.1109/JPROC.2010.2052910, S2CID 15100571
- ↑ Gehring, George M.; Schweinsberg, Aaron; Barsi, Christopher; Kostinski, Natalie; Boyd, Robert W. (2006), "Observation of a Backward Pulse Propagation Through a Medium with a Negative Group Velocity", Science, 312 (5775): 895–897, Bibcode:2006Sci...312..895G, doi:10.1126/science.1124524, PMID 16690861, S2CID 28800603
- ↑ Schweinsberg, A.; Lepeshkin, N. N.; Bigelow, M.S.; Boyd, R. W.; Jarabo, S. (2005), "Observation of superluminal and slow light propagation in erbium-doped optical fiber" (PDF), Europhysics Letters, 73 (2): 218–224, Bibcode:2006EL.....73..218S, CiteSeerX 10.1.1.205.5564, doi:10.1209/epl/i2005-10371-0, S2CID 250852270
अग्रिम पठन
- Crawford jr., Frank S. (1968). Waves (Berkeley Physics Course, Vol. 3), McGraw-Hill, ISBN 978-0070048607 Free online version
- Tipler, Paul A.; Llewellyn, Ralph A. (2003), Modern Physics (4th ed.), New York: W. H. Freeman and Company, p. 223, ISBN 978-0-7167-4345-3.
- Biot, M. A. (1957), "General theorems on the equivalence of group velocity and energy transport", Physical Review, 105 (4): 1129–1137, Bibcode:1957PhRv..105.1129B, doi:10.1103/PhysRev.105.1129
- Whitham, G. B. (1961), "Group velocity and energy propagation for three-dimensional waves", Communications on Pure and Applied Mathematics, 14 (3): 675–691, CiteSeerX 10.1.1.205.7999, doi:10.1002/cpa.3160140337
- Lighthill, M. J. (1965), "Group velocity", IMA Journal of Applied Mathematics, 1 (1): 1–28, doi:10.1093/imamat/1.1.1
- Bretherton, F. P.; Garrett, C. J. R. (1968), "Wavetrains in inhomogeneous moving media", Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 302 (1471): 529–554, Bibcode:1968RSPSA.302..529B, doi:10.1098/rspa.1968.0034, S2CID 202575349
- Hayes, W. D. (1973), "Group velocity and nonlinear dispersive wave propagation", Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 332 (1589): 199–221, Bibcode:1973RSPSA.332..199H, doi:10.1098/rspa.1973.0021, S2CID 121521673
- Whitham, G. B. (1974), Linear and nonlinear waves, Wiley, ISBN 978-0471940906
बाहरी संबंध
- Greg Egan has an excellent Java applet on his web site that illustrates the apparent difference in group velocity from phase velocity.
- Maarten Ambaum has a webpage with movie demonstrating the importance of group velocity to downstream development of weather systems.
- Phase vs. Group Velocity – Various Phase- and Group-velocity relations (animation)